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1. Introduction 
Future networks (fixed and mobile) are gearing up for demanding applications like immersive XR, self-
driving cars, and healthcare robots. These applications are expected to demand more from the network in 
terms of QoS characteristics. In particular, such applications require low latency/jitter, high data rates, and 
highly reliable and available networks. Packets not delivered within the required latency/jitter budget will 
be wasted and the user experience will be significantly impacted. 

The transport layer, operating between the network and application layers, is the first layer in the stack 
that functions on an end-to-end basis between the two communicating hosts. User experience and overall 
network performance depend heavily on how applications, the transport layer, and the network work in 
synergy. Transport protocols provide several critical functions to enable data exchange between 
applications on a network: process-to-process delivery, multiplexing and demultiplexing, flow control, 
congestion control, etc. The increasing heterogeneity of the network deployment scenarios and the diverse 
and challenging QoS requirements make the role of transport protocols more crucial and more complex to 
design. 

The adoption of new transport-layer solutions is restricted due to several factors, and the research 
community is forced to work around these limitations and design innovative approaches to improve 
network performance. The widespread use of middleboxes, which often block unknown protocols or 
unrecognized extensions to known protocols, invalidates the end-to-end principle, thereby impeding the 
deployment of alternative protocols, leading to transport protocols ossification [1]. Furthermore, most 
operating systems implement transport functionalities (e.g., TCP and UDP) within the kernel space, 
exposing socket APIs to the applications, making the deployment of new solutions difficult and limiting 
the interfacing options between applications and the transport protocols. This has essentially led to most 
of the Internet traffic either using TCP, for applications demanding reliable delivery, or UDP, for 
applications preferring timeliness to reliability. 

This paper focuses on two directions in transport layer research – alternate transport protocols, and multi-
path approaches – that have materialized to solve the aforementioned problems. Alternate transport 
protocols, such as Datagram Congestion Control Protocol (DCCP), Stream Control Transmission Protocol 
(SCTP) and QUIC, were developed as alternatives to the legacy TCP and UDP protocols, aiming to solve 
some of their inherent issues in addressing specific application requirements. Multi-path protocols 
improve single-path protocols’ (e.g., TCP and QUIC) throughput and resilience by leveraging multiple 
network paths. The 5G feature Access Traffic Steering, Switching and Splitting (ATSSS) specified by 
3GPP employs these multi-path transport protocols to utilize both the 3GPP access (e.g., 5G New Radio 
(NR)) and the non-3GPP access (e.g., Wi-Fi) to provide improved performance. 

The rest of the paper is organized as follows: in Section 2, we highlight the main issues present in TCP 
and UDP and describe how the alternate protocols are designed to overcome them. Section 3 provides an 
overview of the multi-path protocols and discusses their offered improvements. Then, in Section 4, we 
present results from the testing performed to compare the performance of different protocols in an 
emulated environment. Finally, Section 5 concludes the paper and summarizes the open research 
challenges. 

2. Alternate Transport Protocols 
This section provides a review of some of the crucial issues with the legacy transport protocols, TCP and 
UDP, and then discusses how and which of the issues the alternate transport protocols, QUIC and DCCP, 
address. 
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Issues with TCP - 

A. Handshake latency – TCP, being a connection-oriented protocol, performs a 3-way handshake to 
establish a data connection between the two endpoints. Since TCP itself does not provide any 
security functions, most applications, such as HTTPS, require the use of cryptographic protocols, 
such as TLS, that provide privacy, integrity, and authenticity functions. This layering of security 
functions on top of transport functions leads to increased connection-establishment latencies due 
to additional handshake round trips. Fig. 1 shows the typical handshaking of a TCP + TLS/1.3 
connection establishment for (a) first connection to the server, and (b) subsequent connection to 
the same server. For a first-time connection, there is 2-RTT of handshake latency before data can 
be requested. For the subsequent connection to the same server, there is 1-RTT of handshake 
latency before data can be requested. TLS/1.3 itself reduces the handshake latency as compared to 
TLS/1.2, which required 2-RTT for the TLS handshake, thus making the TCP + TLS/1.2 
handshake require 3-RTT before data can be requested. Since a significant number of connections 
on the Internet, such as most web transactions, are short transfers, these handshake latencies have 
an adverse impact on user experience. 

 
Figure 1 - TCP + TLS/1.3 connection 

B. Head-of-line (HoL) blocking – HTTP/2 introduced the notion of multiplexing different HTTP 
objects via multiple streams onto a single TCP connection. This provided benefits over HTTP/1 
by not requiring multiple TCP connections to transfer multiple HTTP objects. However, since for 
TCP, all application-layer data is just bytestream without having any notion of the application-
framing semantics, this results in additional latency incurred for application frames whose 
delivery needs to wait for retransmissions of previously lost TCP segments. Fig. 2 illustrates this 
problem – the HTTP endpoints are transferring data using three streams over a single TCP 
connection. But when TCP packet 2, containing HTTP data of stream 1 is lost, the subsequent 
TCP packet 3, containing HTTP data of streams 2 and 3, which are independent of stream 1, 
needs to wait until packet 2 is received, due to TCP’s guarantee of in-order delivery, before it can 
be received by the receiving HTTP endpoint. This negatively impacts the performance of 
applications running over TCP. 
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Figure 2 - TCP Head-of-line (HoL) blocking 

C. Cleartext transport headers – TCP headers transported between two endpoints are not encrypted. 
Using TLS, the application data, such as HTTP headers and payload, are encrypted, while the 
TLS headers and TCP headers remain in cleartext. Fig. 3 depicts a typical HTTP packet with 
TLS/TCP. Using TLS, the green shaded information is encrypted, the blue shaded TLS headers 
are visible but tamper-proof, while the unshaded TCP headers are all in cleartext. Research has 
shown that it is possible to recognize application traffic using the visible transport headers. In [2], 
a system was developed that could identify the Netflix video being transported over a 
HTTPS/TCP connection using only the information available in the TCP/IP headers. 

 
Figure 3 - HTTP with TLS/TCP 

UDP is an alternative to TCP for real-time applications that prioritize transport speed over reliability. 
Since UDP offers a connection-less transport socket, has less overhead as compared to TCP, and is 
stateless, applications such as VoIP and IPTV prefer it. But UDP offers a very limited set of transport 
features and lacks certain key attributes – in-order delivery, reliability, flow control, and congestion 
control. This has led to application developers being restricted to the transport features they can leverage, 
while having to grapple with the tradeoffs of the two protocols. 
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Two alternate transport protocols – DCCP and QUIC – have been attempts in the evolution of transport 
protocols to provide alternatives to either provide a middle ground between TCP and UDP or enhance 
them to address some of their inherent issues. 

2.1. DCCP 

DCCP, standardized in IETF RFC 4340, grew out from the observation that while historically UDP was 
used for short response-request applications, such as DNS and SNMP, the newer applications, such as 
audio/video streaming and online gaming, were becoming a significant portion of the overall Internet 
traffic, and having no congestion control transport features posed a problem [3]. Congestion control 
mechanism control the entry of data packets into the network, enabling better use of a shared network 
infrastructure and avoiding congestive collapse. While UDP-based applications could implement their 
own congestion control mechanisms, for example RTCP implementing congestion control for RTP over 
UDP, a long history of buggy implementations indicates that it is very hard to properly implement 
effective and reliable congestion control mechanisms. DCCP was designed to provide a modular 
congestion control framework as part of unreliable transport, i.e., DCCP = UDP + congestion control. 

DCCP, like TCP, is a connection-oriented protocol with congestion control, however, like UDP, it does 
not provide reliability, in-order delivery, or flow control. In other words, DCCP enables loss detection but 
not loss recovery. Sequence numbers are used in the DCCP packet headers to detect and report losses, but 
lost packets are not retransmitted. DCCP provides applications with a choice of congestion control 
mechanisms to choose from, including TCP-like congestion control and TCP-Friendly Rate Control 
(TFRC). This is negotiated at connection startup via Congestion Control IDs (CCIDs), which refer to one 
of the standardized congestion control mechanisms. 

Applications, such as online gaming, that would prefer making immediate use of available bandwidth and 
respond quickly to changes in bandwidth, while tolerating abrupt changes in congestion window can use 
the TCP-like congestion control (CCID 2). While applications, such as media streaming, that would 
prefer trading off this responsiveness for a steadier, less bursty rate that maintains longer-term fairness 
with TCP can use the TFRC mechanism (CCID 3). 

While DCCP provides an alternate unreliable transport with congestion control, it has seen limited 
deployments, due to inadequate OS support and issues with NAT-traversal wherein middleboxes 
sometimes do not understand it. This highlights the complexities associated with designing and deploying 
alternate transport protocols. 

2.2. QUIC 

QUIC was initially designed as an experimental transport protocol at Google called GQUIC and was later 
standardized by the IETF in RFC 9000. The main principles behind QUIC’s design were to improve 
HTTP performance and subsequently QoE, providing a user space transport that offers more control, and 
facilitating deployment over existing networks. The designers aimed to develop QUIC as an alternate 
transport protocol built for the needs of today’s Internet and the modern web, as opposed to a general-
purpose transport for most applications. QUIC is built on top of UDP, thereby avoiding the middlebox-
traversal issue since most existing networks understand UDP, and it recreates many of the TCP features 
such as loss recovery, congestion control, flow control, etc. HTTP/3, the latest version of HTTP, runs on 
QUIC. 

QUIC is designed to solve many of TCP’s implicit issues, while also enabling new features, as described 
below – 
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A.  Low-latency handshake – QUIC, like TCP, is a connection-oriented protocol and needs to 
perform a handshake before initiating a data session. But QUIC, unlike TCP, has built-in 
encryption and combines the transport and crypto handshakes to reduce latency. As shown in Fig. 
4 (a), it needs 1-RTT of handshake before requesting data, while for a subsequent connection to 
the same server, it needs 0-RTT of handshake and can request for data in the first packet sent to 
the server, as shown in Fig. 4 (b). This leads to lower latencies especially for short data transfers 
that are not impacted by unnecessary handshake RTTs. 

 
Figure 4 - QUIC connection 

B. Stream multiplexing – QUIC uses streams to provide a lightweight byte-stream abstraction to an 
application. Each stream is identified by a Stream ID and is independent with respect to ordering 
and retransmissions. Multiple streams are multiplexed inside one QUIC packet. As Fig. 5 
illustrates, three HTTP/3 streams are transferring data using QUIC. Since QUIC, unlike TCP, has 
the notion of streams, lost QUIC packet 2, containing data from stream 1 only, does not block the 
delivery of the subsequent QUIC packet 3 containing data from streams 2 and 3. This helps 
applications avoid the HoL problem present in TCP, wherein an affected stream leads to data 
from all other unrelated streams being affected. This provides improved performance especially 
in imperfect network conditions where packet losses can severely impact QoE. 

 
Figure 5 - QUIC’s solution to HoL blocking 
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C. Encrypted headers – QUIC has TLS built in to encrypt all application data and the important 
headers. Fig. 6 shows a typical QUIC packet wherein all the green shaded information is 
encrypted, the blue shaded information is visible but tamper-proof, while the unshaded 
information is in cleartext. Only those QUIC transport headers are visible that are needed for 
routing or decrypting packets. This encryption of most of the transport headers that were visible 
in TCP provides two benefits – firstly, it provides privacy by preventing identification of 
information about the application data by providing end-to-end transport-layer encryption, and 
secondly, it allows the QUIC features to be deployed without the middleboxes tampering with the 
transport headers allowing QUIC to run natively over UDP. However, from a network engineer’s 
perspective, there is very little information available to diagnose network performance issues. 

 
Figure 6 - HTTP with QUIC 

D. Connection migration – QUIC provides inherent connection migration by using connection IDs. 
When a client moves across networks, for example from Wi-Fi to a cellular network, its IP 
address changes, and the server needs to be notified about the new source IP. In the case of TCP, 
a new TCP connection must be established from the new source IP, leading to service disruption. 
QUIC uses connection IDs to identify a connection between the client and server, and this allows 
changes in lower protocol layers to be handled by routing packets to the same endpoint. A QUIC 
server provides additional connection IDs to the client during their initial handshake, and the 
client can use these new connection IDs to maintain service continuity with the server when its 
underlying network or IP address changes. 

These benefits enabled by QUIC are aimed at providing an alternative to TCP with additional built-in 
features. Operational experiences on QUIC from Google indicated a reduction of 16.7% in Google Search 
latency at the 99th percentile, 10.6% in YouTube video latency at the 99th percentile, and 18.5% in 
YouTube video rebuffer rate at the 99th percentile when compared to TCP [4]. However, some caveats 
exist in these improvements. QUIC’s performance benefits over TCP are not consistent across different 
network types and conditions – benefits are greater in networks with higher average RTT and packet loss, 
and in desktop clients as compared to mobile clients. Nevertheless, QUIC continues to gain traction with 
the major websites such as Google, Facebook, Netflix and Snapchat, and the major browsers such as 
Chrome, Edge, Firefox and Safari all supporting HTTP/3. Currently, about 33% of worldwide secure 
HTTP traffic is QUIC-based and is expected to grow in the future [12]. 

3. Multi-path Transport Protocols 
Multi-path transport extensions enable a transport connection over multiple network paths 
simultaneously. For example, a smartphone connected to both Wi-Fi and mobile networks could use the 
two access networks at the same time, allowing for improved performance and better resiliency. In 3GPP, 
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the ATSSS feature specified for 5G enables this support, wherein a UE can steer a data session over either 
of the two accesses - 3GPP access or non-3GPP access – enabling best network selection, switch a data 
session between the two accesses enabling seamless handovers, or split a data session across the two 
accesses enabling network aggregation, based on the ATSSS rules provisioned by the 5G core [5]. In this 
architecture, the multi-path client entity is present in the UE, while the multi-path proxy entity is present 
in the User Plane Function (UPF) in the 5G core. This model enables using the multi-path functionality 
without having to rely on the application server also supporting the multi-path extensions. The two 
transport layer-based functionalities specified by 3GPP are Multipath TCP (MPTCP) and Multipath 
QUIC (MPQUIC). Broadband Forum (BBF) and CableLabs have also specified this ATSSS functionality 
for a hybrid CPE, also called a 5G-RG, that incorporates both the 5G UE and wireline access 
functionality [6,7]. 

3.1. MPTCP 

MPTCP is IETF-specified extensions, in RFC 8684, to TCP to enable simultaneous use of multiple 
network paths between two endpoints. MPTCP was designed to be backward compatible with TCP and 
with the assumption to either one or both endpoints could be multihomed. MPTCP operates at the 
transport layer and is transparent to both the upper and lower layers, as shown in Fig, 7, and be able to 
traverse through middleboxes that understand TCP without requiring any change. MPTCP uses subflows, 
which are TCP sessions on individual network paths, as part of the larger MPTCP connection.  

 
Figure 7 - Comparison of single-path TCP and MPTCP stacks 

Fig. 8 shows the order of operations to set up an MPTCP connection. It begins similar to a TCP 3-way 
handshake, with the difference that the MPTCP-capable hosts add an MP_Capable flag as part of the 
SYN packets sent to their peers. If both hosts support MPTCP, they further exchange keys and negotiate 
MPTCP options to enable the establishment of additional subflows. When the client decides to initiate 
another subflow, for example when the Wi-Fi interface becomes available, another TCP 3-way handshake 
is initiated from the second interface/port with an MP_Join flag and tokens derived from the keys 
exchanged during the first handshake. This enables the server to associate the new connection with the 
first TCP connection, and now the client can use both subflows to transfer data. Each subflow contains 
sufficient control information, such as the data sequence number, for it to be reassembled and delivered 
reliably and in-order to the recipient application. 



 

Presented and first published at SCTE TechExpo24 10 

 
Figure 8 - MPTCP operation to set up subflows 

MPTCP is supported natively in the Linux kernel and on the iOS/macOS. Apple uses MPTCP for its Siri 
digital assistant, Apple Maps and Apple Music applications to benefit from its handover capabilities, such 
as when the user moves away from a Wi-Fi access point and the traffic is handed over to the mobile 
interface [11]. 

3.2. MPQUIC 

MPQUIC, currently an active IETF draft, is a multipath extension for the QUIC protocol to enable the 
simultaneous use of multiple paths for a single connection. While the base QUIC protocol supports 
connection migration between IP-address/port tuples, it can only use one path at a time, while MPQUIC 
enables the use of multiple paths. 

Similar to MPTCP, MPQUIC uses a new transport parameter, initial_max_path_id, to negotiate the use of 
the multipath extension. To enable additional paths, the endpoints first exchange new connection IDs 
associated with the other paths, perform path validation to verify reachability of the new IP address/tuple, 
and then start to use the additional path. 

MPQUIC offers several benefits when compared to MPTCP, like what QUIC offers compared to TCP - 
runs in the user space on top of UDP making its deployment easy with no dependency on OS changes, no 
HoL blocking caused by lost packets on one stream blocking packets belonging to other streams, and 
reduced time for subflow establishment. Experiments with video streaming indicate that MPQUIC 
provides improved QoE as compared to MPTCP with lower rebuffering rates and shorter video startup 
delay [8]. Testing the delay in handover between Wi-Fi and mobile interfaces, MPQUIC performs similar 
to MPTCP, with additional benefits of the ability to tune its performance in the user space based on 
specific requirements [9]. 

4. Performance Testing Results 
In this section we analyze and present the results obtained from testing experiments performed to 
compare the performance of different transport protocols. The testing was performed in an emulated 
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environment using Mininet running on an Ubuntu server [10]. Throughput testing was performed using 
iPerf, while the traffic RTT was measured at the client by determining the delay between the sent request 
and the received response. Each scenario was tested for 100 runs and the results are averaged and 
presented. 

The first test performed was to compare the performance of single-path TCP and MPTCP. Fig. 9 shows 
the network topology tested and the throughput results. The client is multihomed and is connected via two 
symmetrical 20 Mbps paths to the server. Throughput tests indicate that while single-path TCP is able to 
utilize the bandwidth of a single path, MPTCP is able to aggregate the bandwidths of the two paths, 
resulting in a goodput twice larger than single-path TCP. 

 
Figure 9 - Single-path TCP vs MPTCP 

The next set of experiments performed were to test and compare the three important algorithmic 
mechanisms of a multi-path protocol – scheduler, path manager, and congestion controller. The packet 
scheduler is responsible for selecting on which available subflow the next packet will be sent. The two 
most common packet schedulers are the Lowest-RTT-First (LRF) and Round-Robin (RR). The LRF 
scheduler, which is the default scheduler in Linux implementations, prioritizes the subflow with the 
lowest RTT out of all subflows whose congestion window is not yet full. Once the congestion window 
has been filled, data is then sent on the subflow with the next higher RTT. The RR scheduler selects one 
subflow after the other, among those which have space in their congestion windows, in a round-robin 
fashion, striving to evenly utilize the capacity of each path. Some MPTCP implementations use the 
retransmission and penalization scheme to tackle HoL blocking by retransmitting the lost data segment on 
an alternate subflow and penalizing the blocked subflow by reducing its sending rate, thereby helping to 
improve goodput and reduce latency and jitter. Other scheduler implementations include the redundant 
scheduler which transmits traffic on all available subflows in a redundant way, and the blocking 
estimation (BLEST) and earliest completion first (ECF) schedulers that aim to increase MPTCP’s 
performance over heterogeneous paths by estimating, once the congestion window of the fastest subflow 
is full, the tradeoff between sending the next data segment on the slower subflow or waiting for the faster 
subflow. 

To compare the performance of the LRF and RR schedulers, two types of scenarios were tested – low 
throughput request-response traffic (Fig. 10 (a)) and file download over HTTP (Fig. 10 (b)), over two 
heterogenous paths. For the first scenario, since the transmitted traffic does not fill the congestion 
window, the LRF scheduler uses the lower-RTT path to transmit all traffic, while the RR scheduler 
alternates between the two paths resulting in higher traffic RTT. For the second scenario of bulk transfer, 
both LRF and RR schedulers outperform TCP, while they perform similarly to each other. 
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Figure 10 - LRF vs RR scheduler 

The second aspect to test is the path manager algorithm, which is responsible for determining how 
subflows will be created over a MPTCP connection. The Linux kernel includes three types of path 
manager implementations – default, fullmesh, and ndiffports. The default algorithm is a passive path 
manager that does not initiate any additional subflows on a connection. This is used by the server 
endpoints that typically would not initiate additional subflows but accept those initiated by the client. The 
fullmesh algorithm creates a subflow between each pair of (client_IP, server_IP).  So, if a client has N 
addresses and the server M addresses, this path manager will establish N*M subflows. The ndiffports 
algorithm creates multiple subflows (as per configuration) over the same pair of (client_IP, server_IP) by 
using different source ports. This path manager was designed considering a specific use case – benefit 
from multiple equal cost paths in datacenter networks, wherein Equal-cost multi-path (ECMP) routing 
could be employed to forward packets to a single destination over multiple paths. 

Fig. 11 shows three different scenarios tested to compare the performances of the default, fullmesh and 
ndiffports path managers – (a) single-homed client, single-homed server, (b) dual-homed client, single-
homed server, and (c) dual-homed client, dual-homed server. For each scenario, the network topology, 
Wireshark captures of the TCP conversations between client and server, and the throughput results are 
presented. The default path manager establishes only one subflow irrespective of the number of available 
paths, the fullmesh path manager establishes num_client_IP*num_server_IP subflows, while the 
ndiffports path manager always establishes two subflows (as per configuration) between the same client 
IP and server IP using different source ports. For the first scenario, the three path managers perform 
similarly since there is only one path between the client and server. For the second scenario, as expected, 
the fullmesh path manager, which utilizes both paths, achieves double the goodput as compared to 
ndiffports and default path managers, which use only a single path. Similarly, for the third scenario, the 



 

Presented and first published at SCTE TechExpo24 13 

fullmesh path manager establishes four subflows, one per (client_IP, server_IP) pair, and achieves double 
the goodput as compared to ndiffports and default path managers, that use only one path. For the fullmesh 
path manager, similar throughput is observed for scenarios b and c, even though scenario c has more 
available paths, because of similar bandwidths of the bottleneck links in the two scenarios. 

 
Figure 11 - Fullmesh vs ndiffports vs default path managers 

MPTCP also has the notion of path priorities - regular or backup. This is helpful in case where the two 
paths do not have the same cost, for example one is an expensive data-limited cellular connectivity versus 
a flat-cost Wi-Fi connection. In such scenarios, one path can be declared as a backup path to be used only 
when there are no regular paths available. This path priority is especially important when considering 
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handover scenarios and energy consumption of the end device. In case of two regular paths, subflows are 
established and data is exchanged on both paths, while in case of one regular and one backup path, 
subflows are established on both paths while data is exchanged only on the regular path until it fails, 
detected through successive retransmissions. 

Fig. 12 compares these two scenarios, with path 1 having an RTT of 40 ms while path 2 having an RTT 
of 30 ms, and after 9 seconds of the test, path 1 is triggered to fail by configuring 100% packet loss on 
that interface. This situation mimics a mobile phone moving out of the coverage of a Wi-Fi access point. 
In case of two regular paths, the default scheduler LRF uses path 2 having lower RTT for sending data, 
and a failure in path 1 has no impact. In case of one regular path (path 1) and one backup path (path 2), 
the regular path is used initially for sending data, even though it has a higher RTT, and when the regular 
path fails, data is handed over to the backup path, after a delay caused by the time taken to detect path 
failure. 

 
Figure 12 - Handover considering regular and backup paths 

The final aspect of multi-path protocols tested was the impact of the congestion control algorithm. The 
congestion control algorithm is responsible for preventing network congestion and maintaining smooth 
data flows, while ensuring fairness between different data sessions over a shared link. One of the primary 
design principles of MPTCP was that its use should not harm other single-path TCP connections over a 
shared link, i.e., it should not consume more from any of its resources shared by its different paths that if 
it was a single-path flow. Two types of congestion control algorithms exist – uncoupled and coupled. 
Uncoupled algorithms such as Reno, CUBIC, Vegas, etc. are designed for single-path TCP, while coupled 
algorithms such as LIA, OLIA, BaLIA, etc. are designed for multi-path TCP. Since one MPTCP subflow 
appears as a discrete TCP connection, uncoupled algorithms, that operate independently for each TCP 
subflow, are not able to provide fairness when sharing the link with other single-path TCP flows. 

Fig. 13 compares these two types of congestion control algorithms. The network topology consists of the 
Client running MPTCP sharing each bottleneck link with another host. The test involved three iPerf flows 
being generated – first is the MPTCP flow between Client and Server that lasts 50 seconds, second is the 
TCP Cubic flow between Client-1 and Server-1 that starts 10 seconds after the first flow and lasts 20 
seconds, and third is the TCP Cubic flow between Client-2 and Server-2 that starts 20 second after the 
first flow and lasts 20 seconds. So, the first MPTCP flow competes with the second TCP flow for the 
upper bottleneck link between 10s and 30s, and competes with the third TCP flow for the lower 
bottleneck between 20s and 40s. Two congestion control algorithms were tested – Reno and OLIA. The 
Opportunistic Linked Increases Algorithm (OLIA) is a coupled algorithm that aims to improve 
throughput as well as a single-path TCP connection on the best available path while having no adverse 
impact on other single-path TCP connections when sharing common bottlenecks. Two scenarios were 
tested – (a) the MPTCP connection creating only one subflow on each path, and (b) the MPTCP 
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connection creating four subflows on each path. For the first scenario, Reno and OLIA perform similarly, 
sharing network bandwidth between the two TCP flows on each path. But for the second scenario, 
wherein five TCP flows (one single-path TCP flow and four MPTCP subflows) share a path, Reno 
performs significantly unfairly to the single-path TCP flows. While OLIA, that is designed to ensure that 
the multi-path goodput, which includes all its subflows, is equal to the single-path goodput, shares the 
network bandwidth fairly between MPTCP and single-path TCP. 

 
Figure 13 - Uncoupled vs coupled congestion control in multi-path scenario 

Like MPTCP, MPQUIC promises improved performance and better network resiliency by leveraging 
multiple network paths. However, MPQUIC standardization work is still ongoing and there are limited 
implementations available. Fig. 14 compares the performance of single-path QUIC and MPQUIC when 
downloading a 5 MB file using HTTP. MPQUIC can aggregate the network bandwidths of the two paths 
and offers double the goodput as compared to single-path QUIC. Both LRF and RR MPQUIC schedulers 
outperform QUIC, while they perform similarly to each other for this bulk transfer scenario. 
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Figure 14 - Single-path QUIC vs MPQUIC 

5. Conclusion 
With the newer applications demanding increased performance and service continuity across different 
access networks, this paper first discusses the inherent issues with the currently deployed transport 
protocols TCP and UDP which makes them unsuitable, and then describes the transport-layer research in 
developing alternate protocols and multi-path enhancements. While currently the onus is on applications 
to work around the limitations of TCP and UDP, such as HTTP enabling multiplexing different streams 
over one TCP connection, or RTP using RTCP to provide congestion control mechanisms over UDP, 
transport protocols such as QUIC and DCCP provide mechanisms to resolve existing issues and offer 
additional features. DCCP provides a modular congestion control framework over UDP providing 
applications the choice to select and use TCP-like or TCP-friendly mechanisms. QUIC offers TCP 
features like in-order delivery, reliability, flow control and congestion control, while running on top of 
unreliable UDP. QUIC also fixes some of TCP’s issues related to HoL blocking, high handshake-RTT, 
and cleartext headers, offers additional enhancements such as connection migration, and is gaining 
widespread traction. The multipath extensions to TCP and QUIC, MPTCP and MPQUIC, respectively, 
augment their functionalities to utilize multiple available network paths between two endpoints. They 
allow for improved user experience by enabling best network selection, seamless handover, and network 
aggregation. 

To evaluate the performance of multipath protocols and their different aspects, testing was performed in 
an emulated environment and the results are presented. MPTCP and MPQUIC provide real benefits when 
compared to their single-path flavors. Additionally, different kinds of packet schedulers, path managers, 
and congestion control algorithms were tested to determine their suitability. The experiment results 
indicate that using the LRF scheduler, the fullmesh path manager, and a coupled congestion control 
algorithm such as OLIA provides the best performance for most use cases. 

The future work for this analysis involves – (i) performing testing in real-world network conditions, (ii) 
testing additional aspects such as protocol overhead, computational overhead, and (iii) measuring 
handover delays when switching between Wi-Fi and cellular networks using QUIC, MPTCP and 
MPQUIC. 
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Different network operators can make use of these transport-level enhancements in several different ways. 
Mobile network operators can utilize the ATSSS feature by deploying a multi-path proxy functionality in 
their core networks that allows their subscribers’ multi-path enabled devices to be served over both 
cellular and fixed accesses. Converged network operators can additionally deploy hybrid CPEs with both 
cellular and fixed-network capabilities, to provide multi-path capabilities to their subscribers’ home 
devices. Operators can also potentially monetize these enhancements by offering high-performance, 
seamless handover capabilities as a higher-tier subscription. 

In addition to the analysis presented in this paper, CableLabs, working with its members, performed in-
house testing for seamless connectivity when transitioning between the Wi-Fi and cellular networks, and 
researching techniques to resolve the stickiness issue of UE's sticking on Wi-Fi too long before handing 
over to using a better cellular network for data. 
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Abbreviations 
 

3GPP 3rd Generation Partnership Project 
5G-RG 5G Residential gateway 
API application programming interface 
ATSSS Access Traffic Steering, Switching and Splitting 
BBF Broadband Forum 
CPE customer premises equipment 
DCCP Datagram Congestion Control Protocol 
HoL Head-of-line 
HTTP Hypertext Transfer Protocol 
IPTV Internet Protocol television 
LRF Lowest-RTT-first 
MPQUIC Multipath QUIC 
MPTCP Multipath TCP 
OLIA Opportunistic Linked Increases Algorithm 
QoS quality of service 
RR Round-robin 
SCTP Stream Control Transmission Protocol 
TCP Transmission Control Protocol 
TFRC TCP-Friendly Rate Control 
TLS Transport Layer Security 
UDP User Datagram Protocol 
UE user equipment 
UPF User Plane Function 
VoIP Voice over Internet Protocol 
XR extended reality 
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