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1. Introduction 

Artificial Intelligence (AI) refers to developing computer systems that can perform tasks typically 
requiring human intelligence. These systems learn from data, adapt to new information, and make 
decisions based on patterns and algorithms.  Nanogrids are localized energy systems that operate 
independently or in conjunction with the main power grid.  Unlike large-scale grids, nanogrids serve 
specific areas, buildings, or communities.  They integrate various Distributed Energy Resources (DERs), 
such as generators, solar panels, wind turbines, batteries, and fuel cells. Using predictive analytics and 
optimization, we can combine AI and critical power infrastructure to produce a more resilient, 
sustainable, and efficient system at a lower cost.  We are nearing the point where distributed generation 
becomes the least costly way to provide electricity. The declining cost of renewables and technological 
advancements make this shift possible. 

2. Nanogrid Architecture for Resiliency 

In the SCTE Expo 2023, we proposed the architecture for high reliability and resiliency, as shown in 
Figure 1 [1]. To recall the paper's summary, the proposed architecture addresses two critical reliability 
concerns: the single point of failure of ATS and HVAC loads on backup power.  

 
Figure 1: Proposed nanogrid architecture 

The essential DC bus integrates distributed energy resources and enables power flow to various loads 
with distributed architecture. The logical step from power architecture is monitoring and controlling the 
capabilities of the proposed architecture. In the next sections of this paper, we will discuss the 
communications flow between distributed power conversion stages and energy resources.  
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Power conversion and distribution will have a local system controller to maintain a resilient architecture. 
Using linear control methodologies, the system controller monitors and controls the power flow through 
standard feedback mechanisms.  

Modern optimization techniques, such as machine learning and reinforcement learning, can be applied to 
realize the full potential of distributed architectures. This can be achieved through the distributed 
communications architecture.  

The SCTE Microgrid working group is working toward AI management of a critical facility.  The 
diagram below shows a basic thought pattern for achieving this goal. 

 
Figure 2: Microgrid architecture thought pattern. Diagram courtesy of Comcast, Mike 

Nispel. 

3. Artificial Intelligence 

AI is today's buzzword.  It is the way of the future.  How can we use this resource?  AI refers to using 
technologies that enable machines and computers to mimic cognitive functions associated with human 
intelligence.  AI encompasses a broad field of technologies implemented in systems to reason, learn, and 
act. 

3.1. Machine Learning (ML) 

While AI is the broader concept, ML is an application of AI.  ML is a subset of AI that allows machines 
to learn and improve from experience without explicit programming.  This process uses algorithms to 
analyze data and learn from insights and improves performance over time as it’s exposed to more data.  
Examples of ML are Intelligent networks and network optimization, predictive maintenance, business 
process automation, upgrade planning, and capacity forecasting.  Machine learning algorithms improve 
performance over time as they are trained—exposed to more data. Machine learning models are the 



 

Presented and first published at SCTE TechExpo24 6 

output, or what the program learns from running an algorithm on training data. The more data used, the 
better the model will get. 

Machine learning (ML) techniques can be used to control and optimize DC power systems in several 
ways [2] [3]: 

Performance Improvement: ML techniques have been applied to power electronics control and 
optimization to improve the performance of power electronics systems. These techniques can reduce the 
computational expense of characterizing DC-DC converters, which is necessary for designing and 
optimizing power electronics systems. 

Predictive Modeling: Machine learning techniques such as support vector regression and artificial neural 
networks have been utilized to predict DC-DC converters’ performance accurately. This can help control 
the power flow and improve the system's efficiency. 

Fault Diagnosis and Condition Monitoring: ML techniques, especially classification or regression 
techniques, have also been used in condition monitoring and fault diagnosis on various electric machines. 
This can help in the early detection of faults and prevent system failures. 

Optimization: Advances in processing power and monitoring capabilities create a significant opportunity 
for machine learning to guide best practices and improve DC efficiency. 

Real-Time Implementation: Some research has focused on real-time implementation of DC/DC power 
converter control-based deep machine learning techniques. 

Machine learning can significantly impact DC power control by enhancing performance, enabling 
predictive modeling, assisting in fault diagnosis, optimizing data centers, and facilitating real-time 
implementation.  

3.2. Real-Time Monitoring. 

Real-Time Monitoring “Sensors” read actual, present conditions, such as electrical current, voltage, 
temperature, etc. These points are monitored to collect trending data for capacity and growth and to 
maintain / not exceed manufacture design parameters. This data will be analyzed for equipment load 
management, load trending, and forecasting equipment replacement. Machine learning will use This data 
to facilitate the decision tree within the software.   

Data sets for monitoring site conditions have grown to the point where they are no longer manageable due 
to the sheer size and complexity of the systems they are trying to manage. A typical site may have more 
than 1500 points or more that need to be monitored. We have provided a list of generic points that may be 
monitored within facilities. The ML would use this data to understand the site's “real-time” condition. 

 

Table 1: Typical equipment and sensors in critical facilities 

Equipment Classification Function Type 

Classification 
- Sensor, 
Critical or 

Information 

Description 

Facility Power:         
Utility Voltage real-time analog Sensor Utility Power Voltage Reading -  Line to Line or Line to 

Neutral 
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Facility Ground Current real-time analog Sensor Facility ground current 

Voltage (ATS load side) real-time analog Sensor Voltage on output (load side) of ATS - per phase 

Amps (ATS load side) real-time analog Sensor Current on output (Load side) of ATS - per phase 

GFI Trip alarm binary Critical Ground fault interrupter has operated - open circuit 

AC Fail alarm binary Critical Loss of utility power and phase loss 

Low Voltage DC alarm binary Critical DC battery plant discharge low voltage limit 

Very Low Voltage DC alarm binary Critical DC battery plant discharge (critical) very low voltage 
limit (near shutdown stage) 

Battery Plant on Discharge alarm binary Critical No AC power to rectifiers 

TVSS:         
Active Alarm or Fault alarm binary Critical Unit has failed 

Generator:         
Battery Start Voltage real-time analog Sensor Generator - engine start battery voltage reading 

Fuel Tank Level real-time analog Sensor Fuel tank level reading 

Low Fuel  Level 35% alarm binary Critical Fuel tank 35% remaining in tank set point 

Fuel Tank Leak Detect alarm binary Information Fuel tank leaking between inner and outer tank liner 

Day Tank Pump Failure alarm binary Critical Day tank pump failure 

Propane Fuel Source alarm binary Information Propane fuel source indicator - present or not 

Switch to Propane / Natural Gas alarm binary Information Indicating which fuel source generator is running on 

Not in "Automatic" / “Not Ready for 
service” 

alarm binary Critical Generator is in manual mode for starting 

Generator Run alarm binary Information Indicator generator is running only 

Generator EPO Operated alarm binary Critical Generator emergency shutdown switch has been 
operated (pushed) 

Battery Charger Fail alarm binary Critical Engine start battery charger has stopped charging 
battery 

High Coolant or Oil Temp alarm binary Critical Engine coolant or oil is exceeding mfg recommended 
operating temperature 

Low Coolant Level alarm binary Critical Engine coolant is below mfg recommended level to run 

Output Circuit Breaker Open alarm binary Critical Generator load circuit breaker is open - no output 

Low Oil Pressure alarm binary Critical Engine oil level is below mfg recommended level 

Over-crank alarm binary Critical Engine has exceeded the number of starter cranking 
cycles to start the engine 

Engine Jacket Water Heater Failure alarm binary Information Engine coolant heater has failed 

Redundant Generator Power Notification alarm binary Information Generator has switched to a secondary source 

Summary Alarm alarm binary Information Composite alarm of all the NFPA 110 safety shutdowns 

ATS:         

ATS Position N/ E N/E binary Information Transfer switch position - operated to normal or 
generator power 

Not in "Automatic" alarm binary Critical Transfer switch is operating in manual mode only 

Normal Mode Status alarm binary Information ATS working properly 

Manual or Bypass Position alarm binary Information ATS on alternate source - generator 

Bypass Position alarm binary Information ATS is in bypass mode 

Alternate Source Power Available alarm binary Information Secondary source available (generator) 

Preferred Source Power Available alarm binary Information Commercial power source available 

Equipment Classification Function Type 

Classification- 
Sensor, Critical 
or Information Description 

UPS:         

Battery Voltage, DCV real-time analog Sensor UPS battery string voltage 
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Voltage Input real-time analog Sensor UPS line input voltage - per phase 

Voltage Output real-time analog Sensor UPS output voltage - per phase 

Current Input real-time analog Sensor UPS input current reading - per phase 

Current Output real-time analog Sensor UPS output current reading - per phase 

Input Power real-time analog Sensor UPS input Watts per phase 

Output Power real-time analog Sensor UPS output watts per phase 

Input Frequency real-time analog Sensor UPS input frequency 

Output Frequency real-time analog Sensor UPS output frequency 

On Bypass Mode Notification alarm binary Critical UPS in bypass - on commercial power source 

On Battery Power Alarm alarm binary Critical UPS is running on battery reserve only 

Circuit Breaker Open alarm binary Critical UPS output circuit breaker is open 

Normal Mode Notification alarm binary Information UPS working properly 

Summary Alarm alarm binary Critical Composite alarms 

PDU or Distribution Equipment:         

Major Alarm Notification alarm binary Critical Critical to the operation of the equipment (close to out 
of service) 

Minor Alarm Notification alarm binary Information Concern alarms to operation - not out of service 

Ground Fault Alarm alarm binary Critical Circuit breaker has tripped on a ground fault indication 

EPO:         

Activated or Ready alarm binary Critical 
Computer room "Emergency OFF Power" switch  
operated- removes all power 

DC Plant:         

Amperage Load real-time analog Sensor Total battery plant discharge current drain (load) 

Float Voltage real-time analog Sensor Battery charging voltage 

Battery Temperature Mid String real-time analog Sensor Battery temperature reading in the middle of the 
battery string 

Battery String Mid String Voltage real-time analog Sensor Battery mid-string voltage - reads 1/2 of string for 
balance - check for open cells 

Battery Remaining Run Time real-time analog Sensor Calculated discharge time before the battery reaches 
the end cell 

Battery Discharge voltage real-time analog Sensor Reading battery voltage as battery is on discharge 

Rectifier Failure alarm binary Critical Rectifier - no output current 

Rectifier Overload alarm binary Critical Rectifier output greater than 110% 

Low Battery DC voltage alarm binary Critical DC battery string voltage limits 

Fuse / Circuit Breaker Trip alarm binary Critical DC circuit breaker or fuse (tripped or fuse blown) 

Low Voltage DC alarm binary Critical DC battery plant discharge low voltage limit 

Very Low Voltage DC alarm binary Critical DC battery plant discharge (critical) very low voltage 
limit (near shutdown stage) 

Battery Plant on Discharge alarm binary Critical No AC power to rectifiers 

Inverter Plant:         

Amperage load real-time analog Sensor Total inverter plant current drain (load) 

Inverter Failure alarm binary Critical Inverter fail - no output 

Circuit Breaker Open alarm binary Information Tripped circuit breaker 

Low Input Voltage alarm binary Critical Low DC input voltage 

Equipment Classification Function Type 

Classification 
- Sensor, 
Critical or 

Information 

Description 

HVAC:         

Room Temp / Humid real-time analog Sensor Read actual room temperature and humidity 

Over Temperature alarm binary Critical High temperature alarm setting 
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Fan Failure Alarm alarm binary Information HVAC fan failure 

CRAC Failure alarm binary Critical No cooling output 

CRAH Failure alarm binary Critical No cooling output 

Dry Cooler (DX) Failure alarm binary Critical No cooling output 

Chiller:         

Major and Minor Contacts alarm binary Information Collection of alarm 

Pump Failure alarm binary Critical pump fails to operate 

Fire Detection and Suppression:         
Active Fire Alarm alarm binary Critical Building detected a fire condition 

Fire Panel Trouble alarm binary Critical Trouble within the system or panel 

Fire Panel Supervisory alarm binary Critical System change of state 

Water Leak Detection Circuit alarm binary Critical Pre-action fire system water leakage 

Security/BMS:         
Associated Building Alarm alarm binary Critical Building security system failed 

Open Door alarm binary Information Door open 

Water Sensor alarm binary Information Water on floor 

Tower Lighting:         
Light Failure alarm binary Critical Tower beacon light out 

Growth in critical facilities equipment has resulted in growth in the origins of data sets. The equipment 
producing these data sets is modular. For example, the DC plant listed in Error! Reference source not 
found. includes voltages, currents, and temperatures from every modular power converter, battery, and 
additional sensor placed in power plants. Communication of this data from every component to the 
processing unit, either on-premises or remote private cloud, requires a lot of bandwidth and processing 
power. Hence, the paper proposes a layered data processing approach. 

3.3. Random Forest 

Random forest is a commonly used machine learning algorithm trademarked by Leo Breiman and Adele 
Cutler [4]. It combines the output of multiple decision trees to reach a single result. Its ease of use and 
flexibility have fueled its adoption, as it handles classification and regression problems.  While we 
currently use reporting systems to monitor the system, we can utilize ML to change the operation of the 
systems based on the data.  The volume of calculations facilitated with the ML decision tree allows the 
system to determine the next step accurately.    

1. Step 1: Select random K data points from the training set. 

2. Step 2: Build the decision trees associated with the selected data points (Subsets). 

3. Step 3: Choose the number N for decision trees you want to build. 

4. Step 4: Repeat Step 1 and 2. 

5. Step 5: For new data points, find the predictions of each decision tree and assign the new data points 
to the category that wins the majority votes. 

 



 

Presented and first published at SCTE TechExpo24 10 

  

Figure 3: Decision tree for Random Forest  

3.4. Key Features of Random Forest 

Some of the Key Features of Random Forest are discussed below: 

1. High Predictive Accuracy:  Imagine Random Forest as a team of decision-making wizards. Each 
wizard (decision tree) looks at a part of the problem, and together, they weave their insights into a 
powerful prediction tapestry. This teamwork often results in a more accurate model than a single 
wizard could achieve. 

2. Resistance to Overfitting:  Random Forest is like a cool-headed mentor guiding its apprentices 
(decision trees). Instead of letting each apprentice memorize every training detail, it encourages a 
more well-rounded understanding. This approach helps prevent getting too caught up with the 
training data, making the model less prone to overfitting. 

3. Large Datasets Handling:  Dealing with a mountain of data? Random Forest tackles it like a 
seasoned explorer with a team of helpers (decision trees). Each helper takes on a part of the dataset, 
ensuring that the expedition is thorough and surprisingly quick. 

4. Variable Importance Assessment:  Think of Random Forest as a detective at a crime scene, 
figuring out which clues (features) matter the most. It assesses the importance of each clue in 
solving the case, helping you focus on the key elements that drive predictions. 

5. Built-in Cross-Validation:  Random Forest is like having a personal coach that keeps you in 
check. As it trains each decision tree, it also sets aside a secret group of cases (out-of-bag) for 
testing. This built-in validation ensures your model aces the training and performs well on new 
challenges. 

6. Handling Missing Values:  Life is uncertain, just like datasets with missing values. Random Forest 
is the friend who adapts to the situation, making predictions using available information. It doesn’t 
get flustered by missing pieces but focuses on what it can confidently tell us. 
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7. Parallelization for Speed:  Random Forest is your time-saving buddy. Picture each decision tree 
as a worker tackling a puzzle piece simultaneously. This parallel approach taps into the power of 
modern tech, making the whole process faster and more efficient for handling large-scale projects. 

4. Proposed Ecosystem Control Architecture 

A generic block diagram of control implementation using AI is shown in Figure 4. This generic figure can 
be applied to central monitoring and control of critical facilities and sub-systems, such as power systems, 
environmental control, distribution, etc.  

• Plant is a general term that can be the temperature profile of a facility's power system or distribution 
system that powers different loads. 

• Actuators represent control parameters of the plant, such as the HVAC system, power converters, 
voltage, and current setpoints or breakers in distribution. 

• Sensors can be temperature sensors, voltage sensors, or current sensors. 
• Controller is a piece of hardware that can be an ecosystem controller, power system controller, or 

BDFB controller. 
• Higher level control resides in facilities in servers or a private cloud. 
• External signals are the driving metrics to optimize the plant intelligently. 

 

 

 

Figure 4: A generic diagram of the control problem view of AI control of a nanogrid The 
AI control can be implemented in the central controller. However, a similar structure is 

repeated inside the different elements, such as the power converter, allowing the 
system to operate autonomously if a higher-level controller fails. 
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Similar to hardware's single point of failure in the system, such as an ATS, there is a risk of a similar 
failure mode in the AI control model. Hence, this paper proposes a layered intelligence approach. This 
also allows for effective management of communications burden and processing power. 

The proposed realization of the generic block diagram for nano-grid control for critical facilities is shown 
in Figure 5. This diagram represents higher-level artificial intelligence implementation. The ecosystem 
controller is connected to all the systems in critical facilities through a communications interface shown 
by blue dotted lines.  

The ecosystem controller is focused on optimizing critical facilities performance based on example 
metrics such as, but not limited to,  

• Utility pricing dynamics 
• Utility planned maintenance 
• Ambient signals, such as weather conditions 

To perform these tasks, the ecosystem controller sends aggregated information from various system 
components to the “server/private cloud,” where the machine learning models are built and updated. The 
output of machine learning results in parameter tuning and goal tuning outputs provided to the ecosystem 
controller. 
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Figure 5: Block diagram of the nanogrid control and power architecture. Each 
component transmits signals and alarms to the ecosystem controller. The controller, in 
turn, transfers action commands such as set-points to each component, commanding 

them to move to a different state.  

A layered/distributed intelligence approach is achieved through fractal representation of monitoring and 
control of lower-level power plants. For example, the ecosystem controller is connected to the source 
aggregation unit to monitor and control sources between the utility and the generator. Source aggregation 
also has the equivalent architecture of generic AI implementations, shown in Figure 6. Source aggregation 
receives higher-level control inputs from ecosystem controllers such as digital twin model updates, 
Source aggregation-specific setpoints, and thresholds. The source aggregation controller performs data 
aggregation from various sensors, sources, and aggregation components and performs onboard anomaly 
detection. The uplink from this controller to the ecosystem controller is knowledge of source aggregation 
sub-system and anomalies that can be used to update the digital twin models by a higher-level system. 
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Figure 6: Diagram of the system's source aggregation components implementation. 

The control architecture is repeated at this lower scale, where the local controller can 
implement edge processing AI functions. 

A similar fractal representation of the power system is shown in Figure 7. In this scenario, the power 
system controller performs anomaly detection and data aggregation to generate knowledge of the power 
system.   

 
Figure 7: Diagram of the implementation of the power system component in the 
system. The control architecture is repeated at this lower scale, where the local 

controller can implement edge processing AI functions. 

This layered intelligence approach preserves incumbent communications and control architectures and 
allows for seamless upgrades to the AI implementation. The power system and distribution sub-systems 
already have their respective controllers. 
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5. Distributed Intelligence Architecture 

 
Figure 8: Distributed intelligence architecture with communications and processing 

The thought process mentioned in the previous section results in the AI implementation architecture for 
critical facilities as generalized in the Figure 8The figure emphasizes communications structured to 
enable AI implementation. Black lines indicate communications, whereas power flow is shown with red 
lines. Messages communicated between every element of the ecosystem are no longer simple data such as 
voltage or current but information or knowledge of every subsystem. Distributed data processing can 
enable high-performance intelligence. 

The proposed distributed intelligence approach depends on two key elements – communications and 
processing power.  

5.1. Controller Communications 

Traditional controller communications in critical facilities are based on physical layers such as CAN or 
RS485. The purpose of communications has been data transfer between two components, typically 
voltage, current, temperature, and setpoints for controls. In the layered intelligence approach, knowledge 
transfer and the transfer of models are important. New upcoming technologies such as Single Pair 
Ethernet (SPE) or Two Wire Ethernet can be used in such applications. This communications media 
improves speed by almost two to three orders of magnitude over traditional methods. For example, SPE 
10BASE-T1 can reach 10Mbit/s over 1,000 m, while CAN is limited to 0.125 Mbit/s at 500 m. For 
shorter distances, SPE 1000BASE-T1 can reach 1,000 Mbit/s over 40m, while CAN is limited to 1 Mbit/s 
at the same distance.  

Wireless communications can also be implemented, but communication security is essential, and it can be 
achieved through compliance with international standards such as IEC62443.  
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5.2. CPU Processing Power for AI Use 

In typical feedback control systems, the controller aims to implement pre-programmed tasks. To perform 
data aggregation, high-speed communications, and anomaly detection, the controller CPU requires 
processing power improvement by order of magnitude. This results in the following improvements: 

 

Table 2: Processing Power improvements 

Parameter Improvement 

Software Upgrades 3x 

Mib Building time 3x 

Diagnostic File Exports 10x 

CPU Usage 1/3x 

The processing mentioned above power improvements can be accompanied by technology trends in 
silicon manufacturing, where new micro-processors with onboard AI suite capabilities are on the horizon. 
These capabilities allow for model imports, onboard diagnostics, and anomaly detection capabilities. We 
envision using such technology trends to drive more distributed analytics architectures.  

6. Example AI Application: Energy Management 
Of particular interest to the nanogrid operation and a possible application of AI is the selection, in near 
real-time, of the optimal mix of energy sources. This is known as energy management. 

Energy management can be divided into the following functions including, but not limited to,   

1. Source Selection based on planned activities or utility stress  
2. Peak Shaving 
3. Utility cost reduction for peak demand charges 

The Figure 9 shows the realization of the energy management application for the critical facility. The 
energy sources listed are utility, generator, portable generators, Distributed Energy Resources (DER) such 
as solar photovoltaic (PV), and Battery Energy Storage systems.  
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Figure 9: Distributed AI Application for Energy Source Management 

Energy management can be viewed as a binary selection of sources between Utility and generator. It can 
also be a complex mix of various sources by sharing the energy to maintain the Essential DC bus in the 
proposed nanogrid. 

6.1. Individual Source Selection 

In planned utility outages, energy source selection can be programmed by knowing outage times 
beforehand. An Ecosystem controller can provide actionable outputs to request preemptive generator 
maintenance to ensure resiliency.  

Similarly, in case of impending poor weather conditions, an ecosystem controller can transition the 
system to a resilient power source in anticipation of a potential disruption due to utility interruption. 

6.2. Multiple Energy Source Sharing 

Power conversion or other source aggregation components allow for sharing various energy sources to 
maintain the essential DC bus. At each instant, the ecosystem controller must decide how much power to 
take from each source. This decision may be influenced by external signals (like the price of utility energy 
at this moment), environmental conditions (such as the amount of photovoltaic energy available), and its 
internal state (such as the state of charge or the total load).  
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Table 3 shows the typical alarm thresholds for various sources and components in a critical facility. 
Reliability requirements drive these thresholds. Hence, the status of energy sources and power plants is 
critical in defining the usage of sources for energy management. For example, when a generator is used 
for backup or energy management, the fuel level will drive the decision to use the generator optimally. 

 

Table 3: Alarm threshold settings in a typical critical facility 

Alarm Threshold Settings 
Threshold Settings LOW 

MN 
LOW 
CR HIGH MN HIGH 

CR 
Facility Power:         
Utility Voltage (Normal Voltage) 90% 80%   110% 

Voltage (Output side of ATS) (Nominal Voltage) 90% 80%   110% 

Frequency (Output side of ATS)   95%   105% 

Generator:         
Fuel Tank Level 35% 20%     

Battery Start Voltage   90%     

UPS:         
Input Voltage (All Phases) 90% 80%   110% 

Output Phases (All Phases)   90%   110% 

Output Power (All Phases) 80% of UPS Capacity     80%   

DC Plant:         
System Current (Not in Discharge)     80% 90% 

System Float Voltage (Nominal Voltage - 54Vdc) 46Vdc 42Vdc   55.5Vdc 

HVAC:         
Room Temperature (Nominal Temperature 72 degrees F)   60 F   85 F 

Security/BMS         

Door Open     
10 Min 
Delay   

Moreover, the decision must meet several constraints while maximizing several competing goals. At a 
given moment, for example, utility energy may be expensive, and photovoltaic may be available to cover 
a significant portion of the load; this would encourage the ecosystem controller through source 
aggregation controller to minimize the utility power while maximizing Renewable Energy 
sources/photovoltaic power (reduce cost and carbon footprint of the system). However, the battery energy 
storage may be low, compromising the system's reliability in case of a blackout. This situation would 
force the controller to weigh the low energy storage risk exposure against the financial and environmental 
benefits of only using photovoltaics. 

Some decisions are simple: if there is a utility outage at night, the nanogrid cannot draw power from the 
utility or photovoltaic. Therefore, the nanogrid may draw power only from the batteries, as an alternative 
may not exist. Some decisions are complex: Should the nanogrid reduce the HVAC during a heatwave 
with a relatively low load, letting the system run hotter and reducing its lifetime, and can it provide extra 
hours of backup time during an outage? How much can the HVAC be reduced? 
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Some decisions are binary: the ATS can be connected to the utility or the generator, not both. Some 
decisions are continuous: the rate of charge or discharge of a battery can be controlled continuously. 
Some decisions are discrete: how many load channels should be enabled? 

The resulting overlap of the competing objectives and the type and number of decision variables will 
likely result in a dynamic hybrid non-convex optimization problem. This problem may be where an AI 
algorithm (such as the Random Forest) implemented in the nanogrid's ecosystem controller can excel. 
Furthermore, the AI can benefit from learnings obtained in the past to update itself and from access to a 
remote repository of models and learnings from other such nanogrids. 

6.1. Use Case of Energy Source Sharing  

Let’s take an example of a critical facility with a 600kW power plant. Traditionally, all the power is 
delivered by utility. In case of a renewable source of 100kW being available, a simple pre-programmed 
algorithm can be used to use renewable sources during peak energy charges to reduce energy costs. 
Similarly, if 100kW of Battery Energy Storage System (BESS) is available, then it can be used at peak 
utility charges and can be charged back during low energy charges, as shown in Figure 10 and Figure 11. 
Each scenario can be implemented with a standard feedback control loop or even open loop control 
methodologies. 

 
Figure 10: Sample time-of-use energy price showing peak and off-peak utility charges 

from Toronto Hydro [5]. 
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Figure 11: Dynamic power flow from utility and batteries to feed a sample 600kW load; 

during the peak price time, the system draws power from the BESS and returns it during 
the off-peak price time, resulting in cost savings for the system. 

However, when we have multiple sources available, the choice of energy source is a complex problem. 
To add realistic complexity, every source may have fluctuations in available energy, such as poor battery 
strings, resulting in a lower state of charge. In such cases, reliability is very important. This information 
will be available over sub-system level controllers such as source aggregation controllers. The distributed 
intelligence at source aggregation controller, shown in Figure 6, will feed knowledge of energy sources 
based on models and anomalies to the ecosystem controller. The ecosystem controller then uses this 
information to feed the AI algorithm, such as a random forest. The decision tree builds optimal control 
functions for each source aggregation. Multiple metrics, such as energy cost reduction, energy efficiency, 
and carbon credits, can drive the decision.  

The sub-system level controller then uses the control functions and makes lower-level decisions based on 
the status of the energy source instead of making a simple decision of turning ON or OFF the energy 
source. The advantage of such distributed intelligence is that it improves resiliency. If the control function 
is not implemented, it will continue to operate the system at its optimal point and give feedback on the 
information to the ecosystem controller. This allows for reinforcement learning in the ecosystem. 

AI implementation will reduce human decision-making requirements and optimize energy usage and cost 
while preserving the system's reliability.  This system can reduce energy and optimize energy cost-
effectively by transitioning the electrical system to the best, least costly source. 
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7. Conclusion 
This paper provides an overview of the role of Artificial Intelligence in the infrastructure of critical 
facilities based on a nanogrid. For instance, it explores how the random forest machine learning technique 
can determine the best combination of energy sources in real-time. 

In addition to enhancing resiliency, nanogrid architecture allows AI to optimize critical facilities for 
reliability, energy efficiency, and operational cost reduction. Advancements in communication and 
processing power support the implementation of distributed AI, reducing the reliance on single ecosystem 
controllers and enhancing resiliency. The application of AI to nanogrid architecture facilitates energy 
management, eliminating the need for human intervention and enabling the optimal utilization of various 
energy sources, which was not feasible in previous power system architectures. 

Abbreviations 
AI Artificial Intelligence 
Mib Management Information Base for SNMP devices. 
ML Machine Learning 
SCTE Society of Cable Telecommunications Engineers 
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