

Presented and first published at SCTE TechExpo24 1

Supercharging Proactive Network Maintenance by
Leveraging Generative AI

A technical paper prepared for presentation at SCTE TechExpo24

Santhana Chari, Ph.D.
VP, Broadband Analytics and Data Science

OpenVault
schari@openvault.com

Mahesh Kanase
Sr. Data Science Engineer

Ksolves
mahesh.kanase@openvault.com

Presented and first published at SCTE TechExpo24 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Interactive LLM Applications ... 3
3. LLM Performance Improvement Techniques .. 4

3.1. Fine-tuning ... 5
3.2. Retrieval Augmented Generation (RAG) ... 5
3.3. Comparing Fine-tuning and RAG ... 6

4. Evaluating RAG Performance ... 7
4.1. End-to-end Performance Evaluation .. 7
4.2. RAG Context Efficacy and Relevancy ... 10

5. Leveraging Dynamic Data ... 12
6. Conclusion ... 13

Abbreviations .. 15
Bibliography & References.. 15

List of Figures

Title Page Number
Figure 1 - RAG processing pipeline and architecture. .. 6
Figure 2 - METEOR and Cosine similarity computed for the 27 test queries ... 9
Figure 3 - RAG Evaluation system .. 10
Figure 4 - Sample query, top two retrieved contexts, and the responses generated by the LLM 11
Figure 5 - Generalized Retriever approach to use custom and third-party APIs .. 13

List of Tables

Title Page Number
Table 1 - Comparison of RAG and Fine-tuning approaches to LLM optimization .. 7
Table 2 - RAGAS metrics computed for various Top-K chunks retrieved from the vector datastore 12

Presented and first published at SCTE TechExpo24 3

1. Introduction
The Cable and Telecommunication industry has been at the forefront of collecting staggering amounts of
data given their end-user subscriber base runs into hundreds of millions of users. The data is collected
from devices that are deployed in both core and edge of the network, and at consumer residences that are
geographically distributed. Large volumes of data thus collected spans various categories ranging from
consumer specific data, aggregated network utilization and usage data, and operational data from
hardware devices and software micro-services. This data collection has historically used legacy protocols
such as simple network management protocol (SNMP) and Internet Protocol Detail Record (IPDR). Most
legacy data collection frameworks use pull-models where the collectors periodically poll the devices to
collect and aggregate the data. But with increased emphasis on network automation and orchestration
driven by distributed access architectures, there is a growing impetus to migrate to more modern model-
driven telemetry approaches where the endpoints are configured to stream the data using push-models that
are based on standard specifications in a vendor agnostic fashion.

With the availability of copious amounts of data comes the natural question of effective approaches to
leverage the data to optimize network planning and operations. In the past statistical methods and models
that were originally invented several decades ago were used to analyze the data to perform diagnostic and
predictive analysis. Diagnostic analysis was mainly used to identify root causes of issues in the network
based on historical or real-time data. Predictive analysis, on the other hand, used historical data to
estimate future load on the network and prepare the network to meet the quality of experience
requirements [ulm-2019]. More recently these statistical approaches were replaced by classical Machine
Learning (ML) approaches that use classification and regression techniques using supervised and
unsupervised learning techniques [volpe-2021], [righetti-2023].

In this paper, we primarily focus on the use of artificial intelligence (AI) tools, and more specifically
Generative AI tools to leverage the vast repository of data and to address proactive network management
(PNM). Rapid and recent advances in the transformer models [vaswani-2017] have completely changed
the paradigm on how a non-technical user can interact with complex software systems employing large
language models (LLM) using only simple natural language queries. We have addressed the problem of
how LLMs that have been pre-trained for very general tasks can be customized to analyze and leverage
data specific to certain domains, in this case the knowledge base and data specific to the cable industry.

The rest of the paper is organized as follows. Section 3 provides details on techniques to augment LLMs
with private, application-specific data; we discuss and compare two different techniques, namely fine-
tuning and retrieval augmented generation (RAG). We also present details on how to evaluate the efficacy
of RAG applications. We address both end-to-end evaluation of RAG applications using a set of pre-
defined prompts and expected responses, as well as present techniques to evaluate the individual building
blocks of a RAG system, namely, the embedding, chunk size, number of chunks, etc. Finally, we present
details on generalized retrievers using the LangChain framework that can leverage local or third-party
data to build advanced retrieval systems.

2. Interactive LLM Applications
The ease of interaction with LLMs using natural language queries has resulted in a proliferation of
applications and software tools to rapidly build applications that support querying the information that
was embedded in the LLM models during the pre-training phase. Such virtual assistant applications can
be used to improve the efficiency of customer support agents or field technicians to quickly diagnose the
problem that is impacting the end-user and to remediate issues. Interactions with LLMs can be broadly
classified into three categories:

Presented and first published at SCTE TechExpo24 4

• Conversational interactions: These are the most common type of interactions that people have
with ChatGPT or Gemini where the interactions are usually a series of prompts and responses.
The responses are derived from the (static) data used during the pre-training process and therefore
cannot be expected to be up to date.

• Transactional interactions: These interactions leverage the data specific to the application which
was not used in the initial pre-training phase; for example, on an e-commerce website the user
can go through a series of steps to return a merchandise. Leveraging the local application-specific
dynamic data allows for the support of several use-cases, but the flow of the interaction is usually
pre-determined and is meant to solve only a set of specific set of common interactions.

• Interactive inferencing: This is a sophisticated combination of the previous two types of
interactions where the user is not simply restricted to follow pre-defined flow but can interact
with the LLM using natural language questions. The application back-end is augmented to
leverage application specific data and the actions or transactions invoked by the application are
inferred from the user queries. One or more agents are used to break down the actions required
into smaller components, perform the required operations and then aggregate the results to
accomplish the task requested by the user. This type of interaction allows the user to interactively
work with the LLM and the application-specific data to solve complex problems.

In the following sections we will start off with the description of how to build applications for
conversational interactions and then address the challenges associated with developing more complex
solutions required to support transactional interactions and interactive inferencing.

3. LLM Performance Improvement Techniques
Foundation LLMs are mainly autoregressive models that are pre-trained on a massive corpus of text
mainly to predict the next word or a set of words until completion. These models are pre-trained using a
self-supervised learning approach by providing as input the beginning of a text sample and tasked to
predict the next word. The target word or the ground-truth happens to be the actual next word in the input
text sample. For example, the most recent Llama-3 model from Meta [meta-llama3-2024] has a
vocabulary of 128K tokens and was pre-trained on 3T (trillion) tokens of data that were all collected from
publicly available resources. However, there is no guarantee that these foundation models have been
trained on data that is specific to certain domains like medical, legal, or broadband communications.
Therefore, there is always a need to adapt these foundation models to perform specific tasks such as
translation or review rating, or to enhance them on a knowledge base that is specific to a domain.

Prompt engineering or crafting prompts in an appropriate fashion can be used to get more relevant
answers from LLMs. While zero-shot prompting, where the user simply includes a question in the prompt
for the LLM, may work reasonably well for models with large number of parameters, smaller LLMs
usually do not perform well with simple prompting. Few-shot prompts. whereby a series of examples are
provided as contexts. usually work much better in steering the model to perform the task that the user is
interested in. For queries involving complex logical reasoning chain-of-thought (CoT) prompts have been
shown to produce better results. CoT prompting involves few-shot prompts where the exemplars include a
series of logical reasoning steps [Wei 2022]. Zero-shot CoT prompts have been shown to be effective by
adding the phrase “let’s think step-by-step” to the prompt. Few-shot and CoT can be combined where the
user provides examples of few questions with explanation of how the answers were derived in a step-by-
step fashion followed by the actual question.

While prompt engineering can be an effective tool in improving an LLMs performance, it cannot be relied
upon when building a virtual assistant tool as it is not reasonable to assume that the end user of that
virtual assistant will be familiar with the concepts of prompt engineering or knowledgeable enough to
craft effective queries. Therefore, it is necessary to explore available options to customize foundation

Presented and first published at SCTE TechExpo24 5

LLMs for our specific applications. There are two broad approaches to adapting foundation LLMs,
namely, Fine-tuning and RAG.

3.1. Fine-tuning

A significant amount of research work has gone into fine-tuning pre-trained LLMs to improve their
performance and generalization to new tasks or applications on a domain-specific dataset. Fine-tuning is
also termed as instruction fine tuning or supervised fine tuning, is a strictly supervised learning process. It
has been shown that fine-tuning can not only significantly improve the performance of an LLM but can
also enable fine-tuned small models to perform better than very large pre-trained models that are not fine-
tuned. [chung-google-2022] shows results of fine-tuning that can scale to a large number of tasks and to
models of different sizes. The fine-tuning process typically consists of the following steps:

• Identify the pre-trained model to be fine-tuned. This selection can be based on the size of the
original model as well as the data that has been used to train the original model.

• Collect training data (for example, a list of prompts and responses) that is appropriate for the task
or domain. Note that while the amount of data required for pre-training LLMs is enormous, the
data required for fine-tuning is significantly smaller and more manageable. This training data can
be obtained from publicly available sources or needs to be curated with human resources.

• While pre-training models require a large amount of computational resources, for example,
Llama-3 was trained on a custom cluster of more than 24K GPUs, fine-tuning can be performed
on relatively modest GPU resources, time, and budget.

• Since the original pre-trained models can have parameters in the range of 1B to more than 100B,
it is not practical to update all model parameters during fine-tuning with a limited dataset.
Parameter Efficient Fine Tuning (PEFT) algorithms are commonly used in the fine-tuning
training process. Algorithms such as LoRA (low ranked adaptation) or QLoRA (quantized LoRA)
do not update the original model parameters directly but generate a low-order matrix of
parameters that is trained using the new training data. This low-order matrix is then summed with
the original model parameters. With the PEFT algorithms the number of model parameters that
are updated can be as little as less than 1% of the original pre-trained model parameters.

3.2. Retrieval Augmented Generation (RAG)

In the fine-tuning approach discussed in the previous section, the parameters of the LLMs are modified
during the fine-tuning process based on the training data. Another approach that is commonly used to
improve the LLM’s performance is RAG whereby the model parameters are left unchanged, but
additional relevant contextual information is provided to the LLM that can significantly improve the
performance on domain specific applications. While there are advanced RAG approaches, discussion in
this paper will be restricted to the basic RAG approach which employs the following steps:

1. Identify the domain specific data or more recent data that the model has not been already pre-
trained on. This data can be in the form of text files, pdfs, html documents and more.

2. Textual data from these documents are split into small pieces using text splitters and then
combined to form chunks. Choices of text splitters and chunk sizes can have implication on the
performance of the RAG system as presented later in this paper.

3. Contiguous sections of textual chunks are then mapped into a vector space using an embedding
model. These vectors are indexed and stored in a vector database such as Pinecone, ChromaDB,
or FAISS. Choice of the embedding model has implications on both the retrieval performance and
other factors such as latency.

Presented and first published at SCTE TechExpo24 6

4. When the user inputs a query to the LLM, the query is transformed to a vector using the same
chunking and embedded models and passed to the vector database which returns the top K
matches (Top-K) from comparing the query to the stored data.

5. The return Top-K matches are used as contexts and integrated with the user query to pass onto the
LLM.

6. Steps 1 through 3 can be repeated as required to incrementally index additional data that becomes
available as the RAG approach does not modify the LLM model parameters at all.

Figure 1 below shows the steps involved in indexing the data from the domain specific knowledge base
and the response generation augmented by retrieved contexts.

Figure 1 - RAG processing pipeline and architecture.

3.3. Comparing Fine-tuning and RAG

It should be noted that the two approaches presented above are not mutually exclusive. There could be
scenarios where using a fine-tuned LLM model with RAG is the more appropriate option. In fact, there
are several fine-tuned models available (usually prefixed with FLAN standing for fine-tuned-language-
models, like FLAN T5, FLAN-PaLM [flan-2021]) that can be used along with RAG. Fine-tuning attempts
to adapt or tweak the model by changing the model parameters, therefore what is learnt through the
supervised learning process is baked into the model, whereas RAG leaves the model parameters
untouched while attempting to provide better contexts. Because of this, some researchers tend to refer to
fine-tuning as changing the “long-term” memory of the model while RAG is akin to improving the
“short-term” memory of the model. The following table summarizes the main differences between the
two approaches that should be taken into consideration while comparing the fine-tuning versus the RAG
approach.

Presented and first published at SCTE TechExpo24 7

Table 1 - Comparison of RAG and Fine-tuning approaches to LLM optimization

 Fine-tuning RAG

Ability to adapt the model
to new use-cases and
unseen data

Yes Yes

Handling dynamic and
incremental data

More difficult Easy

Difficulty in curating
training data

Higher Lower

Reducing hallucinations Yes Yes

Latency in inference
generation

Normal Slightly higher due to
context generation

Cost of inference
generation

Normal Slightly higher due to
larger context

Transparency Less High

Technical expertise needed Higher Lower

4. Evaluating RAG Performance
Evaluating the performance of LLMs using objective measures has turned out to be a difficult task for
both researchers and practitioners deploying LLM based applications. It stems from the fact that semantic
understanding of text is highly subjective. However, there are several objective metrics developed by
natural language processing (NLP) community that can be used here. Another challenge with RAG/LLM
evaluation is understanding the performance impact of various parameters associated with operations such
as chunking, embedding, etc., in the indexing process and the parameters associated with the LLM in
generating the response. This problem is not unique to RAG or LLM, but similar problems exist in deep
neural networks where it is often difficult to pinpoint which hidden layer nodes heavily contribute to the
final classification or regression performance of these networks.

We have taken a two-step approach to evaluate RAG performance:

• End-to-end performance of response generation of LLM by comparing the responses with a
ground-truth reference response crafted by a human expert.

• Relevancy and efficacy of contexts generated by RAG semantic search from the vector database
index

4.1. End-to-end Performance Evaluation

For a meaningful end-to-end objective performance evaluation, the following are required:

Presented and first published at SCTE TechExpo24 8

• A set of input queries, preferably with some of the queries coming from the knowledge base
information that has been indexed and some of the queries from external sources.

• Reference (or expected) responses for each input query. Reference responses can be obtained
from an existing dataset, if available, manually crafted by an expert or generated automatically by
another LLM. Reference responses are also termed as “ground truth” in this document.

• One or more objective metrics to compare the reference response text with the actual generated
response text for each query.

We created a list of twenty-seven queries to study the end-to-end performance. As mentioned above a
subset of these questions originated from the indexed knowledge base, but many of the questions
originated from other sources like SCTE research papers and on-line FAQs related to DOCSIS® networks,
proactive network maintenance (PNM) and cable access architecture. For queries extracted from the
knowledge base, the reference responses were also derived from the knowledge base and in some cases as
summarized by a human expert. For queries that originated from external sources, the reference responses
were crafted by a human expert.

As an example, the following is a query and reference response used in our evaluation. All the queries
used in our evaluation are pertinent to DOCSIS networks, PNM or cable network architecture:

Query: What is Modulation Error Ratio and how is it used in DOCSIS cable networks?

Reference Response: Modulation error ratio (MER) measures signal power versus constellation
error magnitude. Constellation error magnitude encompasses all impairments that can degrade
the digital signal, not just white noise. MER measures the received symbol vector and calculates
the difference between it and the ideal signal vector. The power of the error vectors is averaged
over time and can be viewed.

We evaluated several objective measures from NLP literature in the initial phase of the evaluation for the
sake of completeness. The measures used are [lin-2004] [lavie-2005]:

• BLUE – a measure of precision
• ROUGE – a measure of recall
• METEOR – a measure that combines precision and recall
• Cosine Similarity – a measure that compares two vectors

We also had a human expert evaluate the responses and attach a subjective score based on how closely the
responses match with the references. Based on observations the BLUE and ROUGE metrics capture only
one aspect (either precision or recall) of the responses and therefore not very appropriate. Since the
METEOR metric combines both precision and recall, it represents a more balanced comparison of the
responses and references. While BLUE, ROUGE, and METEOR metrics are computed by comparing
words (or n-grams) in the responses against the references, the Cosine similarity maps the responses to a
multi-dimensional vector using an embedding and then compares the similarity to the references using
vector matching. Hence Cosine similarity is expected to capture more of the semantic meaning of the
sentences. It should be noted that the objective measures will vary slightly from run to run for the same
input queries as the responses generated by LLMs are not the same for successive runs. Depending on the
configuration of the hyperparameters of the LLM (like the temperature) there can be some amount of
variability in the generated responses on successive runs.

Figure 2 below shows the METEOR and Cosine Similarity computed for all the twenty-seven queries. As
it can be seen from the plot, these two metrics have a reasonable amount of correlation. Note that both

Presented and first published at SCTE TechExpo24 9

these metrics fall in the range of [0,1], so the Cosine similarity, in general, generates scores that are closer
to 1 compared to the METEOR score.

Figure 2 - METEOR and Cosine similarity computed for the 27 test queries

End-to-end performance evaluation is a useful tool to measure the performance of the whole system and
monitor the changes in performance over multiple product release cycles. The biggest drawback of this
end-to-end performance evaluation is the lack of transparency and visibility into the problems and
identifying areas that need to be improved.

There are a number of choices to be made and parameters to be selected in creating the vector index. For
example, creating the chunks from a set of long documents requires selection of an appropriate text
splitter and the chunk size. Embedding these chunks into the vector space requires the selection of an
embedding model. Finally, one needs to choose the number of chunks retrieved from the semantic search
to be included in the context for the LLM.

 In addition, there are a handful of parameters to be configured on the LLM such as the temperature,
top_k, and top_p to control the randomness of the output. Setting the temperature to a value of zero makes
the output more deterministic by forcing the LLM to pick the most probable next word or token, while
setting it to a large value allows the output to be more variable. Parameters max_new_tokens limit the
verbosity of the output and the repetition_penalty prevents the repetition of same words.

The lack of visibility and transparency of the end-to-end evaluation methodologies makes it difficult, if
not impossible, to judiciously choose the aforementioned parameters. In the next section, we will describe
certain metrics that are better suited for the selection of the parameters associated with vector indexing
and semantic search.

Presented and first published at SCTE TechExpo24 10

4.2. RAG Context Efficacy and Relevancy

Since the main component of RAG is the indexing of the domain-specific knowledge base and retrieving
the top matches from the index for a given query, it behooves to measure the relevancy of the retrieved
contexts for a given query and the efficacy of the contexts in the response generated by the LLM. Figure
below shows the use-case where for all each query used during evaluation there is a corresponding
expected response or ground truth. This expected response may come from an existing dataset, generated
by a human expert, or in some cases may have been generated by another LLM. As shown in Figure 3,
the end-to-end performance evaluation described in the previous section simply compares the ground-
truth and the actual response for each test query. On the other hand, evaluating context efficacy requires
comparing the retrieved contexts to the generated response, ground truth and in some cases with the query
itself as shown by the dotted arrows.

Figure 3 - RAG Evaluation system

Following is an example of a user query and the top two chunks retrieved from the vector store which are
then passed as context to the LLM along with the query and the resulting response generated by the LLM.
Frameworks presented below were used to evaluate relevancy the retrieved context chunks are to the
query, generated response and the expected response can be attributed to the context chunks.

Presented and first published at SCTE TechExpo24 11

Figure 4 - Sample query, top two retrieved contexts, and the responses generated by the

LLM

There are a few open-source and commercial tools available for evaluating the RAG pipeline. They all
use different, but somewhat similar metrics and in most cases use another LLM (mostly chat-gpt) in
generation of these metrics. A word of caution is that different frameworks use the same name for a
metric, but the underlying implementations are somewhat different; for example, the Answer Relevancy is
computed very differently in RAGAS compared to DeepEval. Therefore, for a successful evaluation of
the RAG pipeline, it is necessary to inspect the implementation details of the metrics generated by these
frameworks and to assess how relevant these metrics are for a given application. We evaluated the
following open-source tools:

• RAGAS
• Arthur Bench
• DeepEval

Precision and Recall metrics have been used to evaluate discrimination functions in statistical hypothesis
testing for several decades, where precision measures the accuracy of discrimination function (out of all
the generated positive hypotheses how many are truly positive) and the recall measures the completeness
(out of all the true positives in the ground truth how many were correctly flagged by the discrimination
function). The frameworks presented above use variants of the precision and recall metrics for the context
of RAG and LLMs. Some of the metrics from the RAGAS framework that we found informative are
listed below and note that all of this metrics are in the range of 0 to 1 with a value of 1 being the best:

• Context Precision: To compute this metric certain statements/claims are identified from the
ground truth and the retrieved chunks are evaluated to see if a given chunk is relevant to those
statements. This metric also incorporates the rank of the relevant chunks, i.e., the relevant chunks
should have a higher rank.

• Context Recall: Context recall is a metric that is computed using the ratio of the number of
statements (in the ground truth) that can be attributed to the context to the total number of
statements.

• Faithfulness: This is similar to the Context Recall, but the statements/claims are generated not
from the ground truth response but from the actual generated response.

Presented and first published at SCTE TechExpo24 12

• Answer Relevancy: This metric is an assessment of how relevant the generated response is to the
given prompt or query.

We used the metrics above to drive the appropriate selection of various attributes and parameters in the
RAG system, namely, text splitters, chunk size, embedding, number of chunks (Top-K) in the context,
etc. The following table shows the results for one of the parameters, Top-K, the number of chunks
retrieved from the vector database. In an ideal scenario, there will be one value of K that optimizes all the
metrics, but as can be seen from the table below that’s hard to achieve. Boxes highlighted in green
represent the largest (or close to the largest) values for each metric. That’s not totally surprising as in
classical statistics precisions and recall are divergent metrics and algorithms choose the best trade-off
between precision and recall. Based on the table below, it is easy conclude that a choice of top_K value of
4 or 5 is a reasonable choice.

Table 2 - RAGAS metrics computed for various Top-K chunks retrieved from the vector
datastore

Top-K Context precision Context recall Faithfulness Answer relevancy

2 0.83 0.94 0.58 0.78

3 1.00 0.83 0.67 0.92

4 1.00 1.00 0.96 0.93

5 0.99 1.00 0.95 0.94

We have used a similar evaluation methodology to make optimal choices for other parameters such as the
embedding model, chunk size for the RAG indexing and various other parameters associated with the
LLM.

5. Leveraging Dynamic Data
Discussions in the previous sections were mainly centered around indexing documents from a knowledge
base and using semantic vector search to create contexts to add to the queries dispatched to the LLM. This
approach can be used to build virtual assistants to enable “Conversational Interactions” as described in
Section 2. The ability to update information or documents indexed in the vector store at any time without
impacting the rest of the LLM pipeline is one of the major advantages of RAG. In practice, however, the
indexed information is only updated periodically or may not leverage other data collected from the
network devices in real-time or near real-time. Network operators collect diagnostic and operational data
from devices such as CMTSs, CMs, routers and switches; some of these data is collected using legacy
polling techniques such as SNMP whereas some devices support more recent model-based telemetry
using IEEE Yang Push or OpenConfig streaming telemetry. Relevant data may also be available from
third-party resources like outage reporting websites, weather sites, web search, etc.

LLM RAG approaches can be seamlessly augmented to leverage additional data not indexed in the vector
store. Frameworks such as LangChain use an interface called Retriever that is designed to return
documents for any unstructured query. Context chunks used in RAG are pulled from the vector store
using this Retriever interface. This same interface can be used to retrieve documents from other APIs and
supports building Custom Retrievers. Custom retrievers are essentially API endpoints that can access
additional data sources, perform necessary operations and return results in the form of documents. Any

Presented and first published at SCTE TechExpo24 13

required business logic can be implemented in these custom retrievers. Such implementations can support
the “Transactional Interactions” described in Section 2 of this paper.

LangChain can also be used integrate with a number of third-party retrieval services. A popular one is the
Tavily search API which is a search engine specifically optimized for LLMs and RAG provided efficient
and quick search results. Figure below shows the generalized use of the Retriever interface that can be
used with semantic search of vector DB, custom APIs that operate on the proprietary private data and/or
third-party APIs that operate on public data sources.

Figure 5 - Generalized Retriever approach to use custom and third-party APIs

To support user interactions with LLM to accomplish “Interactive Inferencing” described in Section 2
requires the use of agents or Agentic-RAG. A complete discussion of Agentic-RAG is beyond the scope
of this paper and hopefully will be addressed in the future. Agents are software components that can
perform more sophisticated analysis of the query to break down the problem into sub-components and can
be endowed with a plan formulation to solve problems associated with the query. Agents are also
equipped with a set of application-specific tools and can be trained to use the appropriate subset of tools
based on the query. Depending on the configuration, agents can use their short-term or long-term memory
not just to recall past queries but the results of interactions of the past queries.

6. Conclusion
“RAG systems are easy to build but are very difficult to master” – this was an online quote that the author
ran into couple of years ago and this is indeed true. While standing up a RAG system with a LLM is a
relatively easy task, gaining a deep understanding to optimize the system and to improve failure scenarios
is considerably more complex as discussed in this paper. Designers of these applications need to
painstakingly understand the trade-off associated with various choices in the building blocks of these
systems. “Drowning in data but gasping for insights” is true in many industries today. With the amount
of data collected by the broadband communication providers increasing by an order of magnitude in the
last few years, leveraging machine learning and AI is indispensable to extract insights from this trove of

Presented and first published at SCTE TechExpo24 14

data. Interpreting data associated with capacity planning, proactive network maintenance, and network
optimization and drawing meaningful conclusions are still tasks that can be performed only by a few
experts in most organizations. Incorporating AI agents that can perform interactive inferencing into the
workflow can immensely help in broadening that expertise to a larger pool of engineering and operations
talent.

Presented and first published at SCTE TechExpo24 15

Abbreviations
BLUE Bilingual Evaluation Understudy
CoT Chain-of-thought
FLAN Finetuned LAnguage Net
GPU Graphics Processing Unit
LLM Large Language Model
MER Modulation Error Ratio
METEOR Metric for Evaluation of Translation with Explicit ORdering
NLP Natural Language Processing
PNM Proactive Network Maintenance
RAG Retrieval Augmented Generation
ROUGE Recall-Oriented Understudy for Gisting Evaluation

Bibliography & References
[ulm-2019] “Traffic Engineering in a Fiber Deep Gigabit World”,
https://www.nctatechnicalpapers.com/Paper/2017/2017-traffic-engineering-in-a-fiber-deep-gigabit-world
[volpe-2021] “Machine Learning and Proactive Network Maintenance: Transforming Today's Plant
Operations”, https://www.nctatechnicalpapers.com/Paper/2021/2021-machine-learning-and-proactive-
network-maintenance-transforming-today-s-plant-operations
[righetti-2023] “Machine Learning Model for Customer Claim Prediction in HFC Subscribers”,
https://www.nctatechnicalpapers.com/Paper/2023/3578_Righetti_5242_paper
[vaswani-2017] “Attention is all you need”, https://arxiv.org/abs/1706.03762
[meta-llama3] “Introducing Meta Llama 3: The most capable openly available LLM to date”,
https://ai.meta.com/blog/meta-llama-3/
[wei-2022] “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”,
https://arxiv.org/abs/2201.11903.
[chung-2022] “Scaling Instruction-Finetuned Language Models”, https://arxiv.org/abs/2210.11416
[flan-2021] “Finetuned Language Models Are Zero-Shot Learners”, https://arxiv.org/abs/2109.01652
[lin-2004] “ROUGE: A Package for Automatic Evaluation of Summaries”,
https://aclanthology.org/W04-1013.pdf
[lavie-2005] “Automatic Machine Translation Evaluation System”,
https://www.cs.cmu.edu/~alavie/METEOR/

https://www.nctatechnicalpapers.com/Paper/2017/2017-traffic-engineering-in-a-fiber-deep-gigabit-world
https://www.nctatechnicalpapers.com/Paper/2021/2021-machine-learning-and-proactive-network-maintenance-transforming-today-s-plant-operations
https://www.nctatechnicalpapers.com/Paper/2021/2021-machine-learning-and-proactive-network-maintenance-transforming-today-s-plant-operations
https://www.nctatechnicalpapers.com/Paper/2021/2021-machine-learning-and-proactive-network-maintenance-transforming-today-s-plant-operations
https://www.nctatechnicalpapers.com/Paper/2021/2021-machine-learning-and-proactive-network-maintenance-transforming-today-s-plant-operations
https://www.nctatechnicalpapers.com/Paper/2023/3578_Righetti_5242_paper
https://www.nctatechnicalpapers.com/Paper/2023/3578_Righetti_5242_paper
https://arxiv.org/abs/1706.03762
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2109.01652
https://aclanthology.org/W04-1013.pdf
https://www.cs.cmu.edu/%7Ealavie/METEOR/

	1. Introduction
	2. Interactive LLM Applications
	3. LLM Performance Improvement Techniques
	3.1. Fine-tuning
	3.2. Retrieval Augmented Generation (RAG)
	3.3. Comparing Fine-tuning and RAG

	4. Evaluating RAG Performance
	4.1. End-to-end Performance Evaluation
	4.2. RAG Context Efficacy and Relevancy

	5. Leveraging Dynamic Data
	6. Conclusion
	Abbreviations
	Bibliography & References

