

Presented and first published at SCTE TechExpo24 1

Transport Protocols Analysis

A technical paper prepared for presentation at SCTE TechExpo24

Rahil Gandotra
Lead Architect

CableLabs
r.gandotra@cablelabs.com

Arun Yerra

Principal Mobile Network Architect
CableLabs

a.yerra@cablelabs.com

Presented and first published at SCTE TechExpo24 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Alternate Transport Protocols ... 3

2.1. DCCP ... 6
2.2. QUIC .. 6

3. Multi-path Transport Protocols .. 8
3.1. MPTCP ... 9
3.2. MPQUIC ... 10

4. Performance Testing Results .. 10
5. Conclusion ... 16

Abbreviations .. 18
Bibliography & References.. 18

List of Figures

Title Page Number
Figure 1 - TCP + TLS/1.3 connection ... 4
Figure 2 - TCP Head-of-line (HoL) blocking .. 5
Figure 3 - HTTP with TLS/TCP ... 5
Figure 4 - QUIC connection .. 7
Figure 5 - QUIC’s solution to HoL blocking ... 7
Figure 6 - HTTP with QUIC ... 8
Figure 7 - Comparison of single-path TCP and MPTCP stacks ... 9
Figure 8 - MPTCP operation to set up subflows ... 10
Figure 9 - Single-path TCP vs MPTCP ... 11
Figure 10 - LRF vs RR scheduler ... 12
Figure 11 - Fullmesh vs ndiffports vs default path managers ... 13
Figure 12 - Handover considering regular and backup paths ... 14
Figure 13 - Uncoupled vs coupled congestion control in multi-path scenario .. 15
Figure 14 - Single-path QUIC vs MPQUIC ... 16

Presented and first published at SCTE TechExpo24 3

1. Introduction
Future networks (fixed and mobile) are gearing up for demanding applications like immersive XR, self-
driving cars, and healthcare robots. These applications are expected to demand more from the network in
terms of QoS characteristics. In particular, such applications require low latency/jitter, high data rates, and
highly reliable and available networks. Packets not delivered within the required latency/jitter budget will
be wasted and the user experience will be significantly impacted.

The transport layer, operating between the network and application layers, is the first layer in the stack
that functions on an end-to-end basis between the two communicating hosts. User experience and overall
network performance depend heavily on how applications, the transport layer, and the network work in
synergy. Transport protocols provide several critical functions to enable data exchange between
applications on a network: process-to-process delivery, multiplexing and demultiplexing, flow control,
congestion control, etc. The increasing heterogeneity of the network deployment scenarios and the diverse
and challenging QoS requirements make the role of transport protocols more crucial and more complex to
design.

The adoption of new transport-layer solutions is restricted due to several factors, and the research
community is forced to work around these limitations and design innovative approaches to improve
network performance. The widespread use of middleboxes, which often block unknown protocols or
unrecognized extensions to known protocols, invalidates the end-to-end principle, thereby impeding the
deployment of alternative protocols, leading to transport protocols ossification [1]. Furthermore, most
operating systems implement transport functionalities (e.g., TCP and UDP) within the kernel space,
exposing socket APIs to the applications, making the deployment of new solutions difficult and limiting
the interfacing options between applications and the transport protocols. This has essentially led to most
of the Internet traffic either using TCP, for applications demanding reliable delivery, or UDP, for
applications preferring timeliness to reliability.

This paper focuses on two directions in transport layer research – alternate transport protocols, and multi-
path approaches – that have materialized to solve the aforementioned problems. Alternate transport
protocols, such as Datagram Congestion Control Protocol (DCCP), Stream Control Transmission Protocol
(SCTP) and QUIC, were developed as alternatives to the legacy TCP and UDP protocols, aiming to solve
some of their inherent issues in addressing specific application requirements. Multi-path protocols
improve single-path protocols’ (e.g., TCP and QUIC) throughput and resilience by leveraging multiple
network paths. The 5G feature Access Traffic Steering, Switching and Splitting (ATSSS) specified by
3GPP employs these multi-path transport protocols to utilize both the 3GPP access (e.g., 5G New Radio
(NR)) and the non-3GPP access (e.g., Wi-Fi) to provide improved performance.

The rest of the paper is organized as follows: in Section 2, we highlight the main issues present in TCP
and UDP and describe how the alternate protocols are designed to overcome them. Section 3 provides an
overview of the multi-path protocols and discusses their offered improvements. Then, in Section 4, we
present results from the testing performed to compare the performance of different protocols in an
emulated environment. Finally, Section 5 concludes the paper and summarizes the open research
challenges.

2. Alternate Transport Protocols
This section provides a review of some of the crucial issues with the legacy transport protocols, TCP and
UDP, and then discusses how and which of the issues the alternate transport protocols, QUIC and DCCP,
address.

Presented and first published at SCTE TechExpo24 4

Issues with TCP -

A. Handshake latency – TCP, being a connection-oriented protocol, performs a 3-way handshake to
establish a data connection between the two endpoints. Since TCP itself does not provide any
security functions, most applications, such as HTTPS, require the use of cryptographic protocols,
such as TLS, that provide privacy, integrity, and authenticity functions. This layering of security
functions on top of transport functions leads to increased connection-establishment latencies due
to additional handshake round trips. Fig. 1 shows the typical handshaking of a TCP + TLS/1.3
connection establishment for (a) first connection to the server, and (b) subsequent connection to
the same server. For a first-time connection, there is 2-RTT of handshake latency before data can
be requested. For the subsequent connection to the same server, there is 1-RTT of handshake
latency before data can be requested. TLS/1.3 itself reduces the handshake latency as compared to
TLS/1.2, which required 2-RTT for the TLS handshake, thus making the TCP + TLS/1.2
handshake require 3-RTT before data can be requested. Since a significant number of connections
on the Internet, such as most web transactions, are short transfers, these handshake latencies have
an adverse impact on user experience.

Figure 1 - TCP + TLS/1.3 connection

B. Head-of-line (HoL) blocking – HTTP/2 introduced the notion of multiplexing different HTTP
objects via multiple streams onto a single TCP connection. This provided benefits over HTTP/1
by not requiring multiple TCP connections to transfer multiple HTTP objects. However, since for
TCP, all application-layer data is just bytestream without having any notion of the application-
framing semantics, this results in additional latency incurred for application frames whose
delivery needs to wait for retransmissions of previously lost TCP segments. Fig. 2 illustrates this
problem – the HTTP endpoints are transferring data using three streams over a single TCP
connection. But when TCP packet 2, containing HTTP data of stream 1 is lost, the subsequent
TCP packet 3, containing HTTP data of streams 2 and 3, which are independent of stream 1,
needs to wait until packet 2 is received, due to TCP’s guarantee of in-order delivery, before it can
be received by the receiving HTTP endpoint. This negatively impacts the performance of
applications running over TCP.

Presented and first published at SCTE TechExpo24 5

Figure 2 - TCP Head-of-line (HoL) blocking

C. Cleartext transport headers – TCP headers transported between two endpoints are not encrypted.
Using TLS, the application data, such as HTTP headers and payload, are encrypted, while the
TLS headers and TCP headers remain in cleartext. Fig. 3 depicts a typical HTTP packet with
TLS/TCP. Using TLS, the green shaded information is encrypted, the blue shaded TLS headers
are visible but tamper-proof, while the unshaded TCP headers are all in cleartext. Research has
shown that it is possible to recognize application traffic using the visible transport headers. In [2],
a system was developed that could identify the Netflix video being transported over a
HTTPS/TCP connection using only the information available in the TCP/IP headers.

Figure 3 - HTTP with TLS/TCP

UDP is an alternative to TCP for real-time applications that prioritize transport speed over reliability.
Since UDP offers a connection-less transport socket, has less overhead as compared to TCP, and is
stateless, applications such as VoIP and IPTV prefer it. But UDP offers a very limited set of transport
features and lacks certain key attributes – in-order delivery, reliability, flow control, and congestion
control. This has led to application developers being restricted to the transport features they can leverage,
while having to grapple with the tradeoffs of the two protocols.

Presented and first published at SCTE TechExpo24 6

Two alternate transport protocols – DCCP and QUIC – have been attempts in the evolution of transport
protocols to provide alternatives to either provide a middle ground between TCP and UDP or enhance
them to address some of their inherent issues.

2.1. DCCP

DCCP, standardized in IETF RFC 4340, grew out from the observation that while historically UDP was
used for short response-request applications, such as DNS and SNMP, the newer applications, such as
audio/video streaming and online gaming, were becoming a significant portion of the overall Internet
traffic, and having no congestion control transport features posed a problem [3]. Congestion control
mechanism control the entry of data packets into the network, enabling better use of a shared network
infrastructure and avoiding congestive collapse. While UDP-based applications could implement their
own congestion control mechanisms, for example RTCP implementing congestion control for RTP over
UDP, a long history of buggy implementations indicates that it is very hard to properly implement
effective and reliable congestion control mechanisms. DCCP was designed to provide a modular
congestion control framework as part of unreliable transport, i.e., DCCP = UDP + congestion control.

DCCP, like TCP, is a connection-oriented protocol with congestion control, however, like UDP, it does
not provide reliability, in-order delivery, or flow control. In other words, DCCP enables loss detection but
not loss recovery. Sequence numbers are used in the DCCP packet headers to detect and report losses, but
lost packets are not retransmitted. DCCP provides applications with a choice of congestion control
mechanisms to choose from, including TCP-like congestion control and TCP-Friendly Rate Control
(TFRC). This is negotiated at connection startup via Congestion Control IDs (CCIDs), which refer to one
of the standardized congestion control mechanisms.

Applications, such as online gaming, that would prefer making immediate use of available bandwidth and
respond quickly to changes in bandwidth, while tolerating abrupt changes in congestion window can use
the TCP-like congestion control (CCID 2). While applications, such as media streaming, that would
prefer trading off this responsiveness for a steadier, less bursty rate that maintains longer-term fairness
with TCP can use the TFRC mechanism (CCID 3).

While DCCP provides an alternate unreliable transport with congestion control, it has seen limited
deployments, due to inadequate OS support and issues with NAT-traversal wherein middleboxes
sometimes do not understand it. This highlights the complexities associated with designing and deploying
alternate transport protocols.

2.2. QUIC

QUIC was initially designed as an experimental transport protocol at Google called GQUIC and was later
standardized by the IETF in RFC 9000. The main principles behind QUIC’s design were to improve
HTTP performance and subsequently QoE, providing a user space transport that offers more control, and
facilitating deployment over existing networks. The designers aimed to develop QUIC as an alternate
transport protocol built for the needs of today’s Internet and the modern web, as opposed to a general-
purpose transport for most applications. QUIC is built on top of UDP, thereby avoiding the middlebox-
traversal issue since most existing networks understand UDP, and it recreates many of the TCP features
such as loss recovery, congestion control, flow control, etc. HTTP/3, the latest version of HTTP, runs on
QUIC.

QUIC is designed to solve many of TCP’s implicit issues, while also enabling new features, as described
below –

Presented and first published at SCTE TechExpo24 7

A. Low-latency handshake – QUIC, like TCP, is a connection-oriented protocol and needs to
perform a handshake before initiating a data session. But QUIC, unlike TCP, has built-in
encryption and combines the transport and crypto handshakes to reduce latency. As shown in Fig.
4 (a), it needs 1-RTT of handshake before requesting data, while for a subsequent connection to
the same server, it needs 0-RTT of handshake and can request for data in the first packet sent to
the server, as shown in Fig. 4 (b). This leads to lower latencies especially for short data transfers
that are not impacted by unnecessary handshake RTTs.

Figure 4 - QUIC connection

B. Stream multiplexing – QUIC uses streams to provide a lightweight byte-stream abstraction to an
application. Each stream is identified by a Stream ID and is independent with respect to ordering
and retransmissions. Multiple streams are multiplexed inside one QUIC packet. As Fig. 5
illustrates, three HTTP/3 streams are transferring data using QUIC. Since QUIC, unlike TCP, has
the notion of streams, lost QUIC packet 2, containing data from stream 1 only, does not block the
delivery of the subsequent QUIC packet 3 containing data from streams 2 and 3. This helps
applications avoid the HoL problem present in TCP, wherein an affected stream leads to data
from all other unrelated streams being affected. This provides improved performance especially
in imperfect network conditions where packet losses can severely impact QoE.

Figure 5 - QUIC’s solution to HoL blocking

Presented and first published at SCTE TechExpo24 8

C. Encrypted headers – QUIC has TLS built in to encrypt all application data and the important
headers. Fig. 6 shows a typical QUIC packet wherein all the green shaded information is
encrypted, the blue shaded information is visible but tamper-proof, while the unshaded
information is in cleartext. Only those QUIC transport headers are visible that are needed for
routing or decrypting packets. This encryption of most of the transport headers that were visible
in TCP provides two benefits – firstly, it provides privacy by preventing identification of
information about the application data by providing end-to-end transport-layer encryption, and
secondly, it allows the QUIC features to be deployed without the middleboxes tampering with the
transport headers allowing QUIC to run natively over UDP. However, from a network engineer’s
perspective, there is very little information available to diagnose network performance issues.

Figure 6 - HTTP with QUIC

D. Connection migration – QUIC provides inherent connection migration by using connection IDs.
When a client moves across networks, for example from Wi-Fi to a cellular network, its IP
address changes, and the server needs to be notified about the new source IP. In the case of TCP,
a new TCP connection must be established from the new source IP, leading to service disruption.
QUIC uses connection IDs to identify a connection between the client and server, and this allows
changes in lower protocol layers to be handled by routing packets to the same endpoint. A QUIC
server provides additional connection IDs to the client during their initial handshake, and the
client can use these new connection IDs to maintain service continuity with the server when its
underlying network or IP address changes.

These benefits enabled by QUIC are aimed at providing an alternative to TCP with additional built-in
features. Operational experiences on QUIC from Google indicated a reduction of 16.7% in Google Search
latency at the 99th percentile, 10.6% in YouTube video latency at the 99th percentile, and 18.5% in
YouTube video rebuffer rate at the 99th percentile when compared to TCP [4]. However, some caveats
exist in these improvements. QUIC’s performance benefits over TCP are not consistent across different
network types and conditions – benefits are greater in networks with higher average RTT and packet loss,
and in desktop clients as compared to mobile clients. Nevertheless, QUIC continues to gain traction with
the major websites such as Google, Facebook, Netflix and Snapchat, and the major browsers such as
Chrome, Edge, Firefox and Safari all supporting HTTP/3. Currently, about 33% of worldwide secure
HTTP traffic is QUIC-based and is expected to grow in the future [12].

3. Multi-path Transport Protocols
Multi-path transport extensions enable a transport connection over multiple network paths
simultaneously. For example, a smartphone connected to both Wi-Fi and mobile networks could use the
two access networks at the same time, allowing for improved performance and better resiliency. In 3GPP,

Presented and first published at SCTE TechExpo24 9

the ATSSS feature specified for 5G enables this support, wherein a UE can steer a data session over either
of the two accesses - 3GPP access or non-3GPP access – enabling best network selection, switch a data
session between the two accesses enabling seamless handovers, or split a data session across the two
accesses enabling network aggregation, based on the ATSSS rules provisioned by the 5G core [5]. In this
architecture, the multi-path client entity is present in the UE, while the multi-path proxy entity is present
in the User Plane Function (UPF) in the 5G core. This model enables using the multi-path functionality
without having to rely on the application server also supporting the multi-path extensions. The two
transport layer-based functionalities specified by 3GPP are Multipath TCP (MPTCP) and Multipath
QUIC (MPQUIC). Broadband Forum (BBF) and CableLabs have also specified this ATSSS functionality
for a hybrid CPE, also called a 5G-RG, that incorporates both the 5G UE and wireline access
functionality [6,7].

3.1. MPTCP

MPTCP is IETF-specified extensions, in RFC 8684, to TCP to enable simultaneous use of multiple
network paths between two endpoints. MPTCP was designed to be backward compatible with TCP and
with the assumption to either one or both endpoints could be multihomed. MPTCP operates at the
transport layer and is transparent to both the upper and lower layers, as shown in Fig, 7, and be able to
traverse through middleboxes that understand TCP without requiring any change. MPTCP uses subflows,
which are TCP sessions on individual network paths, as part of the larger MPTCP connection.

Figure 7 - Comparison of single-path TCP and MPTCP stacks

Fig. 8 shows the order of operations to set up an MPTCP connection. It begins similar to a TCP 3-way
handshake, with the difference that the MPTCP-capable hosts add an MP_Capable flag as part of the
SYN packets sent to their peers. If both hosts support MPTCP, they further exchange keys and negotiate
MPTCP options to enable the establishment of additional subflows. When the client decides to initiate
another subflow, for example when the Wi-Fi interface becomes available, another TCP 3-way handshake
is initiated from the second interface/port with an MP_Join flag and tokens derived from the keys
exchanged during the first handshake. This enables the server to associate the new connection with the
first TCP connection, and now the client can use both subflows to transfer data. Each subflow contains
sufficient control information, such as the data sequence number, for it to be reassembled and delivered
reliably and in-order to the recipient application.

Presented and first published at SCTE TechExpo24 10

Figure 8 - MPTCP operation to set up subflows

MPTCP is supported natively in the Linux kernel and on the iOS/macOS. Apple uses MPTCP for its Siri
digital assistant, Apple Maps and Apple Music applications to benefit from its handover capabilities, such
as when the user moves away from a Wi-Fi access point and the traffic is handed over to the mobile
interface [11].

3.2. MPQUIC

MPQUIC, currently an active IETF draft, is a multipath extension for the QUIC protocol to enable the
simultaneous use of multiple paths for a single connection. While the base QUIC protocol supports
connection migration between IP-address/port tuples, it can only use one path at a time, while MPQUIC
enables the use of multiple paths.

Similar to MPTCP, MPQUIC uses a new transport parameter, initial_max_path_id, to negotiate the use of
the multipath extension. To enable additional paths, the endpoints first exchange new connection IDs
associated with the other paths, perform path validation to verify reachability of the new IP address/tuple,
and then start to use the additional path.

MPQUIC offers several benefits when compared to MPTCP, like what QUIC offers compared to TCP -
runs in the user space on top of UDP making its deployment easy with no dependency on OS changes, no
HoL blocking caused by lost packets on one stream blocking packets belonging to other streams, and
reduced time for subflow establishment. Experiments with video streaming indicate that MPQUIC
provides improved QoE as compared to MPTCP with lower rebuffering rates and shorter video startup
delay [8]. Testing the delay in handover between Wi-Fi and mobile interfaces, MPQUIC performs similar
to MPTCP, with additional benefits of the ability to tune its performance in the user space based on
specific requirements [9].

4. Performance Testing Results
In this section we analyze and present the results obtained from testing experiments performed to
compare the performance of different transport protocols. The testing was performed in an emulated

Presented and first published at SCTE TechExpo24 11

environment using Mininet running on an Ubuntu server [10]. Throughput testing was performed using
iPerf, while the traffic RTT was measured at the client by determining the delay between the sent request
and the received response. Each scenario was tested for 100 runs and the results are averaged and
presented.

The first test performed was to compare the performance of single-path TCP and MPTCP. Fig. 9 shows
the network topology tested and the throughput results. The client is multihomed and is connected via two
symmetrical 20 Mbps paths to the server. Throughput tests indicate that while single-path TCP is able to
utilize the bandwidth of a single path, MPTCP is able to aggregate the bandwidths of the two paths,
resulting in a goodput twice larger than single-path TCP.

Figure 9 - Single-path TCP vs MPTCP

The next set of experiments performed were to test and compare the three important algorithmic
mechanisms of a multi-path protocol – scheduler, path manager, and congestion controller. The packet
scheduler is responsible for selecting on which available subflow the next packet will be sent. The two
most common packet schedulers are the Lowest-RTT-First (LRF) and Round-Robin (RR). The LRF
scheduler, which is the default scheduler in Linux implementations, prioritizes the subflow with the
lowest RTT out of all subflows whose congestion window is not yet full. Once the congestion window
has been filled, data is then sent on the subflow with the next higher RTT. The RR scheduler selects one
subflow after the other, among those which have space in their congestion windows, in a round-robin
fashion, striving to evenly utilize the capacity of each path. Some MPTCP implementations use the
retransmission and penalization scheme to tackle HoL blocking by retransmitting the lost data segment on
an alternate subflow and penalizing the blocked subflow by reducing its sending rate, thereby helping to
improve goodput and reduce latency and jitter. Other scheduler implementations include the redundant
scheduler which transmits traffic on all available subflows in a redundant way, and the blocking
estimation (BLEST) and earliest completion first (ECF) schedulers that aim to increase MPTCP’s
performance over heterogeneous paths by estimating, once the congestion window of the fastest subflow
is full, the tradeoff between sending the next data segment on the slower subflow or waiting for the faster
subflow.

To compare the performance of the LRF and RR schedulers, two types of scenarios were tested – low
throughput request-response traffic (Fig. 10 (a)) and file download over HTTP (Fig. 10 (b)), over two
heterogenous paths. For the first scenario, since the transmitted traffic does not fill the congestion
window, the LRF scheduler uses the lower-RTT path to transmit all traffic, while the RR scheduler
alternates between the two paths resulting in higher traffic RTT. For the second scenario of bulk transfer,
both LRF and RR schedulers outperform TCP, while they perform similarly to each other.

Presented and first published at SCTE TechExpo24 12

Figure 10 - LRF vs RR scheduler

The second aspect to test is the path manager algorithm, which is responsible for determining how
subflows will be created over a MPTCP connection. The Linux kernel includes three types of path
manager implementations – default, fullmesh, and ndiffports. The default algorithm is a passive path
manager that does not initiate any additional subflows on a connection. This is used by the server
endpoints that typically would not initiate additional subflows but accept those initiated by the client. The
fullmesh algorithm creates a subflow between each pair of (client_IP, server_IP). So, if a client has N
addresses and the server M addresses, this path manager will establish N*M subflows. The ndiffports
algorithm creates multiple subflows (as per configuration) over the same pair of (client_IP, server_IP) by
using different source ports. This path manager was designed considering a specific use case – benefit
from multiple equal cost paths in datacenter networks, wherein Equal-cost multi-path (ECMP) routing
could be employed to forward packets to a single destination over multiple paths.

Fig. 11 shows three different scenarios tested to compare the performances of the default, fullmesh and
ndiffports path managers – (a) single-homed client, single-homed server, (b) dual-homed client, single-
homed server, and (c) dual-homed client, dual-homed server. For each scenario, the network topology,
Wireshark captures of the TCP conversations between client and server, and the throughput results are
presented. The default path manager establishes only one subflow irrespective of the number of available
paths, the fullmesh path manager establishes num_client_IP*num_server_IP subflows, while the
ndiffports path manager always establishes two subflows (as per configuration) between the same client
IP and server IP using different source ports. For the first scenario, the three path managers perform
similarly since there is only one path between the client and server. For the second scenario, as expected,
the fullmesh path manager, which utilizes both paths, achieves double the goodput as compared to
ndiffports and default path managers, which use only a single path. Similarly, for the third scenario, the

Presented and first published at SCTE TechExpo24 13

fullmesh path manager establishes four subflows, one per (client_IP, server_IP) pair, and achieves double
the goodput as compared to ndiffports and default path managers, that use only one path. For the fullmesh
path manager, similar throughput is observed for scenarios b and c, even though scenario c has more
available paths, because of similar bandwidths of the bottleneck links in the two scenarios.

Figure 11 - Fullmesh vs ndiffports vs default path managers

MPTCP also has the notion of path priorities - regular or backup. This is helpful in case where the two
paths do not have the same cost, for example one is an expensive data-limited cellular connectivity versus
a flat-cost Wi-Fi connection. In such scenarios, one path can be declared as a backup path to be used only
when there are no regular paths available. This path priority is especially important when considering

Presented and first published at SCTE TechExpo24 14

handover scenarios and energy consumption of the end device. In case of two regular paths, subflows are
established and data is exchanged on both paths, while in case of one regular and one backup path,
subflows are established on both paths while data is exchanged only on the regular path until it fails,
detected through successive retransmissions.

Fig. 12 compares these two scenarios, with path 1 having an RTT of 40 ms while path 2 having an RTT
of 30 ms, and after 9 seconds of the test, path 1 is triggered to fail by configuring 100% packet loss on
that interface. This situation mimics a mobile phone moving out of the coverage of a Wi-Fi access point.
In case of two regular paths, the default scheduler LRF uses path 2 having lower RTT for sending data,
and a failure in path 1 has no impact. In case of one regular path (path 1) and one backup path (path 2),
the regular path is used initially for sending data, even though it has a higher RTT, and when the regular
path fails, data is handed over to the backup path, after a delay caused by the time taken to detect path
failure.

Figure 12 - Handover considering regular and backup paths

The final aspect of multi-path protocols tested was the impact of the congestion control algorithm. The
congestion control algorithm is responsible for preventing network congestion and maintaining smooth
data flows, while ensuring fairness between different data sessions over a shared link. One of the primary
design principles of MPTCP was that its use should not harm other single-path TCP connections over a
shared link, i.e., it should not consume more from any of its resources shared by its different paths that if
it was a single-path flow. Two types of congestion control algorithms exist – uncoupled and coupled.
Uncoupled algorithms such as Reno, CUBIC, Vegas, etc. are designed for single-path TCP, while coupled
algorithms such as LIA, OLIA, BaLIA, etc. are designed for multi-path TCP. Since one MPTCP subflow
appears as a discrete TCP connection, uncoupled algorithms, that operate independently for each TCP
subflow, are not able to provide fairness when sharing the link with other single-path TCP flows.

Fig. 13 compares these two types of congestion control algorithms. The network topology consists of the
Client running MPTCP sharing each bottleneck link with another host. The test involved three iPerf flows
being generated – first is the MPTCP flow between Client and Server that lasts 50 seconds, second is the
TCP Cubic flow between Client-1 and Server-1 that starts 10 seconds after the first flow and lasts 20
seconds, and third is the TCP Cubic flow between Client-2 and Server-2 that starts 20 second after the
first flow and lasts 20 seconds. So, the first MPTCP flow competes with the second TCP flow for the
upper bottleneck link between 10s and 30s, and competes with the third TCP flow for the lower
bottleneck between 20s and 40s. Two congestion control algorithms were tested – Reno and OLIA. The
Opportunistic Linked Increases Algorithm (OLIA) is a coupled algorithm that aims to improve
throughput as well as a single-path TCP connection on the best available path while having no adverse
impact on other single-path TCP connections when sharing common bottlenecks. Two scenarios were
tested – (a) the MPTCP connection creating only one subflow on each path, and (b) the MPTCP

Presented and first published at SCTE TechExpo24 15

connection creating four subflows on each path. For the first scenario, Reno and OLIA perform similarly,
sharing network bandwidth between the two TCP flows on each path. But for the second scenario,
wherein five TCP flows (one single-path TCP flow and four MPTCP subflows) share a path, Reno
performs significantly unfairly to the single-path TCP flows. While OLIA, that is designed to ensure that
the multi-path goodput, which includes all its subflows, is equal to the single-path goodput, shares the
network bandwidth fairly between MPTCP and single-path TCP.

Figure 13 - Uncoupled vs coupled congestion control in multi-path scenario

Like MPTCP, MPQUIC promises improved performance and better network resiliency by leveraging
multiple network paths. However, MPQUIC standardization work is still ongoing and there are limited
implementations available. Fig. 14 compares the performance of single-path QUIC and MPQUIC when
downloading a 5 MB file using HTTP. MPQUIC can aggregate the network bandwidths of the two paths
and offers double the goodput as compared to single-path QUIC. Both LRF and RR MPQUIC schedulers
outperform QUIC, while they perform similarly to each other for this bulk transfer scenario.

Presented and first published at SCTE TechExpo24 16

Figure 14 - Single-path QUIC vs MPQUIC

5. Conclusion
With the newer applications demanding increased performance and service continuity across different
access networks, this paper first discusses the inherent issues with the currently deployed transport
protocols TCP and UDP which makes them unsuitable, and then describes the transport-layer research in
developing alternate protocols and multi-path enhancements. While currently the onus is on applications
to work around the limitations of TCP and UDP, such as HTTP enabling multiplexing different streams
over one TCP connection, or RTP using RTCP to provide congestion control mechanisms over UDP,
transport protocols such as QUIC and DCCP provide mechanisms to resolve existing issues and offer
additional features. DCCP provides a modular congestion control framework over UDP providing
applications the choice to select and use TCP-like or TCP-friendly mechanisms. QUIC offers TCP
features like in-order delivery, reliability, flow control and congestion control, while running on top of
unreliable UDP. QUIC also fixes some of TCP’s issues related to HoL blocking, high handshake-RTT,
and cleartext headers, offers additional enhancements such as connection migration, and is gaining
widespread traction. The multipath extensions to TCP and QUIC, MPTCP and MPQUIC, respectively,
augment their functionalities to utilize multiple available network paths between two endpoints. They
allow for improved user experience by enabling best network selection, seamless handover, and network
aggregation.

To evaluate the performance of multipath protocols and their different aspects, testing was performed in
an emulated environment and the results are presented. MPTCP and MPQUIC provide real benefits when
compared to their single-path flavors. Additionally, different kinds of packet schedulers, path managers,
and congestion control algorithms were tested to determine their suitability. The experiment results
indicate that using the LRF scheduler, the fullmesh path manager, and a coupled congestion control
algorithm such as OLIA provides the best performance for most use cases.

The future work for this analysis involves – (i) performing testing in real-world network conditions, (ii)
testing additional aspects such as protocol overhead, computational overhead, and (iii) measuring
handover delays when switching between Wi-Fi and cellular networks using QUIC, MPTCP and
MPQUIC.

Presented and first published at SCTE TechExpo24 17

Different network operators can make use of these transport-level enhancements in several different ways.
Mobile network operators can utilize the ATSSS feature by deploying a multi-path proxy functionality in
their core networks that allows their subscribers’ multi-path enabled devices to be served over both
cellular and fixed accesses. Converged network operators can additionally deploy hybrid CPEs with both
cellular and fixed-network capabilities, to provide multi-path capabilities to their subscribers’ home
devices. Operators can also potentially monetize these enhancements by offering high-performance,
seamless handover capabilities as a higher-tier subscription.

In addition to the analysis presented in this paper, CableLabs, working with its members, performed in-
house testing for seamless connectivity when transitioning between the Wi-Fi and cellular networks, and
researching techniques to resolve the stickiness issue of UE's sticking on Wi-Fi too long before handing
over to using a better cellular network for data.

Presented and first published at SCTE TechExpo24 18

Abbreviations

3GPP 3rd Generation Partnership Project
5G-RG 5G Residential gateway
API application programming interface
ATSSS Access Traffic Steering, Switching and Splitting
BBF Broadband Forum
CPE customer premises equipment
DCCP Datagram Congestion Control Protocol
HoL Head-of-line
HTTP Hypertext Transfer Protocol
IPTV Internet Protocol television
LRF Lowest-RTT-first
MPQUIC Multipath QUIC
MPTCP Multipath TCP
OLIA Opportunistic Linked Increases Algorithm
QoS quality of service
RR Round-robin
SCTP Stream Control Transmission Protocol
TCP Transmission Control Protocol
TFRC TCP-Friendly Rate Control
TLS Transport Layer Security
UDP User Datagram Protocol
UE user equipment
UPF User Plane Function
VoIP Voice over Internet Protocol
XR extended reality

Bibliography & References
[1] G. Papastergiou et al., “De-ossifying the Internet transport layer: A survey and future

perspectives,” IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 619–639, 1st Quart., 2017.
[2] A. Reed and M. Kranch, “Identifying HTTPS-protected Netflix vides in real-time,” in

Proceedings of the 7th ACM Conference on Data and Application Security and Privacy, pp. 361-
368, Mar. 2017.

[3] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion control without
reliability,” in ACM SIGCOMM Computer Communication Review, vol. 36, no. 4, pp. 27-38,
2006.

[4] A. Langley et al., “The QUIC transport protocol: Design and Internet-scale deployment,” in
Proceedings of the Conference of the ACM special interest group on data communication, pp.
183-196, Aug. 2017.

[5] 3GPP, TS 23.501, “System architecture for the 5G System (5GS),” v19.0.0, Jun. 2024.
[6] BBF, TR-470, “5G Wireless Wireline Convergence Architecture,” Issue 2, Mar. 2022.
[7] CableLabs, WR-TR-5WWC-ARCH, “5G Wireless Wireline Converged Core Architecture,”

V03, Jun. 2020.

Presented and first published at SCTE TechExpo24 19

[8] W. Yang, J. Cao, and F. Wu, “Adaptive video streaming with scalable video coding using
Multipath QUIC,” in Proceedings of the 2021 IEEE International Performance, Computing, and
Communications Conference (IPCCC), pp. 1-7, Oct. 2021.

[9] Q.D. Coninck and O. Bonaventure, “MultipathTester: Comparing MPTCP and MPQUIC in
mobile environments,” in Proceedings of the 2019 Network Traffic Measurement and Analysis
Conference (TMA), pp. 221-226, Jun. 2019.

[10] Mininet: Rapid prototyping for software-defined networks, https://github.com/mininet/mininet.
[11] O. Bonaventure, “Apple Music on iOS13 uses Multipath TCP through load-balancers,” Oct.

2019, http://blog.multipath-
tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balanc
ers.html.

[12] Cloudflare Radar, Adoption & Usage, https://radar.cloudflare.com/adoption-and-usage.

https://github.com/mininet/mininet
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
http://blog.multipath-tcp.org/blog/html/2019/10/27/apple_music_on_ios13_uses_multipath_tcp_through_load_balancers.html
https://radar.cloudflare.com/adoption-and-usage

	1. Introduction
	2. Alternate Transport Protocols
	2.1. DCCP
	2.2. QUIC

	3. Multi-path Transport Protocols
	3.1. MPTCP
	3.2. MPQUIC

	4. Performance Testing Results
	5. Conclusion
	Abbreviations
	Bibliography & References

