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1. Introduction 
The question of generating accurate forecasts in a long memory (or long range) process has attracted much 
attention with telecom traffic data as it is crucial to formulate capacity planning and budget allocation in a 
cost-effective manner.  

However, there has been a growing awareness of a variety of difficulties to implement long-range 
forecasting using telecom time series data. Firstly, insufficiency of telecom traffic data has posed challenges 
to effectively execute sophisticated statistical models and machine learning (ML) models [1].  Furthermore, 
irregular patterns in network time series data made conventional outlier detection method difficult to detect, 
which might introduce noise in the forecast, and hence greatly affect forecast accuracy. Lastly, the 
predictions made using the state-of-the-art statistical models or highly supervised machine learning models 
tend to experience error propagation and lose accuracy as the prediction time horizon expands. It is less 
likely for those models to correctly extrapolate the special characteristics of network time series data, 
particularly when small-scale historical data is presented as the learning dataset.  

In order to address the issues highlighted earlier, literature has introduced a relatively recent approach that 
involves using a Generative Adversarial Network (GAN) architecture to generate a soft representation for 
both the short- and long-term dependencies in the time series. The GAN architecture was initially proposed 
by Goodfellow et al [2]. Originally, GANs were primarily designed for processing picture data. Since their 
introduction, substantial progress has been achieved in expanding their capabilities, and they are extensively 
employed in various tasks such as text generation, audio signal generation, spectral data generation, tabular 
data generation, and time series data generation [3][4][5].  

Nonetheless, as far as we are aware, GAN has been focused less on temporal time series data. Consequently, 
there has not been much research done on how to use GAN to improve long-range forecasting. 

In this paper, we evaluate the performance of GAN in time series forecasting and propose a hybrid 
forecasting strategy of incorporating GAN into a long horizon forecasting process using telecom traffic 
data. 

The rest of this paper is organized as follows. In Section 2, we examine previous studies that used GAN 
algorithms and provide an introduction on one conventional deep learning model RNN as well as two most 
popular GAN algorithms: Wasserstein GAN-GRU and Wasserstein GAN-GP. In Section 3, after presenting 
sample data used in this paper, we proceed to compare the performance of GAN with RNN. We outline the 
process of utilizing GAN to generate synthetic time series and explore the feasibility of employing GAN to 
long-range prediction. Finally, Section 4 contains concluding remarks, and identifying specific areas for 
further research. 

2. Related Work  
Although the complete spectrum of scenarios employing GANs to forecast time series data is still being 
studied, numerous studies have explored the potential of utilizing GANs to overcome the scarcity of data 
during model training and improve model performance. Patil et al. [5] employed attention mechanisms and 
principles of Conditional Generative Adversarial Networks (CGAN) and successfully tackled the issue of 
having a limited and well-documented dataset of chest X-ray (CXR) images. They used these techniques 
to create synthetic images that closely mimic real medical images. Researchers concluded that deep learning 
models, trained on an augmented dataset, outperformed other models, especially in the context of having a 
small size training data. 
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Similar work has been done on breast ultrasound images. Lennart et al. [3] applied GAN to generate high 
quality realistic breast ultrasound synthetic images to address limited training data. The study revealed that 
GANs can effectively generate synthetic ultrasound images that are both high quality and exhibit a wide 
range of variations close to real images. This, in turn, enhances the classification accuracy of Convolutional 
Neural Networks (CNNs) and thus offers a valuable advantage in computer-aided diagnostics.  

On the other hand, certain studies have effectively implemented the GAN framework inside a temporal 
context. The initial implementation of the GAN framework on sequential data, known as C-RNN-GAN, 
utilized Long Short-Term Memory (LSTM) networks for both the generator and discriminator components. 
Data is generated at regular intervals by using a noise vector and the data generated from the preceding 
time step as inputs [4]. Moreover, scholars have suggested using GAN-based methods to produce various 
forms of time-series data to improve data quality and optimize the performance of forecasting models. Liu 
et al. (2022) presented a new forecasting approach called Generative Forecasting (GenF), which utilizes a 
GAN to produce synthetic data for future time periods. The synthetic data, along with the actual data, are 
subsequently utilized to provide projections over longer time horizons. In the conducted studies, researchers 
reported a substantial improvement in prediction accuracy [6]. 

While the usefulness of GAN in time series forecasting has been shown, there is a lack of examples 
illustrating its applicability in network data, particularly in predicting the volume demands of network 
traffic. The study undertaken by Naveed et al. (2022) is one of the few studies that have employed GANs 
to analyze network data. A comparative analysis was performed on two generative models, TimeGAN and 
DoppelGANAger as well as a deep learning auto-regressive model called PAR. The comparison was done 
using real mobile network datasets. Based on their research, they observed that GAN-generated values were 
not only effective in substituting missing data in a time-series data, but they also discovered that GAN-
based structures performed better than the auto-regressive technique. 

While there is less research on the effectiveness of GANs in long-range forecasting, our objective in this 
study is to propose a hybrid framework for long-range forecasting that incorporates GAN's synthetic data 
to potentially enhance the accuracy of long-term predictions. Specifically, we evaluate the similarity 
between real data and synthetic data predicted by a GAN. We compare GAN models with a RNN model 
for time series forecasting. The goal is to determine the appropriate architectural designs for making long-
range forecasts using GAN-based synthetic data.  

3. Learning Methods 
This section presents an overview of various models for forecasting temporal time series, along with a 
detailed discussion of the specific methodologies employed in this study. 

3.1. Recurrent Neural Network (RNN) 

Recurrent Neural Network (RNN), a member of the neural network family, is well-suited to capture long-
term dependencies of time series, and widely used framework in the fields of time series forecasting. A 
classical RNN is constructed by a sequence of an input layer, hidden layer and an output layer. The 
connectivity between different layers allows the model to learn patterns and trends in time series data. Many 
to many RNN architecture was employed in this study, as shown in Fig. 1, which takes a sequence of time 
series inputs ending at time=t, and produces a sequence of outputs starting at time=t+1.  
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Figure 1– Simple Many to Many RNN Structure 

 

3.2. GAN-based Methods 

3.2.1. Basic GAN 

The GAN algorithm was first introduced in 2013 [10]. The core of the GAN is composed of two multilayer 
CNNs or fully connected neural networks, referred to as the generator (G) and discriminator (D), which act 
as two competing agents. The G network tries to model a noise vector z to fit the probability distribution of 
the real data and create fake data, whereas the D strives to distinguish the synthetic data and the real data. 
In a well-trained GAN, the training process concludes and the model reaches convergence when the G  
generates synthetic instances to a degree where the D will find it difficult to differentiate between data from 
the synthetic dataset and the original dataset. In other words, the two networks are engaged in a two-player 
min-max game where they strive to reach a point called Nash equilibrium, where the D cannot distinguish 
between the real data and the generated data anymore. 

Mathematically, the process of a standard GAN algorithm is expressed in (1) as:  

min(𝐺𝐺) max𝑉𝑉 (𝐷𝐷,𝐺𝐺) = 𝐸𝐸𝑥𝑥 ~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)[log(𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧 ~𝑃𝑃𝑧𝑧 (𝑧𝑧))[1 − log(𝐺𝐺(𝑧𝑧)]                                    (1) 

In this equation, x represents the input data, log(D(x)) is the projected output of the discriminator for xi, 
whereas log(D(G(z)) is the output of the discriminator for the data generated by the GAN, denoted as G(z). 
The objective of the equation is to maximize the discriminator network to correctly identify generated data 
from real data.   

A simple GAN architecture to produce high-quality image data can be illustrated, as shown in Fig.2. 
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Figure 2 – Simple GAN Structure 

Although the concept of the GAN is exciting, and promises many applications, such as producing visual or 
video content. Several studies have shown that one of the biggest problems with GANs is that they are hard 
to train and can have problems like overfitting, mode-collapsing (where they only pick samples from one 
class in the data), and training instability due to vanishing gradient issues.  

To get around these challenges and ensure stable GAN training, other types of GANs have been developed, 
including the Conditional Wasserstein GAN (CWGAN) and the Wasserstein GAN (WGAN). In the 
subsequent parts, we will demonstrate the functioning of two algorithms in WGAN: WGAN-GP [7] and 
WGAN-GRU, which proved efficient in many complex GAN applications. 

3.2.2. Wasserstein GAN with Gradient Penalty (WGAN-GP) 

The WGAN was first proposed in [8], and it distinguishes itself from the standard GAN in several aspects. 
Unlike the standard GAN, WGAN and its variations use the Wasserstein distance to minimize the loss of 
discriminator function, which provides a smoother gradient everywhere. Furthermore, WGAN generator 
parameters are updated after training the discriminator multiple times, rather than updating them after every 
discriminator update as in a standard GAN, which is related to the stability and convergence of the training 
process. Finally, without the use of sigmoid activation in the final layer of the WGAN discriminator, the 
output of the WGAN discriminator spans between negative infinity (-∞) and positive infinity (∞), instead 
of the typical range of 0 and 1. The deviation from 1 has the potential drawback of introducing instability 
during the training process. 

To address this issue, the gradient penalty was introduced into the WGAN’s discriminator to penalize the 
discriminator if the gradient norm deviates from 1 [9]. The inclusion of this penalty term improved the 
quality of the general samples by the GAN and it improved model training stability. The WGAN-GP proved 
superior to the traditional WGAN by introducing the gradient penalty to penalize the discriminator if the 
gradient norm deviates from 1.  

3.2.3. Wasserstein GAN with Gated Recurrent Unit (WGAN-GRU) 

Another improved variant of WGAN is WGAN-GRU, which combines the strengths of both WGAN and 
GRU. The gated recurrent unit (GRU) is a gated recurrent neural network (RNN), which is characterized 
by a small number of parameters and a relatively simpler training process. GRU-based WGAN models can 
achieve better learning outcomes from sequential data than other RNNs while using a WGAN-based 
network to distinguish between real and generated samples.  
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4. Methodologies 
This section begins by presenting a summary of the datasets utilized in this study. Subsequently, we 
compare the performance of GAN-based models with RNN on two sets of datasets used in this study.  Next, 
we propose GAN-models for long-range forecasting and provide a comprehensive explanation of how we 
have put this suggested paradigm into implementation.  

4.1. Datasets 

For implementing machine learning or deep learning-based models, it is desirable to use actual data from 
a real network. For a time series traffic forecasting task using neural network-based models, a dataset that 
consists of daily traffic load that spans from 2018 to Jun 2024 would be appropriate for model training and 
testing in relation to data size.  

To judge how well our selected generation methods work for network time series data of different 
behaviors, two datasets with different patterns in seasonality and trend: D1 and D2, were used in this study.  

Figures 3 (a) and (b) illustrate the D1 and D2, respectively. D1 exhibits a more irregular pattern, particularly 
during the COVID-19 period, whereas D2 demonstrates a more stationary pattern.  

These two datasets were employed to evaluate the performance of four models: RNN, GAN, WGAN-GP 
and WGAN-GRU. For each dataset, a small amount (i.e., less than 5%) of missing values are imputed 
using adjacent non-missing values. After replacing missing values with linear interpolation for each time 
series, we adjust and rescale values of target variables to [0,1] for data normalization. The data preparation 
also includes dividng the collected time series datasets into two sets: training and testing, where the testing 
dataset is applied to find the optimal parameters, and the optimal time series length.  

 
Figure 3 - These two datasets were employed to evaluate the performance of four 

models: RNN, GAN, WGAN-GP 

4.2. Comparison Criteria  

Root Mean Squared Error: To evaluate the accuracy of the methods on D1 and D2, the Root Mean Squared 
Error (RMSE) is selected. RMSE is a frequently used measure of the differences between forecast values 
and actual values. RMSE is considered as a proper measure of accuracy, see (2) 
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RMSE = �� ((𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑝𝑝 (𝑝𝑝)−𝑃𝑃𝑝𝑝𝑃𝑃𝑣𝑣𝑃𝑃𝑣𝑣 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑝𝑝 (𝑝𝑝))2

𝑛𝑛

𝑛𝑛

𝑝𝑝=1
                                                                        (2) 

Mean Absolute Percentage Error (MAPE) is a measure of accuracy of a method for constructing fitted time 
series values in trend estimation. It usually expresses accuracy as a percentage, and is defined in (3) 

MAPE = 1
𝑛𝑛
�  𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑝𝑝 (𝑝𝑝)−𝑃𝑃𝑝𝑝𝑃𝑃𝑣𝑣𝑃𝑃𝑣𝑣 𝑣𝑣𝑃𝑃𝑣𝑣𝑣𝑣𝑝𝑝 (𝑝𝑝)

𝑛𝑛

𝑛𝑛

𝑝𝑝=1
 ∗ 100                                                            (3) 

Where n denotes the number of data points in the sequence.  

4.3. WGAN Model Setting 

To find the most appropriate GAN model for the proposed long-range forecasting, different GAN-based 
methods have been investigated with the focus on comparing WGAN models (i.e., WGAN-GP and 
WGARN-GRU) with a basic GAN.  

In WGAN models used in this study, CNN is used in the network structure of the generator and 
discriminator of WGAN-GRU. CNN is one of the best DL models for its ability to handle time series. In 
contrast, WGAN-GP in this study uses a straightforward feedforward architecture for the generator, without 
the recurrent structure of the GRU layers.   

The main difference between WGAN-GP and WGAN-GRU is that in WGAN-GP, the generator typically 
uses a convolutional neural network, whereas WGAN-GRU is the use of a RNN, specifically the GRU 
(Gated Recurrent Unit) in the generator. In this study, the WGAN-GRU uses a generator that consists of 
three stacked GRU layers, which allows the WGAN-GRU to capture and model the sequential data.  

Before training DL models, some hyper-parameters need to be fixed, like optimizer, learning rate, batch 
size, and number of epochs. These hyper-parameters could impact the model performance and learning 
speed.  

To assess the prediction for time series, we used the following training hyper-parameters of WGAN models, 
as summarized in Table 1.  

Table 1 - Sample Hyper-parameters in WGANs 

Parameters WGAN-GP WGAN-GRU 

Batch size       128 128 

Learning rate 0.000115 0.000164 

Num of epochs 300 300 

Critic iterations  5  

Weight clip 0.01  
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4.4. Results 

Tables 2 and 3 showcase the superior performance of WGAN-GRU compared to three other models in 
predicting network traffic demand across datasets with varying characteristics.  

On the D1 dataset, the Mean Absolute Percentage Errors (MAPEs) for the WGAN-GRU model are 0.36% 
on the training dataset and 0.47% on the testing dataset. The RNN model has MAPEs of 1.04% on the 
training data and 0.67% on the testing data. The WGAN-GP model, on the other hand, has MAPEs of 4.33% 
on the training data and 1.33% on the testing data. The basic GAN exhibited the poorest performance with 
MAPEs of 3.05% on the training data and 11.10% on the testing data. GAN evidently shows overfitting 
issues inherent in its architecture.  

Similar observations could be obtained with the D2 dataset. On the D2 dataset, the MAPEs for the WGAN-
GRU model are 0.36% on the training dataset and 0.47% on the testing dataset, which means that this model 
performs extremely well on a more stationary time series dataset. The RNN model has MAPEs of 1.38% 
on the training data and 0.52% on the testing data, which consistently performs well. The WGAN-GP 
model, on the other hand, has MAPEs of 1.93% on the training data and 1.33% on the testing data.  The 
basic GAN with the same tuning parameters (i.e., learning rate and epoch etc.) failed to converge. 
Consequently, we can conclude that it is not appropriate to employ the basic GAN for forecasting long-
term network time series. 

Nevertheless, it is intriguing to see that the performance of WGAN-GRU is quite similar to that of RNN. 
The potential of WGAN-GRU to address common GAN issues such as overfitting, as well as its 
applicability in generating longer and more intricate time series, is evident. However, we have to admit the 
performance of WGAN-GRU is not as stable as RNN. This is particularly relevant as D1 exhibits more 
intricate patterns compared to D2.  To select the appropriate model, it is crucial to consider that time-series 
data can exhibit various trends and patterns. Therefore, any reliable generative models must demonstrate 
consistent performance in order to be valuable. Therefore, it can be inferred that WGAN-GRU could be the 
preferable choice over other GANs for generating synesthetic data. For the advantage of model convergency 
and training stability, RNN or LSTM can be the recommended base model for long-range forecasting model 
on the original data augmented with GAN-based synthetic data. 

Table 2 - D1 Model Performance Comparison 

  RNN GAN WGAN-GP WGAN-GRU 

Training 
RMSE 11,691 32,983 48,300 16,898 

Testing 
RMSE 12,877 211,648 36,211 69,940 

Training 
MAPE 1.04% 3.05% 4.33% 1.70% 

Testing 
MAPE 0.67% 11.10% 1.76% 3.36% 
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Table 3 - D2 Model Performance Comparison 

 RNN GAN WGAN-GP WGAN-GRU 

Training 
RMSE 149,646 Failed to converge 500,097 104,948 

Testing 
RMSE 179,632 Failed to converge 429,172 158,431 

Training 
MAPE 1.38% Failed to converge 1.93% 0.36% 

Testing 
RMSE 0.52% Failed to converge 1.33% 0.47% 

5. Conclusion 
In this paper, a GAN-based long-range time series forecast model has been developed with a focus on using 
WGAN models to augment network time series and further improve long-range forecasting. The model 
incorporates WGAN algorithms to generate synthetic data during the data processing stage, that would be 
coupled with real time series to augment data scale.  

In conclusion, based on the analysis and model performance comparison, we propose a hybrid long-range 
forecasting model that integrates the RNN with GAN-based models for improved prediction of network 
traffic, as illustrated in Fig. 3.  

The proposed method consists of two phases. The first phase is related to the WGAN to generate synthetic 
time series data and couple them with the original data, while the second phase is related to using more 
classical RNN or a special kind of recurrent neural network LSTM to train and forecast on the augmented 
dataset. The core of the model is to implement a WGAN-GRU or WGAN-GP to generate synthetic data 
that discriminators cannot easily distinguish from real data. In this proposed framework, the WGAN-GRU 
or WGAN-GP component plays a vital role in improving the training process by creating synthetic data and 
augmenting the limited training dataset to better handle long-range forecasting and improve long-horizontal 
forecast accuracy. The main process of the model can be summarized as shown in Fig. 4:  

 
Figure 4 – Proposed Long-range Forecasting Method: RNN-WGAN 

After synthetic data are coupled with the original data, the model utilizes RNN or LSTM to effectively 
leverage the sequential nature of time series data and capture temporal patterns that may be crucial for a 
long-term prediction. It is reasonable to assume that by coupling the RNN model with the GAN model, 
better results can be expected for long memory time series forecasting. 
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Abbreviations 
CNN Convolutional Neural Network 
DL Deep Learning 
GAN Generative Adversarial Network 
GRU Gated Recurrent Unit network 
LSTM Long Short-Term Memory Network 
MAPE Mean Absolute Percentage Error 
PAR Predictive Auto-Regressive 
RMSE Root Mean Square Error  
RNN Recurrent Neural Network 
WGAN-GP Wasserstein GAN with Gradient Penalty 
WGAN-GRU Wasserstein GAN with Gated Recurrent Unit 
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