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1. Introduction 
The rise in popularity of social programming and collaborative projects proliferates the use of code 
sharing platforms like GitHub and Gitlab. Developers create online projects to collaborate with peers 
across the globe. These projects get forked, imported and shared all around, ingraining themselves into 
many other codebases. With over 83 million active users in 2022, GitHub and other code sharing 
platforms’ popularity have been rising over the years [5]. With the availability of code comes the 
possibility of secrets and other vulnerabilities being accidentally shared. Passwords and credentials are 
critical components of online security, and their unauthorized disclosure can lead to devastating 
consequences [31]. In a report published by Verizon in 2022 it was found that over 60% of all breaches 
were from stolen credentials [30]. Code-sharing platforms like GitHub, Gitlab and Bitbucket, while used 
for personal projects are also widely used in industry, making them a prime target for cybercriminals 
looking to exploit vulnerabilities in the software development process. 

GitHub, Gitlab and other similar code sharing sites are web-based platforms that allow collaboration on 
software development projects. They provide a centralized location that allows teams to create and share 
code in repositories. These platforms include collaboration features like issue tracking, project 
management, and a built-in wiki [4, 6, 16]. GitHub’s popularity stems from its ease of use and its ability 
to integrate with other tools and services used in software development workflows. It is by far the most 
popular code sharing platform among developers [8]. 

The booming popularity of code sharing platforms comes with increased risk of exposed secrets. A study 
from GitGuardian [13] illustrated that one of every ten authors expose private secrets in the source code 
stored in the code sharing platforms. Finding vulnerabilities and secrets has been an ongoing process for 
many years with many companies sponsoring bug bounty projects and creating code scanning tools [20]. 
As machine learning comes into prominence, advancements in computing have allowed for faster and 
more accurate secret detection to warn developers of potential breaches [25]. The most popular secret 
detection plugin is Dependabot [14] with Truffelhog [2] and Git-Secrets [9] also common in the software 
development industry. We also found a machine learning (ML)-based scanner called xGitGuard that 
utilizes a random forest model to detect secrets [7]. 

When looking into the code secrets being leaked onto the above-mentioned platforms there are a few 
metrics we investigated based on industry standards and frameworks such as the Security Scorecard [23]. 
For GitHub we queried repositories based on number of stars, number of forks, and project age - 
comparing the number of secrets found with project age and external engagement (forks and stars). 

 
Figure 1 - The percentage of leaked secrets in cyber incidents over the years. 
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Specifically, we answer three research questions: 

RQ1: How does the underlying architecture of industry grade GitHub scanning tools affect 
accuracy? To answer this question, we consider three industry-used secrets scanning tools that are 
available on GitHub. All three of these tools operate on different mechanisms of secret detection, 
and our goal was to check which mechanism has a better accuracy in detecting secrets. We found 
that the ML-based tool had a higher number of true positives and less false negatives than regex-
based or entropy-based tools. 

RQ2: What are some patterns of behavior for GitHub secrets? Using the ML-based tool, xGitGuard, 
we scanned 1468 repositories for secrets to determine the prevalence of secrets in these 
repositories. Out of 1468, 596 repositories contained secrets such as Application Programming 
Interface (API) tokens, keys, etc. We also found there were patterns in the code in terms of how 
secrets (plaintext, encrypted, hardcoded, comments, etc.) were embedded and their location in code. 

RQ3: What metrics for a repository influence the presence of secrets? To answer this, we look at the 
number of secrets in a repository and change over time based on engagement. We consider GitHub 
repositories for the pattern of secrets and engagement over time. 

Through these three experiments, we show that there are patterns in open-source repositories in terms of 
secret management, which developers can identify and mitigate. Furthermore, we also show that the 
number of secrets increases with project age and decreases with engagement, respectively. This 
corroborates Figure 1 from Verizon’s annual reports that the percentage of breaches due to leaked secrets 
has steadily decreased. This could hint that newer code bases are more secure while leaked credentials 
remain the top contributor to breaches. There are many ways that developers can keep secrets outside of 
their repos using these code sharing platforms, from using local environment variables to secret vaults. 
We also discussed the different tactics we observed developers taking and how they correlated to the age 
and engagement of the repositories [22, 27]. 

In the following section, we discuss the background literature that inspired this study. We then talk about 
the experiment methods and process, followed by a discussion of the results. 

2. Background & Related Work 
In this section of the paper, we aim to provide an overview of the existing research and practices 
surrounding the detection and mitigation of secrets in code sharing platforms. To analyze the usage of 
GitHub in the software engineer development life cycle, several studies have been conducted [4, 6, 16]. 
Other studies have been conducted pertaining to the creation and testing of tools to assist GitHub Users 
[10, 15]. Google maintains BigQuery [12] which is a snapshot of open-source repositories open to the 
research community. These repositories allow for larger scale research without having to worry about 
GitHub’s API limits. 

Despite the popularity and importance of code sharing platforms, security-sensitive information is often 
leaked. Even a well-crafted web search can reveal passwords and secret keys [21] to an adversary. 
Besides, different modern resources such as Docker images or VMs in cloud platforms can all expose 
secrets of the publishers, customers, and managing counterparts [34, 3]. These resources are often public 
and can cause severe vulnerabilities [26]. Secrets exposure on GitHub is a known issue by both the 
security community and developers themselves [19, 11, 22]. One of the primary causes of secret exposure 
is inadvertent mistakes or oversights made by developers in the development process [36, 22]. In the rush 
to meet deadlines or due to a lack of awareness, developers may accidentally include sensitive 
information in their code or configuration files [19, 18]. 
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Exploration of secrets in public code repository is not new. Researchers have used several predefined 
regular expressions to find secrets with generic formats from the source codes [17]. Machine generated 
secrets, like API keys, have high randomness and entropy. Specifically, one can use the Shannon entropy 
calculation to identify high entropy secrets. Considering the patterns and high entropy of these secrets, 
many tools are developed using regular expressions, entropy calculations or a combination of both to find 
out secrets in public code repositories. 

There are many different tools to scan for leaked secrets in online repositories. TruffleHog [2], a popular 
tool, searches throughout the commit history and git branches using predefined customizable regular 
expressions. This tool considers high entropy strings larger than 20 characters. Another tool, Repo 
Supervisor [1] detects secrets in the pull requests, finding high entropy string values as potential secrets. 
GitSecrets[ 9], created by Amazon, looks for secrets while the commit happens. It uses user-defined 
regular expressions to detect secrets. 

In Meli et al’s [22] paper they look to answer the question: How prevalent are leaked secrets in code 
uploaded to GitHub? This work used regex along with entropy, dictionary, patterns, and words filters to 
find the secrets from their dataset. They further investigate some of the possible root causes for these 
secrets and how long it takes for developers from leak till the time they fix it. This study centers its 
attention on recently committed code, alongside a captured snapshot from BigQuery. They found over 
200,000 unique leaked secrets in their 6 months of scanning. 

Krause et al. [19] surveyed 109 developers to gain insight on how secrets were being leaked and how 
secret leakage is perceived as a problem by developers. From their surveys they selected 14 developers to 
conduct in-depth interviews investigating secret remediation techniques and approaches. Based on 
developer responses they found that 30% of developers were aware of secrets that had leaked in their 
code. They found that in terms of mitigation techniques most developers utilized GitHub’s secret scanner 
and added sensitive files to the gitignore. 

Sinha et al. [28] used a sample set of 84 repositories to perform a similar study. They used 7 different 
regular expressions focusing on Amazon Web Services (AWS) API keys and leveraged entropy filters 
and a password strength estimator. This work also uses light static code analysis to increase the accuracy 
of the search. 

A big drawback of the aforementioned secret scanners is they generate a high number of false positives. 
Additionally, all these works are specifically designed to look for private keys such as Rivest, Shamir, 
Adleman (RSA) encryption keys and API keys (such as AWS access tokens). But the regex and entropy 
calculation-based methods do not work well with other types of secrets such as generic textual passwords. 
Saha et al. [24] proposes a regular expression-based method which uses machine learning to reduce the 
number of false positives. The proposed method can detect both secret keys and textual passwords from 
the source files. The authors chose 24 relevant features to train their aggregated model, combining 
different types of classifiers. The users can also pick the trade between false positive and false negative by 
training the model using a precision-recall curve. Feng et al. [11] developed PassFinder, a deep learning 
based textual password detection model that investigated password leakage in GitHub with continuous 
scanning over 75 days. In their study they found over 60,000 repositories in which passwords were 
leaked. This work benchmarks PassFinder against Regex-based scanning to show the lower false positive 
and higher detection rates. But their model is only focused on finding generic passwords and cannot 
detect the secret keys. SecretHunter [35] proposes a reinforcement learning based model that outperforms 
the regex-based model in secret detection. The authors also improved the bandwidth usages by obtaining 
the metadata of the source files and using the metadata to do some filtering, such as filename filtering and 
deduplication, before downloading the source file. xGitGuard [7] can scan GitHub with simultaneous 
queries running together, and it uses file hashing to avoid duplicate file scanning. This tool uses two sets 
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of keywords to filter only the targeted files, not the entire repository. Besides, xGitGuard utilizes natural 
language processing and ML techniques to extract secrets from the targeted source files. 

To try and minimize the risk of secrets exposure, many different applications have been developed 
targeting different vectors of secret exposure. These solutions range from active scanners and secrets 
vaults to best practice guidelines. While a combination of solutions may work best with the growing 
number of 3rd party add-ons it can be difficult to integrate or encourage adoption. 

3. Study Design 
In this section, we discuss our approach to selecting the data and identifying secrets. A secret, in our 
context, refers to any sensitive access information that, if exposed, could pose significant risks to the 
developers and the projects they are working on. For these experiments, we have scoped secrets only to 
API tokens and passwords for simplicity and ease of analysis with regex-based scanners. Our methods 
which we will briefly introduce here will be discussed in more detail in their pertaining experiment 
section. 

 
Figure 2 - Data Collection and Secret Detection Overview. 

3.1. Data Collection 

To gather the dataset required for our experiments, we explored well-known platforms like GitHub and 
GitLab. Our primary objective was to acquire a large enough sample size that would produce a relatively 
balanced mixture of secrets. We had strict control over our dataset maintaining knowledge of the secrets 
the scanners would be scanning for. 

For procuring the secrets, we conducted an in-depth search, analyzing API  key generators, public GitHub 
and GitLab repositories and databases that contained API regular expressions. This process ensured that 
we had a wide range of secrets, some of which are commonly employed in real-world applications. 

3.2. Sampling and Data Refinement 

To establish a foundation for our experiments, we conducted a sampling of the vast GitHub and GitLab 
repositories. These platforms house a staggering number of codebases, exceeding 200 million, making it 
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essential to refine our selection process. To achieve this, we employed specific queries to search 
repositories created till April 2022 (so that there is at least a year’s gap between our data collection and 
repository creation) with over at least 50 forks. 

In April 2023, we executed these queries on GitHub, yielding a collection of repositories suited for our 
scanning and analysis purposes. This process ensured that we would have the same set of public 
repositories across Experiment 2 and 3. In addition to this, we also curated a set of secrets for Experiment 
1 to provide a controlled list of secrets that were known and check for detection accuracy. 

The collection of curated secrets required that we properly de-identify them while ensuring they were true 
secrets. We tapped into sources such as data from penetration tests, which offered valuable insights into 
actual secrets that developers have discovered. This data was gathered with the help of industry experts in 
penetration testing and threat hunting. Additionally, we extracted relevant data from leaked websites like 
“Have I Been Pwned” and various databases that contained instances of compromised secrets. These 
methods provided samples to create a database to test scanner accuracy. These secrets were masked when 
extracting output from the scanner. Furthermore, we ensure that these secrets are discarded after the end 
of the study. These curated secrets were either put directly into a file to be used to test the scanners while 
the other secrets were used to find patterns to generate like secrets to put into a blank repository to be 
scanned. 

3.3. Scoping Secrets 

As previously mentioned, when scanning public repositories, we look for secrets. For this paper's 
purposes, there are two main secrets: passwords (credentials) and API token types (keys). Passwords are 
confidential phrases generated by the user to access various systems such as user accounts and databases. 
Keys, which include API keys and tokens, are often used in request headers to authenticate third party 
platforms. Other secrets fitting into this category include Secure Socket Shell (SSH) keys and RSA tokens 
used for secure communication and encrypting/decrypting data. 

Secrets can often be found in many different locations within the repositories. These leaks might appear 
as hardcoded strings, constants, configuration files, or environment variables. In the wrong hands, leaked 
secrets can cause security breaches (Verizon found that 60% of breaches were related to leaked 
credentials [30]), ranging from unauthorized access to potential exposure of critical user information. 
These pose not only a significant risk to the application’s security but also to the reputation of the 
developers and organizations they represent. The aftermath of such a breach can led to financial losses, 
legal complications, and eroded user trust. As such, discovery, and careful management of these secrets 
within the codebase is paramount to safeguarding the integrity and security of the entire software 
ecosystem. 

We investigate these specific secret types because the types of secrets have different vectors in which they 
can be exploited. Passwords not only can compromise the system in which they are designed, but 
depending on developer tendencies can open access to other platforms. When leaked, API keys and 
tokens can give malicious actors access to their associated services and expose companies to further data 
breaches. To limit the scope of this study, we do not consider other secret types which can be a part of 
future work. 

3.4. Scanner Choice 

In our research, we identified three prominent scanners that have garnered significant traction within 
industry and the open-source community. These scanners were identified based on industry reports as 
well as research into the open-source scanner market. We also chose these scanners because each one (i) 
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utilizes a different underlying technology, (ii) is available open-source and can be customized, (iii) is an 
industry-grade scanner that is adopted by the industry and which is scalable for many repositories, and 
(iv) is actively maintained by a team of experts. We excluded scanners which were not open-source (or a 
paid version existed) and those which were developed in academia as research proof-of-concept since 
they did not meet our selection criteria (e.g., active maintenance). 

TruffleHog was the first secret detection tool in consideration. This scanner has earned notable 
recognition, not only for its usage across various research domains, but also as a standard in industry 
practices. TruffleHog operates on the foundation of entropy calculations with regular expressions and 
user-defined rules, ensuring that its scope can be tailored to the unique requirements of different 
applications. However, we noticed that the initial setup of TruffleHog can be intricate, especially for users 
unfamiliar with the intricacies of regular expressions and rule configuration. This potential complexity 
can sometimes lead to suboptimal scanning outcomes. 

Git-Secrets was the second detection tool in our selection. This scanner’s prominence in industry circles 
solidifies its credibility and influence. Git-Secrets operates similar to TruffleHog, utilizing regular 
expressions but without entropy and user-defined rules to unveil secrets within code repositories. Its wide 
recognition and usage make it a desirable choice for our experiments. Like TruffleHog, Git-Secrets may 
present challenges during the initial setup phase. 

xGitGuard, our third chosen scanner, utilized key words and a Random Forest ML algorithm. This tool 
combined traditional regular expression matching and ML techniques. While the inclusion of ML 
augments its efficacy, it also introduces a higher degree of complexity. Users will need to familiarize 
themselves with its intricacies to harness its full potential. We found this was offset by a well written user 
guide that walks through each of the steps. 

Note that we chose only three scanners to have a representative of each type of scanner - regex with 
entropy, regex only, and ML-based respectively. Post selection of these three tools, we set up three 
experiments as noted below. 

Experiment 1: This experiment focused on how well the three chosen scanners performed on our data 
sets against each other. These datasets had a set number of secrets allowing us to gauge their accuracy, 
precision, and recall. Each one of the scanners, after properly being set up, scanned the same repositories’ 
results and looked over to gauge their performance. This experiment also assisted in our selection of 
scanner for Experiment 2. 

Experiment 2: After selecting a scanner, we then prepared it to scan the repositories gathered from our 
query scans. This experiment was designed to answer the question: How prevalent secrets across Git 
repositories are (both GitHub and GitLab) and are there variables that can help to predict if a repository 
has secrets? The result of these scans tells us how many secrets we would find in each repository as well 
as the location of these secrets in the repository that they were found in. Furthermore, we looked at the 
different strategies developers took to mask secrets in their repositories. 

Experiment 3: In our final experiment we investigated the influence of project age and external 
engagement (measured in terms of number of forks and stars) on the detection of secrets across 
repositories. 

4. Experimental Setup and Implementation 
In this section we will go into more detail on how each experiment was set up. We will also cover the 
challenges we faced and the results from each experiment. To answer each of the three research questions, 
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we set up three main experiments. Each one of these experiments tackles a different aspect of secret 
leakage in code repositories. Throughout our three experiments, we leveraged the results and insights 
obtained from each preceding experiment to inform and guide subsequent experiments. Our initial 
experiment aimed to evaluate the accuracy and precision of three opensource industry-grade scanners. 
This experiment and the data collected helped to shape the secret scanner we chose. We utilized the 
winning scanner from Experiment 1 to conduct Experiment 2 and Experiment 3. 

4.1. Experiment 1: Choosing a Scanner 

This controlled experiment was conducted to compare three open-source industry-grade scanners. We 
gathered three leading scanners xGitGuard, Git-Secrets, and TruffleHog. We reviewed the source code 
and setup instructions for all three scanners. Git-Secrets and TruffleHog were determined to be regex-
based detectors. For these regular expressions, patterns were set up in their respective configuration file 
used in the test when a regular expression was readily available. For setting up xGitGuard, which was an 
ML-based detector, we found that it was trained using the dataset mentioned in Section 3.1. 

 
Figure 3 - The performance of the scanner on curated set of leaked secrets. 

Following scanner setup, we established five repositories that contained the secrets created using API 
generators and patterns mentioned before. These contained dummy code with two written in C#, two in 
Python, and one in React Native. The secrets were deliberately placed within the code repositories  
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Figure 4 - The performance of the scanners on the repositories with generated secrets 

embedded within. 

mimicking different scenarios in which code could be leaked. These scenarios were based on an initial 
data analysis of GitHub in which we found secrets hardcoded, in config files, and in comments. We chose 
5 repositories to embed the secrets to test scanners effectiveness in scanning multiple repos at once. For 
the other dataset containing found secrets, all the secrets were compiled into a single text file, with each 
line representing a different secret embedded in code. 

Each one of the scanners took slightly different methods to set up. For xGitGuard we pulled the open-
source repository from GitHub and installed the necessary requirements on the computer. We also added 
the functionality to point xGitGuard to certain repositories rather than utilizing GitHub search. The 
modification involved reading the code bases and passing them through the scanner, rather than directly 
passing the code from the GitHub calls. We then gathered a labeled dataset of over 4000 secrets to train 
xGitGuard which is provided by xGitGuard and was found to be easy to use. 

TruffleHog was extremely easy to set up with options available from brew and docker. We compiled from 
its source and decided to not use only verified keywords in our detections. Furthermore, in our tests we 
found that TruffleHog performed better utilizing the entropy filter and adding a few of the custom regular 
expressions that the tool allows. Once this setup was completed, we tested it against the other two 
scanners. 

Git-Secrets, like TruffleHog, is available to be installed via HomeBrew (brew). Once it was installed via 
brew (or GitHub directly) as we did, the user then can easily add hooks to their local repositories. Git-
Secrets also allows third-party configurations and add-on scanners which can be set up as an AWS 
profile. To improve performance, we configured GitSecrets so that the AWS provider as well as pre-
configured regex patterns can both be detected. 

Once the setup was completed, the scans were performed on the dataset, starting with the code 
repositories that had secrets manually embedded. Our initial findings indicated that all three of the 
scanners did well with the APIs with xGitGuard only slightly ahead. When it came to passwords all three 
struggled but only xGitGuard was able to match passwords reliably without overloading false positives. 
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Table 1 - API token types (non-exhaustive) used in the curated set of repositories. 

Token Type Number of Tokens 
Generated 

AWS Tokens 20 
Google Tokens 20 
Artifactory Tokens 12 
Docker Tokens 13 
Heroku UUID 5 
Okta Tokens 4 
Postman API 3 

 

Table 2 - Percentage of each secret type (credentials and keys) correctly detected by 
each scanner.  

 Passwords API Types (Public, Curated) 

Git-Secrets 0% 70.2%, 87.0% 

TruffleHog 0.59% 76.0%, 98.0% 

xGitGuard 30.17% 97.0%, 100.0% 

 

The API types that we used in testing are detailed in Table 1. We chose these due to their importance in 
industry and the initial repository search we conducted on GitHub to find the common ones, especially 
AWS and Google tokens. Some of the other common technologies in our search included Docker, 
Artifactory, Postman, Okta and Heroku. Please note that this is not an exhaustive list - future work may 
include other API types. We specifically chose this list also because it was easier to find generators for 
these seven types. 

By conducting this experiment in a controlled environment, we aimed to assess the precision and 
effectiveness of these three leading open-source scanners. This enabled us to evaluate if the secret 
determined was accurate or not, since they were curated. Figure 3 shows the results obtained from the 
curated list of secrets. As we see in the figure, in terms of true positives (number of secrets identified 
correctly) and false negatives (number of secrets marked wrong as non-secrets), ML-based xGitGuard 
was followed by TruffleHog and Git-Secrets. We conducted the same analysis on a larger set of secrets 
embedded into code - the results obtained are shown in Figure 4. GitSecrets outperformed TruffleHog and 
xGitGuard in terms of low false positives (incorrectly identifying non-secrets as secrets). However, in 
terms of false negatives and true positives, the trend was like the curated list of secrets. 

For our sample dataset, Git-Secrets performed less accurately than xGitGuard and TruffleHog. When 
running against the secrets embedded in repositories it was able to detect 70% of the API types and got 
87% of the API types in the curated dataset. For passwords, Git-Secrets had too many false positives to 
prove valuable. Git-Secrets’ password detection regular expressions incorporated common password 
requirements such as having both numbers and letters, having at least 8 characters and using special 
characters. Perhaps due to this restricted set of regular expressions added, Git-Secrets was unable to 
detect any of the passwords. 
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TruffleHog was second place in terms of detection, as shown in Table 2. In detection of API keys 
TruffleHog performed better than Git-Secrets, even though there were overlapping API types that both 
could not detect. However, TruffleHog got 76% of the API types in public repositories and 98% of API 
types in our curated repository set respectively. The common API types that both TruffleHog and Git-
Secrets struggled with were Docker tokens and Heroku universally unique identifiers (UUID) that were 
generated using their corresponding token generators. This was possibly because since both scanners were 
regular expressions based, they were unable to detect the change in format for these API token types 
(Heroku and Docker use dashes and underscores in their respective formats). 

In terms of password detections, TruffleHog detected about 0.59% of passwords, only slightly better than 
Git-Secrets, since it also relied on regular expressions. The slight improvement in detection was perhaps 
due to an entropy filter. However, it was not able to adequately differentiate the passwords in the 
embedded code for the public repositories. For the curated dataset, it detected one password successfully. 
In terms of usability, TruffleHog logs were the easiest to read. 

 

Figure 5 - xGitGuard architecture. 

For our dataset, xGitGuard outperformed both Git-Secrets and TruffleHog. In terms of API types, 
xGitGuard was able to find the largest proportion - 97% of API types in public repositories and 100% of 
API types in the curated repository set. For the embedded secrets, xGitGuard had 63 false positives. Since 
ML-based xGitGuard was better in terms of detecting both passwords and secrets, we used xGitGuard in 
our subsequent experiments for scanning and evaluating repositories. We performed a deep dive into the 
architecture of xGitGuard to show how it works (Figure 5) using an underlying Random Classifier model 
that is trained on a pre-determined dataset provided by xGitGuard. 
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4.2. Experiment 2: Secrets in Public Repositories 

In this experiment, the goal was to understand patterns of secrets in open-source repositories. We 
investigated (a) the prevalence of secrets on open-source repositories like GitHub and GitLab and (b) the 
location of these secrets. 

For a scanned sample size large enough that it would represent the total number of repositories present, 
we scanned 1465 repositories (987 for GitHub and 478 for GitLab). 306 GitHub (31%) and 290 GitLab 
(60.67%) repositories returned secrets, showing that prevalence of secrets in GitLab was more than that in 
GitHub. The breakdown of the total number of secrets is given in Table 3. In the 306 GitHub repositories 
which contained secrets, there were 4116 secrets. In the 290 GitLab repositories, there were 4093 secrets. 
For the GitHub sample, the number of credentials and the number of keys were skewed towards keys. For 
the GitLab sample, 38.48% of secrets were credentials and 61.52% were keys, indicating that more keys 
instead of credentials are typically leaked. 

Table 3 - Total number of secrets (credentials and keys) found in GitHub and GitLab 

 Secret Type Value Percent 
GitHub 
(Total Secrets = 4116) 

Credentials 
Keys 

1378 
2738 

33.48% 
66.52% 

GitLab 
(Total Secrets = 4093) 

Credentials 
Keys 

1575 
2518 

38.48% 
61.52% 

 

 
Figure 6 - Distribution of secrets for open-source repositories on GitHub (4116 total 

secrets) and GitLab (4093 total secrets). 

 

The median number of secrets per repository for GitHub was 13, with 160 being the highest number of 
secrets present in any of the repositories. For GitLab, the median number of secrets was 3, with 215 being 
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the highest number of secrets present in a repository. Figure 6 shows the distribution of secrets in GitHub 
and GitLab, where we can see that median number of secrets in GitHub is higher than that in GitLab. 

 
Figure 7 - The distribution of validated secrets for open-source repositories on GitHub 

Once the prevalence of secrets across these public repositories was determined, we aimed to answer 
where were these secrets placed in code. To answer this, we investigate the origin of secrets in our sample 
of 5554 secrets (1461 on GitHub scans 1-4 and 4093 on GitLab) and performed a random 10% sampling. 
This gave us a large enough sample set that was representative of our dataset. We first went through all 
the secrets from the sample to make sure there were no false positives. This was validated by four other 
researchers to make sure the presence of secrets was identified accurately. 42.1% (234) of the sample 
were secrets that were correctly identified. Please refer to Figure 7 to see the data. 

When looking at the secrets that were leaked, there were a few different sources of leakage that we were 
able to identify. Many secrets were directly hardcoded into the repository. Hardcoded secrets accounted 
for 64% of the leaked secrets. Hardcoded secrets have a few different ways to persist into code. Often, 
they are put in where developers need to authenticate with an API and are trying to get the code to run. 
Such actions often occur during pre-production or testing phases, and unfortunately, these hardcoded 
secrets tend to persist in the codebase without being removed or are recognized as nonessential by 
developers. The main place we saw developers hardcoding secrets was when developers stored the 
sensitive information in variables for later use. This could account for our earlier findings in which most 
repositories only had one secret found during scanning. Fortunately, detecting and rectifying these single 
instances of leakage becomes comparatively easier since there is only one code line that needs to be 
altered. 

The next category of secrets were passwords or API keys that were found in comments. These accounted 
for 16% of the secrets found. Key vectors of leakage appear to be through comments and configuration 
files. Our investigation revealed that developers sometimes inadvertently expose sensitive data through 
comments, often meant as notes to colleagues but mistakenly commit to the repository alongside the code. 
Similarly, configuration files pose a significant risk when storing passwords and API keys, as keeping 
them outside the repository prevents direct exposure. However, a potential drawback arises when a 
developer mistakenly commits the configuration file, inadvertently exposing all the stored secrets. 
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While 234 secrets were correctly identified, we wanted to see how developers managed the secrets that 
were identified as false positives. We investigated the code for all false positives for strategies taken by 
developers to mask these secrets. Some of these methods were: 

• Encrypting token and keys into variables (especially for RSA keys): 30% 
• Storing secrets in a vault: 21% 
• Environment variables to be stored on user end: 13% 
• Global parameter calls that a user enters at execution: 19%  

• Using configuration files or function calls for authentication: 17% 

We can see that secrets leakage is pervasive across both GitHub and GitLab. We did see some successful 
remediations from developers, but we had an alarming number of secrets that were directly hardcoded. 
While we did notice some differences in the GitHub and GitLab secrets distribution, we did not notice 
much difference in the type of secrets found or in how they were leaked in the two platforms. 

4.3. Experiment 3: Repository Metrics v.Secrets 

For Experiment 3, we wanted to see if repository metrics influenced the presence of secrets. For 
engagement metrics, we considered those recommended in the Open-Source Security Foundation’s 
Security Scorecard 1 - number of watchers, number of contributors, project age, recent releases, months 
since last update, number of forks, and number of stars. As discussed in Section 2, we considered only 
project age, number of forks, and number of stars since these were better metrics of external engagement. 
We considered 234 repositories from the past twenty years, collecting repository names, project age, 
number of forks, and number of stars. From the 233 repositories, we removed two outliers' repositories 
which were the only ones with greater than 100 secrets. 

4.3.1. Correlation of Secrets and Repository Age 

To see how the number of secrets changed with project age, we first divided project age into four 
categories based on the quartile values. This gave us four categories for project age range: (i) 0-2 years, 
(ii) 3-6 years, (iii) 7-12 years, and (iv) 13-22 years with equal number of repositories for each category. 
We then looked at the total number of secrets per project age category and the number of secrets per 
repository (see Figure 8). 

As seen in Figure 8, the number of secrets increases with the project age category. Thus, older 
repositories have more secrets than newer ones. This is expected, since code bases usually increase with 
time, and hence might contain a greater number of secrets. The other potential reason could be that newer 
repositories have better security practices to mask secrets. Since this had four groups and was non-
parametric, we performed a Kruskall-Wallis test (coefficient=10.322, p-value =  

 
1 https://github.com/ossf/scorecard 

https://github.com/ossf/scorecard
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Figure 8 - Number of repositories and secrets per project age category. 

0.01602) to check if the differences between the different age groups were significant. Since the p-value 
in less than 0.05, the differences between groups were significant, especially between the lower two (06 
years) and the upper two (7-22 years) respectively (p-value = 0.021 after Bonferroni correction). 

Similarly, to see how the number of secrets changed with the number of stars, we divided the number of 
stars into four categories based on quartile values. This gave us four categories: (i) 01300 stars, (ii) 1301-
8300 stars, (iii) 8301-17600 stars, and (iv) 17600-87200 stars with equal number of repositories for each 
category. We then looked at the total number of secrets per star category and the number of secrets per 
repository (see Figure 9). 

 
Figure 9 - Number of repositories and secrets versus the number of star categories. 

As seen in Figure 9, the number of secrets decreases with the number of stars. Thus, repositories with a 
higher number of stars (external engagement shown in the form of bookmarks) have fewer secrets.  
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Figure 10 - Number of repositories and secrets versus the number of fork categories. 

One potential reason for this could be that repositories with greater number of stars have greater 
engagement and review by GitHub members who are not part of the internal contribution team. Since this 
had four groups and was non-parametric, we performed a Kruskall-Wallis test (coefficient=9.5421, p-
value = 0.02289) to check if the differences between the different age groups were significant. Since the 
p-value is less than 0.05, the differences between groups were significant, especially between the lower 
two (06 years) and the upper two (7-22 years) respectively (p-value = 0.032 after Bonferroni correction). 

Finally, to see how the number of secrets changed with the number of forks, we divided the number of 
forks into four categories based on quartile values. This gave us four categories: (i) 0-535 forks, (ii) 536-
1200 forks, (iii) 1201-2400 forks, and (iv) 240132401 forks with equal number of repositories for each 
category. We then looked at the total number of secrets per star category and the number of secrets per 
repository (see Figure 10). 

As seen in Figure 10, the number of secrets decreases with the number of forks, like the number of stars. 
Thus, repositories with higher number of forks (external engagement shown in the form use of code base 
for individual usage) have fewer secrets. One potential reason for this could be that repositories with 
greater number of forks are reviewed more often by developers who use this code for their own 
application. Since this had four groups and was non-parametric, we performed a Kruskall-Wallis test 
(coefficient=6.0134, pvalue = 0.111) to check if the differences between the different age groups were 
significant. Even though there are differences in number of secrets, the p-value is greater than 0.05, 
indicating that the differences between groups are not significant. Thus, for our sample size, more 
developers using a code base did not automatically indicate backward contribution and reduction in 
number of secrets. This shows that potential scheduled secret reviews are needed for open-source code 
repositories to ensure that secrets are protected from leakage. 

Our scans unveiled a concerning reality, secrets leakage is a pervasive issue that can afflict any 
repository. As we analyzed the data, a trend emerged, indicating that the age of a repository plays a role in 
its vulnerability to secret leaks (Figure 8). Older repositories were more susceptible, potentially attributed 
to a less security-focused culture prevalent during their development. However, this also potentially 
serves as a testament to the progress we have made over the years, as newer repositories demonstrated 
better security practices, albeit still suffering from secret leakage. Despite the progress made in the newer 
repos there is still a long way to go to keep secrets out of developer repositories. 
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While our study focused on metrics like the number of forks and stars as measures of engagement, there 
remain promising avenues for future investigations. For instance, examining the commit history of 
external contributors could shed new light on this aspect. Regrettably, due to time constraints, delving 
into these additional aspects fell beyond the scope of our current study. 

These findings suggest that repositories of all engagement levels in our sample are not immune to secrets 
leakage. It underscores the importance of scrutinizing all repositories, regardless of their perceived 
popularity. Considering these revelations, there is an urgent need to emphasize proper security education 
to developers, ensuring they are equipped with the knowledge and practices to safeguard against secret 
leaks effectively. Only through a comprehensive and vigilant approach can we enhance the security 
posture of repositories and bolster the protection of sensitive information within the development 
ecosystem. 

5. Discussion 
Through our three experiments, we answered our corresponding research questions. For the first 
experiment, we found that the order of increasing performance for secret detection scanners was regex-
based (Git-Secrets), regex and entropy-based (TruffleHog), and ML-based (xGitGuard). When testing the 
three scanners we found that all of them were challenged with detecting the passwords, especially when 
they were curated (emulated real-world secrets found during penetration testing and online databases). 
While passphrases can be very secure the use of single word passwords with numbers can make it hard 
for vulnerability scanners to tell them apart from variables or other pieces of code. Having more secure 
passwords would not only allow vulnerability scanners to better prevent passwords from leaking it would 
also help stem the possibility of a breach due to brute force attacks. In this regard having more open 
vulnerability scanners and more options to integrate into repositories would also help to drive developer 
adoption. 

For our second experiment, we detected the prevalence of secrets in GitHub and GitLab repositories and 
found that many of them contained secrets. These were located both in the code as well as in the 
comments made during commits. For those that were incorrectly identified as secrets but were not, we 
saw several patterns of behavior - diverse ways in which developers protected secrets. This ranged from 
encrypting tokens to storing them in vaults. Most of the secrets that we found in our sample were API 
tokens and keys. Developers should be encouraged to avoid adding sensitive information as comments 
and instead utilize dedicated communication channels for sharing notes and insights among the team. 
Since so many of the secrets we detected were either hard-coded or in comments developer education 
such as integrating security checks into Integrated Development Environments (IDE)s and pop-up 
messages could prove to be beneficial. This we believe would also be a good future study to see how pop-
up messages and developer education in proper cybersecurity practices diminishes the number of secrets 
leaked into repositories. 

With so many different third-party applications, managing API keys can be tedious. A strategy we 
recommend for developers is to pull the secret from local environment variables. This approach offers the 
advantage of seamless integration for anyone who forks and utilizes the codebase, requiring them to only 
add the needed system environment variables. A popular option we already saw being utilized is the 
application of vaults and secret files. Vaults offer a heightened level of security for managing and 
protecting sensitive information. By centralizing secrets in a secure vault, organizations can control access 
and limit exposure, ensuring that only authorized personnel can access the secrets when necessary. 
GitHub has its own vault built in making it quite easy to integrate, but even in instances where developers 
don’t use GitHub Secrets there are many other vaults that one can integrate. We also observed instances 
where applications prompted users to manually enter API keys during runtime. While this approach 
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effectively avoids hardcoding secrets in the code, it may lead to potential issues such as hardcoded or 
bypassed entries when users opt to avoid repeatedly entering API keys. The choice of security measures 
should be tailored to the specific use case and organizational requirements while respecting proper coding 
practices and user orientated design. Selecting the appropriate security tools and methods ensures that 
sensitive information remains protected while providing a seamless experience for developers and end-
users alike. 

When conducting our third experiment, we did see a decrease in the number of secrets in the newer 
repositories. This could be either due to smaller code bases or due to the growing trend for better security 
in the wake of several major breaches. While less secrets are good, many of the secrets we detected could 
have been caught by integrating Continuous Integration and Continuous Deployment (CI/CD) pipelines 
with automated security checks. Such pipelines can detect potential leaks during the development process, 
preventing them from being introduced into the repository in the first place. For those secrets that still 
make it past scanners, regular security audits and code reviews should be conducted to identify and 
remediate any hidden vulnerabilities, bolstering the overall security resilience of the codebase and 
ensuring that sensitive information remains well-protected. To ensure better security practices, it is 
essential to address these issues systematically, providing proper education and awareness to developers 
regarding secure coding practices. Since we also saw that repositories with greater engagement had lesser 
number of secrets, another way of handling secrets which already make their way into code is to have 
greater engagement with the community so that these secrets are detected early and handled accordingly. 

While our study shed light on what type of features are more prominent in repos that contain secrets, we 
were limited to the repositories that we scanned. One key limitation we faced was the GitHub API 
restriction limiting us to 5000 searches an hour. Because of this limitation we had to build in waiting 
periods in the code, significantly slowing down the scanning. GitLab API was also quite restricting, 
requiring us to have a premium subscription to the site to get the metadata and scanning parameters that 
we required. While a comprehensive scan of these online repositories was out of our scope, we would like 
to see other future studies compare how different online code repositories differ in how they manage 
secrets. We also limited our engagement metrics to looking at forks and stars, while other papers have 
looked at number of contributors, we believe both to be good measures of engagement for a repo. 

6. Conclusion 
Through our research we touched on many distinct aspects of secret detection and handling in open-
source repositories. We found that secrets have decreased in repositories that are newer but both GitHub 
and GitLab repositories had similar amounts of secrets. Many such secrets were written directly into the 
code showing the importance of early secrets management. 

We chose our three main scanners to highlight how opensource industry scanners perform and have seen 
more studies with more scanners. We have yet to see a comprehensive study of scanners on the market as 
well as comparative study utilizing real world repository scanning. This would be an excellent avenue for 
future studies as well as utilizing our top scanner xGitGuard to garner further metrics about the secrets in 
repos. 

API keys can be found easily by all the scanners showing that the use of such products can limit the 
amount of secrets developers accidentally leak. We found thousands of leaked secrets in our scans of 
GitHub and Gitlab with issues prevailing in all categories of repositories. Developers’ secrets can be 
mitigated utilizing many different methods with education and stronger code review practices being key 
to preventing code leakage in the future. 
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Developers’ use of vaults and other secret stores kept secrets out of several repositories we investigated. It 
should be noted that these techniques should be utilized from the beginning to ensure past secrets that 
could have been hard coded for testing do not make it into production code. 
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Abbreviations 
API  application programming interface 
AWS  Amazon Web Services 
CI/CD  continuous integration and continuous delivery 
IDE  integrated development environment 
ML  machine learning 
RSA  Rivest–Shamir–Adleman 
SCTE  Society of Cable Telecommunications Engineers 
SSH secure socket shell 
UUID universally unique identifier 
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