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1. Introduction 
Machine learning (ML) services are commonly deployed in centralized data centers. However, for cable 
network applications, such as identifying anomalies within the cable network using DOCSIS® network 
performance data, a centralized model can lead to delays in processing and classifying data, hindering 
quick problem identification for operators. Implementing edge intelligence offers a solution to this issue, 
combining centralized training with edge inference. 

During the learning phase, large amounts of data is utilized to calculate the weights and biases for training 
the model, necessitating high-performing machines easily found in centralized data centers. Once the 
learning phase concludes and the ML network is trained, the model can be deployed for inference, 
executing on devices with lower computational and memory capabilities at the edge. Models can be 
deployed on edge devices such as Cable Modems (CMs), gateway devices, or Access Points (APs), with 
enhancements like model compression and inference acceleration. While edge devices must possess 
sufficient power for specific tasks, embedding ML capabilities into such devices is achievable using 
certain class of algorithms.  

This paper proposes a model to facilitate distributed edge intelligence on DOCSIS network equipment, 
including CMs and gateways, and potentially extending to other devices like Distributed Access 
Architecture (DAA) nodes or amplifiers. It aims to develop an architecture to support this deployment 
model in a DOCSIS network, detailing the process of downloading ML models to edge devices, 
implementing necessary security mechanisms, and providing the required application programming 
interfaces (APIs) to enable such functionality. 

2. Machine Learning at the Edge  
Machine learning is currently widely used in a variety of applications, including PNM, profile 
management and cable network health detection. End devices such as CMs and RPDs, are generating data 
that need to be analyzed in real-time using deep learning or used to train deep learning models. However, 
deep learning inference and training require substantial computation resources to run quickly. Using the 
compute at the core network, is a viable way to meet the high computation requirements of ML/deep 
learning processes. 

The deployment of machine learning applications at the edge presents a significant opportunity for several 
HFC network scenarios. The benefits include the lower latency associated with performing on-device 
training and inference close to the data sources. However, the limited computational, memory, and energy 
resources, differences in hardware, of the edge devices in a cable network (e.g. CMs, RPDs, Amplifiers) 
pose a significant challenge to performing heavy learning tasks on them. 

2.1. ML Phases: Training and Inference 

Training is the first phase for an ML application. Training involves a process of teaching the model 
examples of the desired inputs and outputs, or both, and helping the model learn the main characteristics  
of each example over a large number of samples. Inference is the process that follows ML training. 
Inference is the process that a trained machine learning model uses to draw conclusions and make 
decisions on brand-new data. The more trained a model is, the better its inference results will be. 

Inference allows machine learning models to be used in real-world applications, where the goal is to 
apply the knowledge gained during the training phase to make useful predictions or decisions on new 
data. This contrasts with the training phase, where the model learns the underlying patterns and 
relationships from a dataset. 
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To get to the point of being able to say as an example, identifying ingress in cable signal, machine 
learning models go through the process of training. For the cable RF ingress detection, the MSO 
developers may develop a model, by showing the model thousands data samples of ingress. The data may 
have been labeled by expert RF engineers who have looked at the data samples manually. Eventually, 
after enough training, the model will be able to identify ingress or other trained artifacts on its own. 

 
Figure 1 – ML Training and Inference  

Inference refers to the process of using a trained machine learning model to make predictions or decisions 
on new field data. It involves taking input data and passing it through the trained model to generate an 
output or prediction. In the inference process for any new(previously unseen samples), applies the model's 
learned patterns and parameters to the input data, to generate an output or prediction based on the model's 
internal logic and decision-making. 

2.2. Feature Engineering 

Deep learning models, particularly those involving convolutional neural networks and recurrent neural 
networks, have the capability to automatically learn and extract features from raw data. This is one of the 
advantages of deep learning over traditional machine learning methods, which often require extensive 
feature engineering. However, the need for feature engineering in deep learning can vary depending on 
the context and type of data. 

While deep learning models reduce the need for extensive feature engineering by automatically learning 
features from raw data, especially in domains like image or  text processing, there are still scenarios 
where feature engineering can be beneficial. This is particularly true in cable domain-specific 
applications, and smaller datasets. The balance between manual feature engineering and leveraging the 
automatic feature extraction capabilities of deep learning models depends on the specific problem and 
dataset characteristics. 
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2.3. ML at the Edge 

Machine-learning algorithms can be run at the device or local level, closest to the components collecting 
the data, this would be combining Machine learning with any available edge compute. ML at the edge can 
be thought of as a method for lowering dependency on cloud infrastructure and networks by allowing 
devices to analyze data locally, at the device level using machine learning techniques. The ability of 
specific data to be processed locally limits the data that needs to be sent up to the cloud and enables real-
time data processing and reaction to important events. Of course, Edge devices continue to transmit data 
to the cloud as needed for various purposes such as centralized learning.  

Machine learning on the edge is key to enabling a new suite of autonomous system applications on the 
Cable Network. The move from the traditional centralized HFC architecture to distributed architectures in 
recent years means that new ML deployments can be power efficient and reduce latency for ML 
inference.  

The efficiency and accuracy of the inference process are crucial, as it determines how effectively the 
trained model can be deployed and utilized to solve practical problems. Techniques like optimizing model 
architecture, quantization, and model compression can be used to improve the inference performance.  
The main approach is to train large and accurate models on high-performance machines in the cloud and 
then use compression techniques, such as low-rank approximation, knowledge distillation, pruning, and 
parameter quantization, to reduce model size. However, smaller models often result in lower accuracy, 
thus the tradeoff between accuracy and costs must be carefully considered. [ScaleMLEdge] 

2.3.1. Related research  

There is previous work in this area.  The [EdgeML] library provides a set of open-source algorithms for 
building machine learning models that can run directly on edge devices, with much lower memory 
requirements than traditional ML algorithms. Other efforts focus on trained models, such as tree-based 
classifiers [ResEffML], k-nearest neighbors (kNN) classifiers [ProtoNN], and recursive neural networks 
(RNNs) [FastGrNN], can be loaded onto edge devices, such as IoT devices and sensors, to make fast and 
accurate predictions. The [TinyML]  project and Tensorflow Lite Micro [TensorFLMicro] focus on 
optimizing deep learning inference for edge devices with limited memory, such as microcontrollers, 
enabling the efficient deployment of ML applications in the context of edge. 

2.4. ML Problems in the Cable Network  

Data sourced from the cable network is a ripe source of information for the operator to analyze and 
Ultimately gain insights and knowledge from. Proactive network maintenance (PNM) functionality in 
HFC networks, yields a lot of downstream and upstream spectrum data. Operators can manually look at 
these data plots and identify issues in the network. This is of course not scalable with millions of samples 
across millions of devices in the network. This is a problem which can be more easily solved using 
machine learning. The basic idea is to create models from a set of training data which has been labeled by 
subject matter experts. Once the model is accurate then it can be used in automatically identifying events 
in the new input data. See [AcData], [AppML] [MLPNM] [DetClasOFDMA] for other related problem 
statements for data analysis challenges in the access network.  

Below are some examples of problems that could be solved via machine learning.  Ingress Identification 
is an important one While some sources of interference are well known beforehand, deployments have 
encountered and identified additional interference types.  

In the Upstream, MSOs see  VHF over-the-air (OTA) ingress. [DetClasOFDMA], a common ingress 
sources in OFDMA deployments. Depending on the location of TV Transmitters within a geographical 
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area, one or more channels may be impacted. Analog Modulator impairments are narrow band ingressors 
caused by older devices, or the wrong connector on an older set-top box connected to an outlet in the 
home. RFoG impairments are caused by customers who have disconnected their service but are still 
connected to the network.    Figure 2 source:[DetClasOFDMA] 

 
Figure 2 – Example Upstream Interefence 

In the Downstream, the Rolloff is an impairment characterized by a gradual, non-linear, exponential 
looking decrease in amplitude and power. Rolloff maybe caused by older passive components not rated 
beyond a certain frequency. Tilt is an impairment characterized by amplitude differences between higher 
and lower frequencies, this can be a positive or negative slope across the spectrum. There are many other 
plant/RF issues shown below which can be solved by machine learning algorithms.                             
Figure 3 source:[PNMPractices] 

 
Figure 3 – Example RF interference Downstream 

In a full band capture of the cable modem RF spectrum one can identify various ingress sources as shown 
in the figure below.     Figure 4 source:[PNMPractices] 

              
Figure 4 – Wideband Spectrum Analysis of RF Spectrum 

For each of the examples shown above machine learning can be applied to identify these issues in the 
plant data, giving the operators knowledge about their networks and how to effectively manage and 
maintain the health of the network.  
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3. Machine Learning considerations 

3.1. Training & Inference 

Neural Networks  training starts out with the forward propagation calculation. As Figure 5 illustrates, 
after forward propagation, the results are compared against the known/correct answer to compute an error 
value. A backward propagation phase propagates the error back through the network’s layers and updates 
their weights using gradient descent to improve the network’s performance at the task it is trying to learn. 
It is common to batch hundreds of training inputs (e.g. RxMER samples with ingress issues for an RF 
ingress detection network) and operate on them simultaneously during NN training in order to prevent 
overfitting and, spread the loading weights across many inputs, increasing computational efficiency. 

 
Figure 5 – Training and Inference of Neural Networks 

For inference, which goes through only the forward propagation calculation. the performance goals are 
different. To minimize the network’s end-to-end response time, inference typically batches a smaller 
number of inputs than training, as services relying on inference to work (for example, a cloud-based RF 
ingress detection pipeline) are required to be as responsive as possible. In general, workload for training is 
higher than for inference.  

3.2. GPUs vs CPUs 

Deep neural networks (DNNs) and convolutional neural networks (CNNs) demand substantial 
computational power, particularly during the training phase. The training process involves feeding inputs 
through the network to produce activations, which then reach the output layer. The resulting output is 
compared to the correct answer, and an error is computed for each unit in the output layer. This error is 
backpropagated through the network, adjusting each connection weight incrementally. Consequently, 
training involves a forward pass to generate outputs and a backward pass to propagate error information 
and update weights. When the network is deployed for inference, only the forward pass is used. 

Neural Networks can have thousands to over millions of parameters that need adjustment through 
backpropagation and require a large amount of training data to achieve high accuracy, often necessitating 
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hundreds of thousands of input samples to undergo both forward and backward passes. Due to their 
structure, neural networks are inherently parallel, making them well-suited for GPUs, which offers 
significant speed improvements over CPU-only training. Various benchmarks have demonstrated 
substantial increases in training speed when using GPUs compared to CPUs. 

ML inference is the process of using a trained ML model to make predictions or decisions based on new 
data. While ML training is a compute-intensive task that benefits significantly from the parallel 
processing power of GPUs, inference tasks can often be run efficiently on CPUs, especially when 
optimized properly. This is due to the fact that inference tasks generally require less computational power 
compared to the training phase. 

Some of the CPU benefits for inference include cost, availability and optimized software libraries.  CPUs 
are generally less expensive than GPUs, both in terms of upfront costs and operational expenses. This 
makes CPU-based inference an attractive option for cable operators looking to deploy ML solutions 
without the heavy investment required for GPU support in the edge devices like CMs and RPDs. CPUs 
are ubiquitous and available in virtually all edge devices in the Cable Network making it easier to deploy 
and scale ML applications at the edge without being limited by the availability of GPU resources. 

Advances in software libraries and frameworks have improved the efficiency of running ML inference 
tasks on CPUs. There are many libraries e.g. Intel’s oneDNN (part of oneAPI Deep Neural Network 
Library) [IntelOneDNN]  and OpenVINO toolkit [OpenVINO], Microsoft’s  Embedded Learning Library 
[ELL] have been optimized for high performance on CPUs, making it feasible to achieve near-GPU 
performance for certain inference tasks. To achieve optimal performance on CPUs, ML models and 
inference code may need to be specifically optimized for CPU architecture. This can include leveraging 
specific software libraries, adjusting batch sizes, and tuning model parameters, which may require 
additional development effort. 

Performance Limitations: While CPUs can be efficient at handling ML inference tasks, GPUs still offer 
superior performance for complex models and large-scale applications due to their parallel processing 
capabilities. Therefore, the choice for model training is almost always GPU, for many of requirements of 
an application, including the model complexity and latency requirements. GPUs also have an edge in 
terms of performance per watt for high-intensity computing tasks. This aspect is crucial for large-scale 
deployments where energy consumption directly impacts operational costs. 

While GPUs are the main choice for training ML models and handling complex inference tasks, CPUs are 
a viable and cost-effective alternative for many applications. By carefully evaluating the specific needs of 
their ML applications and optimizing their models  existing CPUs in devices can be leverages to reduce 
costs and enable new applications. As software libraries and CPU technologies continue to advance, the 
gap between CPU and GPU performance for ML inference is expected to narrow, further enhancing the 
attractiveness of CPU-based inference solutions. 

3.3. Separate Training from Inference 

The main idea, for enabling distributed ML applications in cable networks,  is to separate the training part 
of the process from the inference part of the process. The ML training process needs more compute power 
and large sets of input data to build a successful model. This needs powerful GPUs and large data 
servers , and data from a large number of devices, to successfully complete the training process.  

The inference process, i.e. making an actual classification decisions, using a trained model,  based on a 
single input datapoint, is much less process intensive and can be run at the edge of the network. In case of 
the HFC network, this can be at the cable modem(CM), the RPD or potentially even within an amplifier.  
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While working with many of the opensource machine learning libraries, one can save the trained models 
in a file (serialization) and restore them (deserialization) in order to reuse them to compare the model with 
other models, and to test the model on new data.   

CPUs are well-suited for small to medium-sized models where the inference latency meets the application 
requirements, applications with low request rates, where the cost savings of CPUs outweigh the need for 
GPU support and for deployments where minimizing operational expenses is a priority, and the slightly 
lower performance of CPUs is acceptable. CPUs in the HFC Edge should be able to handle many of the 
simpler inference tasks. We are working with a few applications where a trained ML model is being made 
to run inference on small platforms like a RaspberryPi4, these results will be noted in a future paper. 

4. Architecture to Enable Intelligence at the Edge 

4.1. Cable Industry Distributed CCAP Architecture 

Now that we have introduced the idea of separating the training process from the inference process and 
running them at different locations let's take a deeper look into the architecture within the cable access 
network.  

Traditional HFC networks have used analog optics to carry signals downstream, and either similar analog 
optics or digital return systems that act to digitize the return spectrum. With DCA/RPHY, new Physical 
layer modules are developed into node housings. The major advantages of RPHY include standardized, 
digital optical links, typically enabling 10GbE transport from the facility into the cable access network. 
Improved reach and wavelength efficiency of digital fiber versus analog, Fidelity gains (MER) that 
coincide with the removal of analog optical link degradation,  physical scalability in the inside plant with 
the removal of RF cabling and combining networks are some of the benefits. 

 
Figure 6 – Integrated CMTS vs Distributed CMTS Architecture 

 

Centralized functions of the DOCSIS CMTS are suited to being implemented in software and to run on 
generic servers/hardware, giving better scalability over time and adaptability for different deployment 
scenarios. The CMTS function in the headend, now known as the CCAP-Core, having been separated 
from Physical layer functionality, includes packet processing, switching, storage, and scheduling of 
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network resources. With today’s compute power and the ability of software systems to deliver real-time 
services, a purpose-built DOCSIS machine is no longer required to provide this functional capability. A 
virtual CMTS software that is purpose built to run on commodity servers, as a vCMTS platform. A 
network interface card (NIC) attached to a switch connects the server to an R-PHY node. 

4.2. Edge ML Architecture 

Typically, an operator also hosts a lot of compute power in a centralized location perhaps collocated with 
the network operations center. This centralized MSO cloud infrastructure support various applications run 
by the MSO to provision, configure, monitor and manage the network. This infrastructure provides the 
operator the opportunity to host different services in a virtualized environment deploy services faster and 
automate a lot of the network management operations. 

The centralized MSO cloud is a location where a lot of the data from the cable network gets collected. 
This could be file uploads from the cable modem, streaming telemetry from the RPDs, and other data 
collection and logging from a variety of network devices.  

With the amount of computer resources available the training portion of a machine learning application is 
well suited to be run at the centralized location. As data is collected from each of the CMs and RPD's in 
the network they get stored within a data lake in the centralized location. From here the data is fed into 
the machine learning training VMs which need GPU support. Once the training process is complete with 
oversight from HFC engineers and data analysts, the model is ready to be used in an application.   

 

 
Figure 7 – Edge ML Architecture: Learning in the cloud, inference at the edge 

Now instead of running this application at the centralized cloud location, the idea is to deliver this model 
into the edge devices, in our case this would be the CM, the RPD and potentially the amplifiers. The 
sections below define some methods for delivering this model down to the edge devices. Once the models 
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have been verified and validated the edge device can use those models within the machine learning for 
addiction applications. An example could be identifying ingress in the RF which say an application 
running on the modem would collect RxMER samples for a channel and send those through the model to 
identify ingress and then report it to the operator. 

The edge ML architecture consists of the following high level steps: (also shown in Figure 7) 

1. Data collection from the network to a centralized location 
2. ML model training with human oversight and creating compact models that can be run remotely 
3. Downloading the trained models to the edge devices in a secure fashion 
4. Running the model within a particular application to making prediction /classification decisions  

The edge device (CM/RPD) needs to be able to evaluate the trustworthiness of a pre-trained model. The 
question is how an operator builds a trustworthy dissemination protocol for sharing the pretrained ML 
models to the edge devices.   

4.3. Control Mechanisms 

This section talks about methods to download ML models into a cable modem. There need to be control 
mechanisms to enable the ML Model download. To keep compatibility with existing network 
management methods,  one can imagine SNMP based control mechanisms on the CM with some new 
objects to initiate HTTP or TFTP based file download mechanisms.    Alternatively, if the specific ML 
applications are identified and standardized within the specification one can also envision the Model 
download to be part of the MAC Management messages and under control of the CMTS which can be 
updated by the MSO/ML training entity.  The whole download process can be built into DOCSIS MAC 
Management Messages.  The below sections assume an HTTP or TFTP download of the model files to 
the cable modem. 

For the RPD, the CCAP Core can be instructed via SNMP or other methods (e.g., CLI) to order the RPD 
to perform the software upgrade at any time. From the perspective of the RPD, the software upgrade is 
initiated by Principal Core via GCP software update option. This control mechanism would need to be 
extended to support for downloading trained ML models. This looks to be a logical extension to the 
functionality.  

4.4. Download Mechanisms  

Current DOCISIS CMs and RPDs are capable of being remotely reprogrammed in the field via a software 
download over the network. This software download capability allows the functionality of the cable 
modem/RPD to be changed without requiring that MSO personnel physically revisit and reconfigure each 
unit. This field programmability is used to upgrade CM/RPD  software to improve performance, 
accommodate new functions and features, correct any design deficiencies discovered in the software, and 
to allow a migration path as the DOCSIS technology evolves. This paper proposes taking the same secure 
software download methods defined in the DOCSIS specifications and reusing them for downloading 
machine learning models.  

The CM today implements a TFTP client and alternatively also implements an HTTP client compliant 
with for software file downloads. The transfer is SNMP-initiated, as described in [DOCSIS OSSIv3.0], or 
configuration file-initiated. This mechanism can be extended to download machine learning models as 
well.  The CM/RPD verifies that the downloaded image(ML Model) is appropriate for itself. If the image 
is appropriate, the CM writes the new ML model image to non-volatile storage. Once the file transfer is 
completed successfully, an ML application within the CM can start using this model. 
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4.5. ML Model File Format  

The ML Model will need to be standardized to be in the format the CM or RPD can understand and use.   

The following file format is proposed for the code file, it is built using a [PKCS#7]-compliant structure, 
similar to the CM software image, this includes the following components: A code image; i.e., the trained 
ML model;  A Code Verification Signature (CVS); i.e., the digital signature over the image, and lastly a 
Code Verification Certificate (CVC); i.e., an [X.509]-compliant certificate that is used to deliver and 
validate the public code verification key that will verify the signature over the code image. The DOCSIS 
Certificate Authority, a trusted party whose public key is already stored in the CM, signs this certificate. 

4.6. Verification and Instantiation 

Once the ML model has been downloaded and verified, there needs to be control mechanisms to start to 
use the ML Model with its specific ML inference application. The MSO will always apply a digital 
signature to the ML Model code file. The signature is verified with a certificate chain that extends up to 
the Root CA. The CM/RPD verifies the signatures with a certificate chain that extends up to the Root CA 
before accepting a code file. In current DOCSIS CMs/RPDs, the Root CA certificate is installed in each 
device as a trust anchor.  

After the training phase, the MSO will take the ML training output model and build a code file, as 
described above. The operator can load the code file on the software download server after adding its 
signature and operator CVC and issuing CVC CA certificate to the code file. During the code download 
process, the CM will retrieve the code file from the software download server, (alternatively the RPD will 
get the image via the GCP process)  and verify the new code image using the Root CA Certificate trust 
anchor before installing it. This is essentially reusing the secure software download process and the 
certificate infrastructure already defined in the DOCSIS specification. 

4.7. Enabling applications and standardized ML model API 

This architecture can be applied and used for one application or for multiple applications being 
instantiated on the CM/RPD.  One can imagine multiple machine learning inference applications at a 
cable modem. For example, for one application, the modem could be analyzing RxMER values to identify 
ingress sources. A second application could be to identify changes in baseline latency. Another 
application could be looking at full band captures to identify RF issues across the whole spectrum. All of 
these applications could be run at the same time and be supported by machine learning models trained in 
the MSO cloud. The MSO cloud infrastructure has more resources to run the training process and 
resources to create a models specific to even that node segment.  These models can then be downloaded 
to the modem, for use within these applications.  

Each application and  machine learning model that it uses, would need its own well-defined API. One 
parameter would be the set of input features that would need to be extracted from the raw data. These 
features would be the needed input to the inference model within the ML application. Once these features 
are passed on to the inference model, it can make a prediction or classify events or identify other labels, 
as per the design of the ML application. These output labels would be another parameter of the API. 
Perhaps different type of applications along with the data they need as input and the output data labels 
could be standardized.   Based on the design and needs of the MSO, the ML application can raise the 
appropriate events back to the MSO central office either via logging or alarms or other communication 
processes. By having a standardized ML model API, the operator now has the flexibility of deploying the 
application and then changing the prediction/inference model at a later point using the architecture 
described here. 
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Figure 8 – Multiple ML applications can run on a edge device 

5. Conclusion 
Machine learning algorithms are solving many problems in the cable access network, especially in the 
area of proactive network maintenance and data analytics of the data coming from the cable network. 
Machine learning can be logically split into the training phase and the inference phase. Training an ML 
model requires a lot of computational resources and so will need to be run in the MSO cloud with access 
to lot of compute resources /GPUs. The inference (actual decision making based on a trained model) can 
be done at a relatively lower cost and can be suitable to run locally at a cable modem or an RPD.  Given 
the lower latency due to the quicker access to data and performing only inference  computations locally at 
the CM or the RPD, the MSO can enable newer applications and functionality at these devices. This 
ultimately provides a faster response to network events for the MSO, enabling quicker visibility into 
network failures or other applications.   

The secure software download functionality on a cable modem and an RPD along with the certificate 
already installed on these devices allows for a secure and well-understood and debugged way to 
download new software models onto these devices. With a few additional control mechanisms to enable 
the download and allowing the installation of these trained models on different applications running on 
these edge devices, the operator can unlock ML inference at the edge. These control mechanisms may 
need to be standardized in the DOCSIS specifications. Having different models being able to be 
downloaded and used with specific applications will need a rigorous API definition between those trained 
models and the applications.  Enabling machine learning applications at the edge of the cable access 
network opens up new features and functionality for the cable operator. 

Abbreviations 
 

API application programming interface 
DCA distributed CCAP architectures  
DOCSIS data over cable system interface specification  
CM cable modem 
HFC  hybrid fiber-coax  
GPU graphical processing unit 
ML machine learning 
MSO multiple system operator (network operator) 
NN  neural networks 
RPD remote PHY Device 
RxMER  receive modulation error ratio  
RF radio frequency 
R-PHY remote PHY  
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