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1. Introduction 
In any large modern company, data has become the lifeblood of the organization and databases have 
become the beating hearts which supply that vital resource to every aspect of the company.  Given that 
the failure of a single database, even for a short amount of time, can potentially lead to hundreds of 
thousands of dollars in lost revenue, it has become imperative to ensure complete reliability of every 
database within the ecosystem. 

With hundreds to thousands of databases needing to be monitored, it has become increasingly difficult for 
Database Administrators (DBAs) to maintain adequate vigilance on every single database using standard 
monitoring techniques.  Recently, companies have been turning to Machine Learning algorithms to 
“study” each database, determine if a database is displaying signs of distress, and then alert a DBA that 
action may be required on a given database. 

One of the newest and most promising algorithms in use at Cox Communications is Density Based 
Spatial Clustering (DBScan).  Fundamentally, the DBScan algorithm looks at groups of points which lie 
closer together (i.e. have a higher spatial density) and then assigns them to be in the same cluster.  The 
process repeats until every data point has been assigned to a cluster, or else has been labelled an outlier.  
It is these outliers, or anomalies, which may be harbingers of database problems. 

Each night eight of the most important metrics, in five-minute increments, over the past thirty days of 
data are fed into the ML algorithm for each database.  By using Principal Component Analysis, the data is 
converted from an eight-dimensional manifold to a three-dimensional surface and then used to create one 
DBScan model per database.  Given the trained model, whenever a new datapoint arrives, it is simply 
compared to the data in the pre-trained model to determine if the datapoint is “normal”, or if it is an 
anomaly which should be investigated further. 

By operationalizing DBScan ML techniques on database monitoring data, database alerts have been 
accelerated by 15 minutes over existing monitors and decreased false positive alerts by a factor of six. 

2. Clustering Algorithms 
In data science, there are two primary categories of algorithms – supervised learning and unsupervised 
learning.  In supervised learning, you are given the “correct answer” and are attempting to train a model 
to match the predicted answer to the correct answer.  In unsupervised learning, you do not have the 
“correct answer”, so the challenge is to extract patterns and structure from the data itself without any 
human interaction. 

One of the most common categories of unsupervised learning is cluster analysis.  This type of analysis 
attempts to group similar objects into different sets, called clusters.  These groupings may be defined by 
connectivity to nearby points (Hierarchical Clustering), distance to a cluster centroid (K-means 
Clustering), correlation and dependences between data points (Gaussian Mixture Model) or grouping 
areas of higher data point density (DBScan). 
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3. DBSCAN Clustering 
While every clustering algorithm has its own strengths and weaknesses, the DBScan algorithm is 
particularly well suited to anomaly detection.  To begin with, it does not require the number of clusters to 
be pre-defined.  Furthermore, it does not need the data to be regularly shaped, and most importantly, it 
works well when the data contains noise.  This algorithm will automatically create the clusters and will 
treat the noise as outliers.  It is this last feature which is of greatest interest when creating an anomaly 
detection algorithm. 

 
Figure 1: DBScan Cluster Definition Process 

The DBScan algorithm requires two parameters to be defined: Epsilon (ε) and the MinPts.  Given those 
parameters, the algorithm selects a datapoint and considers a circle around that datapoint with a radius of 
ε.  It then considers all the additional datapoints which fall within that circle.  If the number of datapoints 
are greater than or equal to the minimum number of datapoints as defined by the MinPts parameter, then 
all those datapoints are assigned to the same cluster.  Once the initial cluster is defined, then all those 
datapoints become the centers of their own circles, each with radius of ε, and the process is repeated.  All 
datapoints in those new circles which meet the required criteria are added to the initial cluster.  That 
process is repeated until no more data points can be added to the original cluster. 

Once no more points can be added, a new, unlabeled point is randomly selected to become the starting 
point of a new cluster and the process is repeated.  Once all the clusters have been defined, then any 
unlabeled data points are defined as outliers.  Finally, all the data points which have been labelled as 
boundary points are checked to see if they have been assigned to the best possible cluster.  Any points 
which should be assigned differently are placed in the appropriate cluster. 
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Figure 2: DBScan Clustering Output - five clusters with no outliers 

 

4. Productionalizing Model Training and Creation 
Within the Oracle database ecosystem, the collection of dozens of performance metrics from nearly one 
hundred seventy-five production databases, and more than three hundred database instances, has been 
automated.  That data is loaded to a centralized repository every five minutes.  While so much data is a 
boon for analytics, it is far too much to be analyzed using manual methods or even using classical analytic 
methods in a real time fashion.  To take full advantage of this wealth of data, ML models were needed 
which could learn what “normal” looked like for each database and could warn the DBAs when a 
database was beginning to experience abnormal behavior.      

4.1. Data Normalization and Resampling 

Before the data can be used in any clustering model some minor feature engineering needs to occur.  
While this data is collected at 5-minute intervals, the date fields in the collected data are timestamps 
which are measured to the millisecond.  Such precision makes the clustering algorithm overly laborious, 
so the data is resampled to be at the five-minute grain.  Furthermore, as is common with all clustering 
algorithms, it is important that all the metrics are standardized to be on the same scale.  Without such 
normalization, the largest metric will dominate all distance calculations and important variations in 
smaller metrics could be lost.  In our case, all metrics were normalized to fall on a scale of 0 to 1 so that 
each metric would contribute a similar amount to the distance calculations used by the DBScan algorithm. 

4.2. Principal Component Axes 

With the data resampled and normalized, it became imperative to remove some of the dimensions of the 
data.  A problem which is common in many machine learning algorithms, and particularly troublesome in 
clustering algorithms, is the “curse of dimensionality”.  This moniker refers to the inability of a model to 
identify patterns due to the high number of predictive features creating a sparse feature space.  Every new 
feature exponentially increases the possible number of buckets in which a datapoint may reside.  It does 
not take many features before there are vastly more “empty buckets” than there are ones containing a 
datapoint. 
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To illustrate this concept, consider the images below.   

 

 

 
Figure 3: Predicting Heart Disease – red means positive for heart disease 

 

Assume you are trying to predict heart disease.  At first, you are only considering age as a predictive 
variable.  The image on the left makes it clear that this is obviously not enough to make an accurate 
prediction.  Now suppose you add a second variable, weight, to the model. It is immediately obvious that 
the data becomes far more spread out.  Adding a third variable causes the data to be spaced even further 
apart.  This simple example should be enough to show that more dimensions being added to the model 
further spreads the datapoints apart.  While for some models this separation is useful, for a model based 
on clustering, especially one based on cluster density, higher dimensional data is a liability not an asset. 

Fortunately, there is a standard practice for reducing dimensionality while still retaining most of the 
information encoded in the data – Principal Component Analysis (PCA).   Just as any vector in a 2-
dimensional space can be projected onto a rotated coordinate system and decomposed into new x and y 
components, any vector in higher dimensional space may be projected onto modified dimensions and 
decomposed into new principal components.  By projecting the datapoints onto the eigenvectors of the 
covariance matrix, PCA makes it possible to reduce the number of dimensions while choosing the 
coordinates which retain the greatest amount of information from the original data. 

Included in the Cox process requirements was a mandate to avoid unexplainable, or “black box”, code 
wherever possible.  Given such a direction, projecting the original dimensions onto a three-dimensional 
surface was the logical choice.  This choice reduced dimensionality and provided the greatest explanatory 
power while still allowing for visualization of the resultant data. 
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Figure 4: Plot of PCA components vs. explained variance 

 

As is obvious from Figure 4 using 3 principal components still retains better than 50% of the variance in 
the data while reducing the dimensionality of the original data by nearly 2/3.  Furthermore, when you 
look at the scatterplot in Figure 5 below, the data is easily understandable and potential outliers are 
visually obvious. 

 

 
Figure 5: Scatterplot of database metrics along three principal component axes 
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4.3. Model Training and Creation 

With the data engineering completed and the dimensionality reduced, it was time to focus attention on 
training the clustering model.  Since there are nearly one hundred seventy-five databases, and each 
database has its own unique clustering “fingerprint”, it was necessary to train and store a separate model 
for each database which could then be used to determine whether subsequent datapoints are anomalous.  

To train a DBScan model, the two parameters mentioned previously, ε and the MinPts, were required.  
Since these values may vary from one database to another, they were placed in a parameter file with a 
separate set of parameters for each database.  Since databases are highly overengineered, the expectation 
was that there would be very few anomalies worth considering.  To this end, the default parameters 
should be set to have as many datapoints as possible be identified as members of a cluster.  In an effort to 
achieve this, the original parameters were set as  

ε = .95 

MinPts = 4. 

 

While the MinPts parameter for a few of the databases has been changed to 

MinPts = 3, 

the  

ε = .95  

parameter has proven to be the appropriate distance choice universally.   

For each database, ninety days of data were processed through the DBScan algorithm from the python 
sklearn package to create a unique clustering model.  That model was saved as a .pkl file with the name 
and location of the file stored along with the ε and the MinPts values in the parameter file.   

One of the greatest benefits of this process was the speed at which a model may be created.  The DBScan 
algorithm only requires 5 to 10 seconds to train and create a new clustering model.  When there are nearly 
one hundred seventy-five such models needed, this speed has been necessary to create a production grade 
process. 
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See Figure 6 below for a sample scatterplot of a database with a normal cluster and multiple outliers. 

 

 
Figure 6: 3-D Scatterplot of database metrics showing cluster (yellow) and outliers (blue) 

 

4.4. Testing for New Anomalies   

Testing new datapoints is, in principle, a straightforward process – load the saved model into memory, 
process the new datapoints through the model, and review the label assigned to each datapoint. When the 
process must be applied to 175 databases, however, an additional layer of complexity is added.  Even so, 
the process is straightforward to describe.  First loop over all the databases. For each database, select the 
new datapoints which have been created since the previous run, then load the associated 

*.pkl 

file containing the stored model, and finally process the new datapoints through the model.  Once the 
labels for the new datapoints have been generated, store any anomalies in a table for future use in alerting.   

4.5. Scheduling 

As anyone who regularly works with databases can attest, database performance may change abruptly.  
The application of a patch, introduction of a new batch job, or even presence of a new query may 
adversely impact the behavior of a database.   Many types of anomaly detection models, such as 
timeseries based models, may take days or even weeks to adjust to profile changes in a system.  Such 
slow response times can lead to excessive false positive anomaly alerts. 

 To avoid such excessive alerting, the DBScan models for all the databases are retrained nightly starting at 
midnight.  This schedule allows the models to adapt to all new changes for a database profile in less than 
24-hours, so even the largest changes to a database behavior will be rapidly accounted for.    
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5. Anomaly Severity, Database Health and Alerting Algorithm 

5.1. Defining an Anomaly’s Severity 

To define an anomaly’s severity, it was necessary to find a baseline value against which it could be 
compared.  Since there are no inherent “zero values” which define anomaly severity, the decision was 
made to use the distance from the cluster centroid as the baseline from which to define an anomaly’s 
severity.  Given this decision, it was first necessary to define an anomaly’s distance from the centroid of 
the cluster of normal datapoints.  If the anomaly coordinates are defined as xi and the centroid coordinates 
as yi, then the Euclidean distance between the anomaly and the centroid is: 

𝑑𝑑 =  ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑖𝑖

2  

Of course, a simple distance metric does not give any information regarding the magnitude of severity.  
For some databases, an anomaly distance of 0.5 might be nearly normal while for others a distance of 0.5 
is an extreme anomaly.  To overcome this issue, it is necessary to define a relative scale for each database. 
For this scale, two fixed points are required.  The cluster centroid has already been defined as 0 on the 
scale, so all that remains is to define the upper end of the scale.  Given that there is no absolute number 
which will suffice for all databases, the upper bound of the severity scale has been defined as the distance 
of the most severe anomaly for a given database for that day. 

Therefore, if dn is the anomaly furthest from the centroid cluster, for an anomaly di the severity 
calculation becomes: 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 =  
𝑑𝑑𝑖𝑖
𝑑𝑑𝑛𝑛

 

 

5.2. Database Health Metric 

With the anomaly severity metric defined, it becomes a simple matter to calculate a database health score 
(DHS).  Given a sorted list of n anomalies with distances d1 …., dn where d1 is the smallest distance and 
dn is the largest distance, calculating a health score is as simple as taking the average anomaly severity for 
the current measurement period.  Since the desire is for a health metric rather than a severity metric, 
however, the calculation below is used to get the required value (1 – average anomaly severity).  

𝐷𝐷𝑎𝑎𝑠𝑠𝑎𝑎𝐷𝐷𝑎𝑎𝑠𝑠𝑠𝑠 𝐻𝐻𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠ℎ 𝑆𝑆𝑆𝑆𝑎𝑎𝑠𝑠𝑠𝑠 = 1 −   

1
(𝑎𝑎 − 1)∑ 𝑑𝑑𝑖𝑖𝑛𝑛−1

𝑖𝑖=1

𝑑𝑑𝑛𝑛
 

5.3. Alerting Algorithm 

While having the DHS defined is excellent progress, it is not sufficient to allow for an automated alerting 
system.  As mentioned earlier, the parameters used in the DBScan model are optimized to place as many 
data points as possible in clusters.  Even so, with measurements every five minutes on nearly 175 
databases, there are always a few anomalies every measurement period.  Since it did not make logical, or 
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logistical, sense to send alerts on dozens of databases every single day, an additional layer of logic needed 
to be applied to filter out some of the extraneous noise. 

Based on work from previous alert analysis, it was observed that the “one-off” anomalies seldom signify 
overall system problems.  When system issues begin to occur, anomalies would begin to appear in 
clusters.   Using this knowledge, the additional requirement was added that a database must have at least 
three anomalies within the past 15 minutes before an alert is generated.  Once that additional threshold 
has been reached then an email would be generated listing the anomalies, showing a 3-D chart plotting the 
daily datapoints and anomalies, and providing a link to the diagnostic tools for the specific database 
generating the alert. 

Finally, the DHS is used to create a severity measure.  While the actual thresholds may vary from 
database to database, the default health measures are 0 to 20% health = high severity, 21% to 50% health 
= moderate severity, 51% to 100% health = low severity. While any cluster of 3 or more anomalies in a 
15-minute window will generate an alert, the low and moderate severity alerts are considered 
informational while the high severity alerts are calls to action for the DBAs. 

6.   Results 
The results shown below have been collected over a period of three months from 3/17/2024 to 6/17/2024.  
The metrics are a comparison of the alerts generated by the DBScan model and the alerts generated by the 
current “gold standard” timeseries-based alert model. Since the two models displayed alert on different 
cycles, any alert for a given database is counted as a single instance.  For example, regardless of whether 
a given database generated twenty alerts in a day or a single alert in a day, it is simply counted as a single 
positive count.  This decision removes the problem of the relative scale of the alerting systems being 
fundamentally different.  

 

Table 1: Comparison of DBScan Alert Algorithm to Timeseries Algorithm  

 

  
Distinct DBs 

Alerted 
Distinct Severe 

Alerts 
Avg Daily DBs 

Flagged 
Relative 

Response Time 
          
Timeseries 
Alerting 75 75 0.81 +16:32 minutes 
      
DBScan 
Alerting 108 12 1.16 -16:32 minutes 

 

The results above show an interesting pattern in the two alerting models.  The DBScan model is more 
sensitive than the timeseries-based model overall.  This sensitivity causes roughly 50% more alerts to be 
generated overall and alerts to be generated on more databases in any given day.  In other words, the 
model is significantly noisier. That same sensitivity, however, also allows for detection of potential issues 
over 16 minutes earlier than the timeseries-based anomaly model.  When the DHS threshold is applied, 
however, the DBScan alerting model becomes less noisy than the timeseries based model by a factor of 6. 
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The takeaway is that, with the implementation of the Health Score in the DBScan model, the process 
becomes simultaneously more sensitive to potential issues arising in the system while becoming 
significantly less noisy for the DBAs monitoring the overall database ecosystem.      

7. Conclusion 
No alerting system can completely replace the expertise of human experience, but the size and complexity 
of modern IT systems are requiring an ever-growing reliance on automated monitoring.  The DBScan-
based alerting algorithm employed within the Cox ecosystem has proven to be a distinct success. It has 
improved the support teams’ response time when monitoring hundreds of different databases by providing 
earlier warnings and more reliable information.  In fact, as of the publishing of this paper, the process has 
been so successful that it has been expanded to monitor over 85 SQL Server databases and more than 50 
MySQL databases as well.  

While undeniably useful in the Cox database ecosystem, the true strength of the DBScan algorithm is its 
data agnostic nature.  So many alerting systems are custom designed to fit one specific type of system and 
only a few distinct types of metrics. This clustering process can be applied to any system producing 
numeric metrics on a regular cadence.  It is the authors’ hope that this system may be extended to other IT 
systems outside the database ecosystem in the foreseeable future.  
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Abbreviations 
DBA database administrator 
DBScan density based spectral clustering with anomalies 
DHS database health score 
IT information technology 
MinPts minimum points 
ML machine learning 
PCA    principal component analysis 
.pkl pickle file extension 
sklearn Scikit Learn Python package 
SQL structured query language 
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