
   

Presented and first published at SCTE TechExpo24  1 

Predictive Framework for Enhanced Wireline Network 
Reliability 

Unveiling Anomalies and Streamlining Maintenance 

 
A technical paper prepared for presentation at SCTE TechExpo24 

 
 

Madiha Sahar 
Sr. Data Scientist 

Rogers Telecommunications 
Madiha.sahar@rci.rogers.ca 

 
Ray Stevens 

Manager Service Reliability Engineering 
Rogers Telecommunications 
ray.stevens@rci.rogers.com 

 
Jenny Panman 

Manager Wireline Data Science 
Rogers Telecommunications 

evgenia.panman@rci.rogers.com 
 

Vikram Karwal 
Sr. Data Scientist 

Rogers Telecommunications 
vikram.karwal@rci.rogers.com 

 
Anna Korchatov 
Sr. Data Scientist 

Rogers Telecommunications 
anna.korchatov@rci.rogers.com 

 
Peter Theodorakidis 

Sr. Cable Access Network Specialist 
Rogers Telecommunications 

panagiotis.theodorakidis@rci.rogers.com 
 

Davy Ma 
Sr. Data Scientist 

Rogers Telecommunications 
davy.ma@rci.rogers.com 

 
 



 

©2024, SCTE® CableLabs® and NCTA. All rights reserved. 2 

Courtney Lovell 
Sr. Network Quality Specialist 
Rogers Telecommunications 

courtney.lovell@rci.rogers.com 
 

Mahmood Mohiuddin 
 Network Quality Specialist 

Rogers Telecommunications 
mahmood.mohiuddin@rci.rogers.com 

 
 



 

©2024, SCTE® CableLabs® and NCTA. All rights reserved. 3 

Table of Contents 
Title Page Number 

1. Introduction .......................................................................................................................................... 4 
2. Literature Review ................................................................................................................................ 7 

2.1. Predictive Analytics in Satellite Telecommunications ............................................................ 7 
2.2. Scheduling Policies in Real-Time Systems ............................................................................ 7 
2.3. Outlier Detection Methods ...................................................................................................... 8 
2.4. Anomaly Detection in Mobile Networks ................................................................................. 8 
2.5. Conclusion .............................................................................................................................. 9 

3. Methodology ........................................................................................................................................ 9 
3.1. Threshold Analysis ............................................................................................................... 10 
3.2. Anomaly Classification ......................................................................................................... 12 
3.3. Node Health Prediction ........................................................................................................ 13 

The functional state of network components is assessed using two key references: ....................... 13 
4. Implementation .................................................................................................................................. 15 
5. Conclusion ......................................................................................................................................... 16 

Abbreviations .............................................................................................................................................. 18 
Bibliography & References.......................................................................................................................... 19 

 
List of Figures 

Title Page Number 
Figure 1- Proposed Framework for Enhanced Network Reliability ............................................................. 10 
Figure 2 & 3- Network Segments DBSCAN (left) Network Segments Spectral Clustering (right) .............. 11 
Figure 4 - Threshold for Rx ......................................................................................................................... 12 
Figure 5: Process Design and Implementation ........................................................................................... 16 
 

List of Tables 
Title Page Number 
Table 1 - Physical Components of Network .................................................................................................. 4 
Table 2 - Environmental Components of Access Network ........................................................................... 7 
Table 3 - KPI Importance ............................................................................................................................ 13 

  



 

©2024, SCTE® CableLabs® and NCTA. All rights reserved. 4 

1. Introduction 
In today’s sophisticated wireline network infrastructures, the Cable Modem Termination System (CMTS) 
interfaces with customer homes through an intricate array of branching connections, establishing distinct 
pathways for each subscriber. This setup not only facilitates individualized connections but also 
constitutes a comprehensive map of the access network. This map delineates key network elements 
including ports, media access control (MAC) domains, and critical components such as amplifiers and 
splitters, all of which play essential roles in managing the link between the gateway modem and the 
CMTS. 

At the heart of this connectivity is the node, a pivotal aggregation point strategically located based on 
geographic considerations. Each node typically services a varying number of devices, making it an 
optimal point to measure quality of service (QoS) of the access network. 

QoS is a critical measure used to evaluate and ensure the reliability and efficiency of these network 
connections. It encompasses various metrics such as network latency, availability, bandwidth, jitter, and 
packet loss, which collectively determine the network’s ability to deliver a consistent and high-quality 
user experience. Measuring QoS at the node level is crucial for identifying and addressing area-specific 
issues within the access network. By focusing on nodes, network operators can differentiate between 
widespread, location-specific problems and individual customer issues.  

This targeted measurement and analysis not only help maintain a responsive, reliable, and accessible 
network for all users but also assist service technicians in pinpointing and isolating root causes of network 
problems. By identifying issues at the node level, technicians can more effectively plan and execute 
targeted interventions, addressing network-wide problems more efficiently and minimizing disruptions 
for individual customers. 

To effectively manage and troubleshoot network performance, it's essential to understand the roles of key 
physical network components and the potential issues that can impact QoS. Additionally, environmental 
factors can significantly influence network performance. 

Table 1 below lists some of the physical components of network that can directly impact QoS.  

      Table 1 - Physical Components of Network 

Distribution Access Transmission Customer Premises 

Digital Subscriber Line 
Access Multiplexer 
(DSLAM), fibre to the 
node (FTTN), fibre to the 
curb (FTTC) 

Remote Terminal Amplifiers Modems 

Optical Line Terminal 
(OLT) 

Street Cabinets Repeaters Routers 

Uplink & Downlink 
Cards, Chasis 

Media Access Point 
Controllers 

Transceivers Drops 
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Each one of these components may have different issues that could impact the customer, with each 
outline below: 

• Digital Subscriber Line Access Multiplexer (DSLAM): Aggregates multiple DSL connections.  

Issues: Failures or misconfigurations can cause slow speeds and connectivity problems by 
inefficiently managing bandwidth. 

• Fiber to the Node (FTTN) / Fiber to the Curb (FTTC): Brings fiber closer to subscribers for better 
performance.  

Issues: Fiber breakage or degradation can reduce bandwidth and increase latency, impacting 
overall speed. 

• Remote Terminal: Extends network reach.  

Issues: Failures can disrupt connectivity and cause inconsistent service for users connected 
through that terminal. 

• Optical Line Terminal (OLT): Manages the interface between fiber networks and local networks.  

Issues: Hardware or software problems can lead to connectivity issues and decreased data 
throughput. 

• Amplifiers: Boost signal strength to extend coverage.  

Issues: Faulty amplifiers can cause signal degradation and noise, leading to poor connectivity and 
reduced speeds. 

• Repeaters: Regenerate and boost signals.  

Issues: Malfunctions can result in signal loss or attenuation, affecting connectivity over long 
distances. 

• Transceivers: Facilitate data transmission and reception.  

Issues: Problems with transceivers can lead to packet loss and increased latency. 

• Street Cabinets: House essential network equipment.  

Issues: Power failures, overheating, or physical damage can disrupt equipment functionality and 
cause localized service interruptions. 

• Modems: Provide connectivity between the network and customer devices.  
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Issues: Faulty modems can lead to slow speeds, frequent disconnections, and poor service 
quality. 

• Routers: Manage data flow and network traffic.  

Issues: Configuration errors or hardware failures can result in routing problems and network 
congestion. 

• Drops: Connect the network to customer premises.  

Issues: Physical damage or poor connections can lead to unreliable service and connectivity 
issues. 

• Uplink & Downlink Cards, Chassis: Support data transmission between network components.  

Issues: Failures or issues with these cards can disrupt data flow and network efficiency. 

• Media Access Point Controllers: Manage and coordinate network traffic.  

Issues: Problems can lead to traffic congestion and reduced network performance. 

Additionally environmental factors may impact network performance, each of these is listed in Table 2 
below. 

• Radio Frequency Interference (RFI) 

Issues: External radio frequency signals can interfere with network equipment, causing data 
transmission errors and reduced performance. 

• Electromagnetic Interference (EMI) 

Issues: Electromagnetic fields from nearby electronic devices can disrupt network signals, 
leading to connectivity issues and degraded service quality. 

• Power Supply Stability 

Issues: Fluctuations or failures in power supply can affect network equipment reliability, leading 
to outages or degraded performance. 

• Infrastructure Accessibility  

Issues: Limited access to network infrastructure for maintenance or repairs can delay issue 
resolution and impact overall network performance. 

• Temperature, Precipitation, Storms 

Issues: Extreme weather conditions can damage physical network components, affect signal 
quality, and lead to service interruptions. 
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Table 2 - Environmental Components of Access Network  

   

Radio Frequency 
Interference (RFI) 

Electromagnetic 
Interference (EMI) 

Power Supply 
Stability 

Infrastructure 
Accessibility 

Temperature, 
Precipitation, 
Storms 

 

This study aims to advance proactive network management by developing a comprehensive tool for 
monitoring both upstream and downstream channels. Central to this effort is the creation of a predictive 
model that defines and forecasts the health of Access Networks. Emphasizing the impact on user 
experience and connectivity issues, the model assesses the likelihood of node failures, categorized as Red, 
Yellow, and Green. By integrating these capabilities, telecommunications providers can enhance network 
reliability and optimize maintenance strategies, ensuring robust service delivery to end-users. 

The framework's primary objective is to assess the likelihood of node degradation before failure, 
empowering proactive network response teams with alerts of potential network disruptions. The 
framework also equips field technicians with the information derived from access layer metrics to devise 
actionable strategies toward resolution, facilitating efficient network management. 

2. Literature Review 
In the evolving landscape of network management, ensuring high QoS and effective prioritization remains 
critical for optimizing performance and user experience. Recent advancements in technology and 
methodologies have introduced innovative approaches to address these challenges. This literature review 
examines key contributions to the field of QoS and prioritization, focusing on studies that propose 
solutions for managing network performance and resource allocation. By exploring these approaches, we 
gain insights into how modern techniques can enhance network reliability and address issues related to 
traffic management. 

2.1. Predictive Analytics in Satellite Telecommunications 

Ochuba et al. (2024) provide an in-depth review of predictive analytics techniques for satellite 
telecommunications infrastructure, emphasizing the use of statistical modeling, machine learning 
algorithms, and big data tools. Their work underscores the importance of integrating predictive analytics 
into Proactive Network Maintenance (PNM) to forecast equipment failures and optimize maintenance 
schedules. This approach aligns with the PNM perspective by aiming to pre-emptively address potential 
disruptions, thus enhancing network reliability and performance. However, the review lacks a 
comparative analysis of different predictive techniques, practical integration challenges, and scalability 
considerations for diverse satellite systems. Future research could benefit from exploring real-world 
implementations and integration strategies, as well as addressing scalability and practical application 
across various satellite environments. 

 

2.2. Scheduling Policies in Real-Time Systems 

Kargahi and Movaghar (2006) analyze the Earliest-Deadline-First (EDF) scheduling policy, focusing on 
optimizing real-time task management based on deadlines. This policy enhances system responsiveness 
and reduces missed deadlines, contributing to effective network performance management. While EDF's 
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theoretical advantages are well-documented, the study does not compare EDF with other scheduling 
policies or address practical implementation challenges. Additionally, scalability in complex or large 
systems is not discussed. Incorporating comparative analyses with alternative scheduling policies and 
exploring real-world case studies could offer deeper insights into EDF's practical applicability and 
performance. 

2.3. Outlier Detection Methods 

Ren et al. (2004) present Relative Density Factor (RDF), a density-based outlier detection method that 
utilizes vertical data representation. This method aims to detect anomalies by analyzing the density of 
data points, which is crucial for maintaining network performance through early detection of 
irregularities. The paper, however, lacks a comparative analysis with other outlier detection techniques, 
and there is limited discussion on scalability and real-world applications. Future research should address 
these gaps to better evaluate RDF's effectiveness and practical implementation in various contexts. 

Wang et al. (2009) introduce a distance-based outlier detection method for uncertain data, which is vital 
for handling anomalies in datasets with inherent uncertainty. While innovative, the study does not 
compare this method with other techniques for uncertain data, nor does it discuss performance metrics 
and scalability. Exploring these aspects could enhance the understanding of the method’s effectiveness in 
diverse scenarios. 

Radovanović et al. (2015) explore the use of reverse nearest neighbors (RNN) in unsupervised distance-
based outlier detection. This method improves anomaly detection accuracy by analyzing neighborhood 
relationships. The study lacks a comparative analysis with other distance-based methods and does not 
address scalability or practical applications. Including these elements would provide a more 
comprehensive evaluation of RNN’s effectiveness in various network contexts. 

Kriegel et al. (2012) focus on outlier detection in arbitrarily oriented subspaces, dealing with high-
dimensional data. The method's contribution to network performance management is significant, yet it 
lacks detailed comparisons with other subspace-based methods and scalability considerations. Practical 
validation is also missing. Addressing these gaps could offer a more robust assessment of this approach. 

Zimek et al. (2012) survey unsupervised outlier detection techniques for high-dimensional data. While the 
survey is extensive, it lacks a detailed comparative evaluation and real-world application examples. 
Discussing emerging trends could provide additional insights into the current state and future directions 
of outlier detection methods. 

2.4. Anomaly Detection in Mobile Networks 

Gajic et al. (2015) propose an improved anomaly detection method using incremental time-aware 
clustering. This approach enhances traditional clustering by incorporating temporal patterns, which is 
critical for maintaining network performance and addressing anomalies proactively. Despite its 
innovation, the paper does not compare this method with other techniques and lacks scalability and real-
world validation discussions. Future research should address these aspects to provide a more 
comprehensive evaluation of the method’s effectiveness. 

Hadj-Kacem et al. (2020) focus on anomaly prediction in mobile networks, employing a data-driven 
approach to select suitable machine learning algorithms. This aligns with the prediction perspective by 
aiming to improve prediction accuracy. However, the study lacks a comparative analysis of different 
algorithms, practical implementation challenges, and detailed performance metrics. Addressing these 
elements could enhance the applicability and effectiveness of the proposed approach. 
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2.5. Conclusion 

The reviewed literature provides significant insights into predictive analytics, scheduling policies, and 
anomaly detection methods, each contributing to PNM and predictive strategies. However, common gaps 
such as the need for comparative analyses, scalability considerations, and real-world validation are 
evident. Addressing these gaps in future research can enhance the practical applicability and effectiveness 
of these methods, leading to more robust and reliable network management solutions. 

3. Methodology 
In the dynamic realm of telecommunications, effectively managing network performance demands 
advanced tools capable of navigating the complexity and rapid evolution of modern networks. Our 
methodology responds to this need by leveraging a tool designed for near real-time data analysis, enabling 
precise insights and enhanced network efficiency through sophisticated analytics. This tool is adeptly 
engineered to handle the substantial volume and velocity of data, generating actionable results every three 
hours. 

To address gaps identified in existing research, our approach integrates a comparative analysis of various 
unsupervised machine learning algorithms, focusing on density-based and decision-based methods for 
network classification. While literature highlights theoretical frameworks and algorithmic innovations, 
practical implementations often face limitations, including discrepancies between theoretical benchmarks 
and actual operational thresholds. Our methodology bridges this gap by establishing operational key 
performance indicators (KPI) benchmarks tailored to real-world conditions, taking into account the 
physical and environmental factors that influence network performance. 

The framework we propose is structured around four key components as presented in Figure 1: 

a. Threshold Analysis: Develops operational benchmarks based on observed performance trends, 
moving beyond theoretical models to accommodate the practical nuances of network segments. 

b. Anomaly Classification: Employs advanced techniques to detect and categorize anomalies, 
providing insight into deviations from expected performance and their potential impacts. 

c. Node Health Prediction: Utilizes predictive modeling to forecast the future state of network 
nodes, prioritizing maintenance efforts based on anticipated needs. 

d. Priority Assessment: Optimizes resource allocation and maintenance scheduling by evaluating 
predictive insights and ensuring timely responses to potential disruptions. 

By capturing both temporal and spatial data, the framework addresses the continuous evolution of 
networks, treating them as dynamic systems requiring ongoing monitoring and maintenance. This 
approach not only enhances network reliability but also ensures that maintenance strategies are informed 
by real-time data and predictive insights, thereby overcoming limitations highlighted in previous research 
and advancing the state of network management. 
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Figure 1- Proposed Framework for Enhanced Network Reliability 

                           

3.1. Threshold Analysis  

Access network connectivity is best assessed through key telemetries such as Signal-to-Noise Ratio 
(SNR), Receive Power (Rx), Transmit Power (Tx), Modulation Error Rate (MER), and Packet Error Rate 
(PER). However, the dynamic, nonlinear, and non-stationary nature of this data, compounded by its 
dependence on physical, seasonal, and environmental factors, poses significant challenges to prediction 
accuracy. Traditional approaches often rely on aggregated data, which can create blind spots, particularly 
in extreme scenarios or when observed over brief periods. To overcome these limitations, our framework 
employs a benchmark solution that enhances the accuracy and reliability of network performance 
assessment. 

Existing research, including studies on PNM and QoS, frequently highlights discrepancies between 
theoretical KPI criteria and actual network performance. For instance, while Cable Labs provide specific 
criteria for KPIs such as pass, marginal pass, and fail, real-world data often reveals that network segments 
may function satisfactorily even when individual KPIs fail to meet these documented thresholds. This 
indicates a critical gap where theoretical models do not fully capture the practical operational state of the 
network. The physical components of the network significantly influence performance, with observed 
values frequently deviating from prescribed ranges 

To address these challenges, our framework incorporates a robust benchmark solution by evaluating 
network performance through a detailed analysis of pass, marginal pass, and fail criteria over extended 
periods. This approach ensures the integrity of the information relayed by the data and mitigates the 
limitations associated with traditional threshold-based evaluations. 

a. Network Segmentation: The framework begins by performing a similarity analysis of the network 
to identify distinct segments using unsupervised clustering algorithms such as Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) and Spectral Clustering. The similarity 
analysis is performed using Euclidean distance represented in Eq 1 which measures absolute 
distance and sensitive to scale and magnitude.  Other approach used is Cosine Similarity 
measures as shown in Eq 2 which captures directional similarity. It was found that cosine 
similarity resulted in better separation in clusters due to the high variance and dimensionality of 
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data.  This segmentation helps in managing and analyzing network data more effectively as 
presented in Figure 2 and 3.  

Euclidean Distance Calculation: 

                                                                      𝑑𝑑�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = ∑𝑘𝑘 = ln�𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑗𝑗𝑖𝑖�
2                                (1)  

Cosine Similarity Calculation:  

   �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = ‖𝑣𝑣𝑖𝑖‖�𝑣𝑣𝑗𝑗�𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗                                                 (2) 

 

b. Threshold Analysis: It involves both inter-cluster and intra-cluster examinations to determine the 
optimal number of network segments with significant distinctions. This analysis employs extreme 
value analysis and advanced outlier detection algorithms to refine the thresholds for each KPI. 
Techniques such as Isolation Forest, Local Outlier Factor (LOF), and One-Class Support Vector 
Machines (OC-SVM) are utilized to identify and handle anomalies effectively. 

 

 
Figure 2 & 3- Network Segments DBSCAN (left) Network Segments Spectral Clustering 

(right) 

 In the initial phase of threshold analysis, a modified density-based unsupervised clustering algorithm is 
employed to account for the temporal and spatial dynamics of network data. This method reveals five 
distinct clusters, each large enough to be considered as individual network segments. Among these, one 
cluster is notably denser and is designated as the "standard cluster." This standard cluster can either be 
further subdivided into more specific sub-clusters using hierarchical clustering techniques or be treated as 
a representative model of the network's "healthy" state, indicating optimal performance. 

To enhance the precision of performance assessment, the framework establishes two key benchmarks for 
defining a 'healthy' state. The primary benchmark involves identifying the standard cluster as a proxy for 
optimal network conditions. The secondary benchmark is a representative vector for each segment, 
calculated as a sixty-day rolling median of each KPI. This approach allows for a comparative analysis of 
segment performance over time, helping to identify and address chronic underperformance by 
highlighting deviations from the historical performance norms. 

Additionally, cluster profiling techniques and machine learning algorithms, such as Random Forest and 
Support Vector Machines (SVMs), are used to compute precise thresholds for each cluster. These 
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thresholds are crucial for evaluating network performance against established criteria, ensuring a robust 
and dynamic assessment process. 

Receive power (Rx) which is one of the QoS KPIs is one of the key components of the analysis. Figure 4 
displays the passing thresholds for Rx computed for above mentioned 5 network segments in green and 
red represents theoretical thresholds provided.   

                             
Figure 4 - Threshold for Rx 

3.2. Anomaly Classification 

In the anomaly classification phase, the framework applies previously computed thresholds to evaluate 
network performance at a granular level. Instead of aggregating KPI data, this model assesses how 
frequently each KPI measurement falls outside the predefined passing range. This approach offers a 
precise view of network health, quantifying the number of instances where each KPI is classified as a pass 
or fail. 

a. Each node is evaluated based on whether its KPI measurements meet the pass, marginal pass, or 
fail criteria. This model tracks the frequency of deviations from the acceptable range for each 
KPI, ensuring that performance assessment reflects true operational conditions. 

b. The resulting data presents a detailed performance profile of the network, showcasing the 
frequency of pass versus fail occurrences for each KPI. This profiling provides insight into the 
distribution and severity of performance issues across different network segments. 

c. To further analyze the KPI data, distance-based clustering algorithms such as K-Nearest 
Neighbors (KNN), DBSCAN, and ordering points to identify the clustering structure (OPTICS) 
are utilized. These algorithms identify patterns and correlations among KPIs by evaluating the 
proximity of KPI values. 

KNN: Classifies or clusters data based on the distance between points, highlighting network 
segments with similar performance characteristics. 

DBSCAN: Detects clusters based on density, identifying areas of similar KPI performance and 
potential outliers. 

OPTICS: Handles varying densities to uncover clusters with different characteristics, providing a 
detailed view of KPI performance. 
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d. Dimensionality Reduction and Key KPI Identification: Techniques such as Principal Component 
Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) are employed to 
identify the key contributing KPIs. PCA reduces dimensionality and reveals the most significant 
KPIs that explain variance in the data, while t-SNE visualizes high-dimensional KPI data in lower 
dimensions, facilitating the identification of patterns and important features. 
 

e. Feature Selection with Least Absolute Shrinkage and Selection Operator (LASSO) Regression: 
LASSO regression is used to calculate the coefficients of each KPI as shown in Table 3. This 
regression technique applies a penalty to the size of coefficients, effectively selecting the most 
relevant KPIs by shrinking less important ones to zero. The resulting coefficients are used as 
weights in further analysis, ensuring that the most influential KPIs are prioritized. 
 

f. Root Cause Analysis and Troubleshooting: The insights from clustering, dimensionality 
reduction, and feature selection are integrated to enhance root cause analysis. By understanding 
KPI correlations and identifying key performance indicators, onsite technicians can more 
accurately diagnose performance issues. This targeted approach streamlines troubleshooting, 
improves diagnostic accuracy, and enhances overall network maintenance efficiency. 

This comprehensive methodology not only provides a detailed assessment of network performance but 
also ensures that the analysis is based on the most relevant and impactful KPIs. By combining threshold 
evaluation, clustering, dimensionality reduction, and regression analysis, the framework delivers a robust 
solution for proactive network management and optimization. 

   Table 3 - KPI Importance 

KPI Name Feature Weight 

User Experience (Video) 3.5 

Accessibility  2.6 

Customer Interaction 5.2 

QoS KPI 3.1 
                                                                                         

3.3. Node Health Prediction 

To achieve accurate and actionable node health predictions in dynamic telecommunications networks, this 
framework integrates detailed methodologies and advanced algorithms. Here’s a technical overview: 

The functional state of network components is assessed using two key references: 

a. Reference 1: Anomaly classification results, which categorize each network component's 
performance based on detected deviations from normal operation. 

b. Reference 2: A 60-day rolling median of each KPI, providing a historical baseline for normal 
performance under the assumption that the network is predominantly functional. 

The system performs a comparative analysis by evaluating the current KPI measurements against those 
from previous hours. This involves calculating the deviation of current measurements from historical 
baselines using statistical methods such as z-scores or Mahalanobis distance. 
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Short-Term Forecasting: Predictive models generate forecasts for the next three hours based on observed 
trends and deviations. This is achieved through time-series forecasting techniques, such as Autoregressive 
Integrated Moving Average (ARIMA) or exponential smoothing, tailored to capture the network's rapid 
fluctuations. 

In predictive modeling, Gradient Boosting Machines (XGBoost) is utilized for anomaly classification. 
XGBoost processes high-dimensional KPI vectors to classify anomalies. It employs decision trees with 
gradient boosting, optimizing the loss function to improve prediction accuracy. XGBoost evaluates 
feature importance through gain metrics, assessing each KPI’s contribution to anomaly detection. 

Graph Neural Networks (GNNs) were implemented to model the spatial relationships between nodes. 
GNNs aggregate information from neighboring nodes to predict future states, using node embeddings and 
message-passing techniques to capture complex dependencies and network topology. This approach 
enables the prediction of node degradation and potential failures based on graph-based analysis. 

The framework includes mechanisms for periodic re-evaluation and retraining of the models to adapt to 
changing network conditions. This involves recalibrating XGBoost models and updating GNN parameters 
using recent data batches, ensuring the models reflect current network dynamics and maintain prediction 
accuracy. 

For adaptive learning, techniques such as online learning or incremental training are employed to 
continuously integrate new data, allowing the models to learn from recent trends and anomalies without 
requiring complete retraining from scratch. 

By incorporating these detailed methodologies, the framework provides a robust solution for predicting 
node health. It effectively captures the dynamic nature of network performance through advanced 
statistical analysis, predictive modeling, and continual model refinement. This approach ensures accurate, 
short-term forecasts and facilitates proactive network management. In this framework determining the 
priority of network segments for intervention involves a sophisticated analysis of the predicted state of 
nodes. This section outlines the approach and technical details used to prioritize maintenance tasks 
effectively. 

The predicted state of nodes, derived from the Gradient Boosting Machines (XGBoost) and Graph Neural 
Networks (GNNs), provides a forecast of potential degradation and future anomalies. This prediction is 
critical for evaluating which segments are at risk and require immediate attention. To rank network 
segments based on their predicted state, a One-Class SVM algorithm is employed. This algorithm is 
particularly effective for anomaly detection in high-dimensional spaces. It defines a boundary around 
normal data points and identifies deviations as outliers. For our application: 

The SVM is trained on historical KPI data to establish a boundary of normal operational states for each 
network segment. 

Using the predicted states, the One-Class SVM computes the anomaly scores for each segment. These 
scores reflect how much a segment deviates from normal behavior, thus determining its priority for 
maintenance. 

The assessment process incorporates various factors influencing network development and growth. This 
includes: 

a. Active Factors: Current network conditions, recent changes, and ongoing issues. 
b. Planned Factors: Upcoming network expansions, scheduled upgrades, and anticipated changes in 

traffic patterns. 
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c. Impact Size and Resolution: The framework evaluates the size of potential impacts and the 
complexity of required resolutions. Segments with higher impact potential and complex 
resolution needs are prioritized higher. 

By leveraging the One-Class SVM for anomaly-based ranking and considering both current and predicted 
states of the network, the framework provides a robust method for prioritizing maintenance tasks. This 
approach ensures that network segments most in need of intervention are addressed efficiently, enhancing 
overall network reliability and performance. 

a. Dynamic Allocation: Based on the SVM-derived rankings, maintenance service technicians 
receive prioritized lists of network segments. This ensures that critical issues are addressed 
promptly, optimizing resource allocation and minimizing downtime. 

b. Continuous Adjustment: The priority list is updated regularly, reflecting the latest predictions and 
network conditions. This allows for adaptive maintenance strategies that align with the network's 
evolving state and operational demands. 

4. Implementation  
Implementation Key Success Points: 

a. Near real time data collection and processing 
b. High granularity of the data used for analysis (15-minute interval) 
c. End-to-end cloud-based solution allows scalability, powerful compute, data accessibility and use 

of innovative technologies. 
d. Multiple updates during a day with most recent outcomes. 
e. The model provides a practical base to cross-business functionality improvement. 

Effective documentation and adherence to industry best practices are critical for managing complex data 
processing and machine learning systems. The framework’s documentation encompasses detailed records 
of ETL workflows, including data extraction, transformation, and loading procedures. Comprehensive 
logs of machine learning model parameters, including hyperparameters, training epochs, and learning 
rates are maintained. Implemented data lineage track to document the flow and transformation of data 
across ETL processes. 

k-fold cross-validation, where 𝑘𝑘 = 10, is used within the process to assess model performance. This 
involves splitting the dataset into 10 subsets, training the model 10 times with different training sets, and 
evaluating its performance on each subset. Metrics such as precision, recall, and F1-score should be 
monitored. For instance, aim for a precision of 0.90 and a recall of 0.85. Integration of techniques to 
monitor and detect model drift regularly by comparing recent model predictions against historical 
performance metrics to adapt models as necessary. 

Using these insights and evolving requirements, a feedback loop is established to review the system 
performance and user feedback regularly. Structured approach to feature updates and model refinements 
to ensure continuous enhancement of system performance. 

Once the model training for anomaly classification and network segment identification for thresholding is 
performed, the inferencing is run on the Cloud using optimized techniques and dedicated resources. The 
final outcomes of this model are presented as a dashboard to be utilized across various departments. 
Constant feedback is collected and integrated in the system to improve its intelligence. 

For data quality assurance, scripts to detect data anomalies and inconsistencies are performed at each step. 
When established thresholds for acceptable data quality are violated it triggers a warming or process fails 
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depending on the nature of the alert. These automated alerts for critical issues like data pipeline failures or 
high resource utilization ensure immediate action can be taken and to resolve bottle necks. 

 

 

 

 

 

 

 

  

                                           

 

Figure 5 provides a clear flow of end-to-end implementation and deployment of the framework 
highlighting some of the technologies and tools utilized.  

5. Conclusion 
The innovative framework and advanced methodologies introduced in this paper represent a significant 
leap forward in network management and maintenance. By addressing critical gaps in traditional 
approaches, this solution empowers network operators to effectively tackle the complexities of modern 
telecommunications infrastructures. The proof of concept (POC) run with network operators and 
maintenance proved the model accuracy to be 80%. 

One of the major strengths of this framework is its ability to expedite troubleshooting and fault resolution, 
which is essential during peak periods of network usage. Through informed segmentation and dynamic 
load balancing, the framework optimizes node performance and ensures that resources are allocated 
equitably. This leads to enhanced overall network efficiency and effectiveness, addressing a key 
challenge identified in current research—ensuring consistent performance amidst varying traffic patterns 
and operational demands. 

The framework's emphasis on early prediction of potential network failures enables pre-emptive 
interventions, effectively mitigating service disruptions and improving reliability. This proactive approach 
goes beyond conventional reactive strategies, enhancing customer satisfaction by minimizing unexpected 
outages and maintaining seamless connectivity. 

Moreover, the detailed fault classification across different time intervals provides actionable insights that 
are crucial for informed decision-making. These insights guide strategic network policies and 
infrastructure investments, promoting operational resilience and ensuring that network assets are utilized 
optimally. By addressing the limitations of theoretical benchmarks and integrating real-world data, the 
framework establishes robust operational thresholds and eliminates blind spots that have previously 
hindered performance assessments. 

Figure 5: Process Design and 
Implementation 
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The integration of advanced techniques, such as Gradient Boosting Machines (XGBoost), Graph Neural 
Networks (GNNs), and One-Class Support Vector Machines (SVMs), accelerates root cause analysis, 
swiftly identifying and resolving underlying issues. This reduces downtime and operational costs, setting 
a new standard for proactive, data-driven network maintenance. 

In summary, this groundbreaking methodology redefines traditional reactive management practices by 
introducing a comprehensive, predictive approach to network maintenance. By transforming how network 
performance is monitored and managed, the framework not only enhances network resilience and 
performance but also establishes a new benchmark for proactive maintenance strategies. It provides 
network operators with the tools needed to continuously improve service delivery, optimize customer 
experience, and adapt to the dynamic nature of modern network environments. 
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Abbreviations 
 

AP access point 
bps bits per second 
CMTS Cable Modem Termination System 
DSLAM Digital Subscriber Line Access Multiplexer 
DBSCAN forward error correction 
EDF earliest-deadline-first 
EMI electromagnetic interference 
FEC forward error correction 
FTTC fiber to the burb 
FTTH fiber to the home 
FTTN fiber to the node 
GNN graph neural networks 
HD high definition 
Hz hertz 
K kelvin 
KNN k-nearest neighbors 
KPI key performance indicators 
LASSO least absolute shrinkage and selection operator 
LOF local outlier factor 
MAC media access control 
MacDomain media access control domain 
MER modulation error rate 
OC-SVM one-class support vector machines 
OLT optical line terminal 
OPTICS ordering points to identify the clustering structure 
PER packet error rate 
PNM proactive network maintenance 
PCA principal component analysis 
QoS quality of service 
RFI radio frequency interference 
RNN reverse nearest neighbors 
Rx receive power 
SCTE Society of Cable Telecommunications Engineers 
SNR signal to noise ratio 
SVM support vector machines 
t-SNE t-distributed stochastic neighbor embedding 
Tx transmit power 
XGBOOST Gradient Boosting Machines 
RDF Relative Density Factor 
ARIMA Autoregressive Integrated Moving Average 
ELT Extract, Load, Transform 
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