

Smart Building Internet of Things Deployment Using Low Power Wide Area Networks

Long Range (LoRa) Wireless RF Technology

An Operational Practice prepared for SCTE by

Victor Lopez Network Engineer, Emerging Technology Charter Communications 6399 S Fiddlers Green Cir, Greenwood Village, CO 80111 +1(913) 295-7460 Victor.H.Lopez@charter.com

Mohamed Daoud

Director, Emerging Technology Charter Communications 6399 S Fiddlers Green Cir, Greenwood Village, CO 80111 +1 (720) 699-5077 Mohamed.Daoud@charter.com

Hossam Hmimy

Sr. Director, Emerging Technology Charter Communications 6399 S Fiddlers Green Circle, Greenwood Village, CO 80111 +1 (720) 536-9396 Hossam.Hmimy@charter.com

Table of Contents

<u>Title</u>			Page Number
1.	Introd	uction	4
2.		and LoRaWAN Technical Overview	
3.		dology and Equipment Setup	
	3.1.	Experimental Results at Location 1	
	3.2.	Propagation Model Calibration at Location 1	
4.	Result	S	
	4.1.	Design / Planning	
		4.1.1. RF Design for Location 2	
		4.1.2. Networking Design	
	4.2.	Pre-commissioning on LNS and App Server integration	
	4.3.	Walk Test at Location 2	
	4.4.	Application Server's Dashboards	
5.	Concl	usions and Best Practices	
Abbre	eviation	s	
Biblio	graphy	& References	

List of Figures

Title Page Number Figure 1 – LoRa and LoRaWAN Technology Stack [2]4 Figure 2 – Data Rate Formula For LoRa Transmission [4].....5 Figure 4 – Charter's LoRaWAN Architecture (High Level)6 Figure 5 – Charter's LoRaWAN Architecture & (High Level)......6 Figure 6 – Comparison of Wireless Technologies [5]7 Figure 7 – LoRaWAN Channels for North America [2]8 Figure 10 – Location 1 Walk Test Results Signal Strength RSSI......11 Figure 12 – Location 1 Walk Test Results Signal Quality SNR 12 Figure 13 – Location 1 Summary Results Signal Quality SNR...... 12

 ${\ensuremath{\mathbb C}}$ 2023, SCTE ${\ensuremath{\mathbb R}}$ CableLabs ${\ensuremath{\mathbb R}}$ and NCTA. All rights reserved.

Figure 25 – Location 2 Walk Test Results 2 nd Floor	19
Figure 26 – Location 2 Walk Test Results 3 rd Floor	20
Figure 27 – Location 2 Walk Test Results 4 th Floor	20
Figure 28 – Application Server Main Menu View	21
Figure 29 – Application Server Sensors Placement on 2 nd Floor	21
Figure 30 – Application Server All Sensors Data	22
Figure 31 – Application Server Sensors Data Room C226	22
Figure 32 – Gateways Placement Strategy	23

List of Tables

Title	Page Number
Table 1 – US 902-928 MHz Frequencies Plan [6]	8
Table 2 – LoRaWAN Regulation for North America [6]	8
Table 3 – Calibration of the Model Propagation	13
Table 4 – Action Points	23

1. Introduction

Charter Communications designed and deployed a Low Power Wide Area Network (LPWAN) and smart building solution at one of its offices located in North Carolina (location 2), with the goal of enhancing employee comfort and improving operational efficiencies. The solution includes environmental monitoring and room occupancy sensors across four floors. In this paper, we describe the methodology used to deploy the end-to-end solution, therefore, we outline the goals and various components of a smart building solution. Second, we describe the radio frequency (RF) design and dimensioning for network deployment. Third, we show the parameters of the propagation model which were utilized to calibrate the design tool. Fourth, we explain the method of optimization and monitoring the live solution. The entire process is shown in Figure 1. Last, our experimental results also describe the network performance testing (coverage and quality) and best practices to deploy in a high-rise building based on Charter's experience. As Charter evaluates emerging technologies to expand our wireless network portfolio, LoRa technology has been selected to enable many use cases for Internet of Things (IoT) solutions.

2. LoRa and LoRaWAN Technical Overview

One of the prominent wireless technologies of LPWAN for IoT is Long Range, commonly known as LoRa. Specifically, LoRa is purely the radio signal that carries the data into the physical (PHY) layer which is based on a Chirp Spread Spectrum (CSS) modulation technique that was developed by the vendor Semtech [1]. LoRa chip sets are built into LoRa gateways and sensors. Medium Access Control (MAC) is the following layer, commonly known as LoRaWAN, which is managed by LoRa Alliance. LoRaWAN is the communication protocol that controls how data is communicated across the network for the upper layer [2].

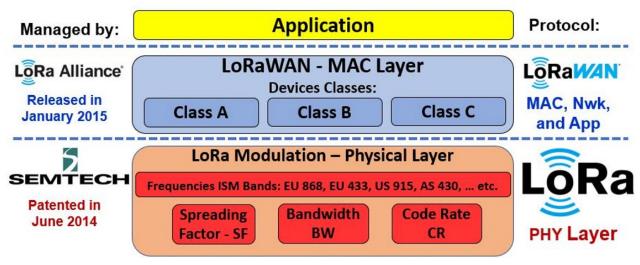


Figure 1 – LoRa and LoRaWAN Technology Stack [2]

In addition, LoRaWAN defines multiple Data Rates (DR) which are a combination of Spread Factor (SF), channel Bandwidth (BW), and Coding Rate (CR) [3]. These parameters together are used to compute the DR also known as LoRa Modulation Bit Rate (Rb) and is given in Figure 2.

Data Rate Formula

$$R_b = SF * \frac{\left[\frac{4}{4+CR}\right]}{\left[\frac{2^{SF}}{BW}\right]} * 1000$$

SF = Spreading Factor (6,7,8,9,10,11,12) CR = Code Rate (1,2,3,4) BW = Bandwidth in KHz (10.4,15.6,20.8,31.25,41.7,62.5,125,250,500)

Rb = Data rate or Bit Rate in bps

Figure 2 – Data Rate Formula For LoRa Transmission [4]

Figure 3 details a typical LoRaWAN architecture, which includes LoRa sensors or end devices, LoRa Gateways (GW), and a network server called LoRaWAN Network Server (LNS). Sensors are connected to one or more gateways via LoRa CSS modulation technique which encodes data on radio waves using chirp (also known as sweep signal which defines the tone in which the frequency changes in a period of time) [2]. It can be of two types, up-chirp (connoting an increase in frequency) and down-chirp (frequency decrease). Gateways are connected to the LNS through standard IP connectivity. The LNS routes data information from the sensor to the associated Application Server (App Server), provides authentication for sensors, and manages security for the entire network using keys such as the DevEUI, the Network Session Key (NwkSKey), and the Application Session Key (AppSKey). LoRaWAN provides end-to-end security services through the use of Advanced Encryption Standard (AES) cryptography.

Figure 3 – LoRa Architecture [2]

In the United States, the LoRa technology works on the unlicensed Industrial, Scientific, and Medical (ISM) bands from 902 to 928 MHz, therefore, there is no Federal Communications Commission (FCC) licensing required. The LoRa gateway's backhaul can be Ethernet, cellular, or both, depending on the GW model. The red outlined sections shown in Figure 4 are part of Charter LoRa Network as a Service (NaaS).

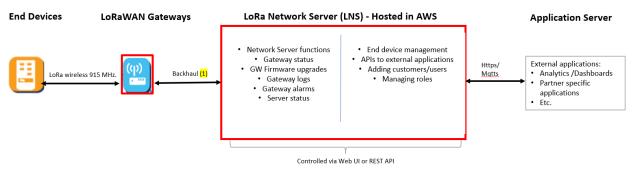


Figure 4 – Charter's LoRaWAN Architecture (High Level)

In this deployment, Browan and Tektelic brand gateways have been used along with multiple LoRa sensors (e.g., temperature, humidity, CO₂, and motion). In addition, a Multitech brand Field Test Device (FTD) has also been used to measure the strength and quality of the received signal – or, in technical terms, the Received Signal Strength Indicator (RSSI) and Signal-to-Noise Ratio (SNR). The sensors' information is pushed from the LNS to the App Server using an HTTP connection. The LNS gathers all the sensors' raw data and transforms it (by decoders sent to the App Server) into actionable insight for optimizing workflow process, improving the efficiency of room occupancy, and reducing operating costs. Therefore, all the data analytics are managed by the App Server, allowing for user-friendly data visualizations to be displayed through dashboards (Figure 5).

Figure 5 – Charter's LoRaWAN Architecture & (High Level)

The LoRa's transmission based on the spread spectrum technique is carried out by low-power transmitters to send small amounts of data to receivers placed at long distances (Figure 6).

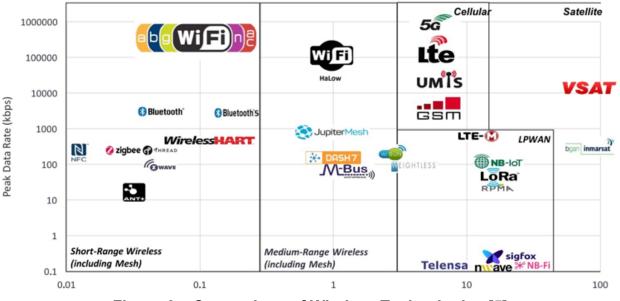


Figure 6 – Comparison of Wireless Technologies [5]

LoRa's key features are detailed below.

- LoRa is specially designed for:
 - ✓ Multiple low data rates ranging from 0.3 kbit/s to 50 kbit/s per channel.
 - ✓ Long-Range wireless communication.
 - \succ Three miles in urban areas.
 - > 10 miles or more in rural areas (depending on the line of sight).
- Strengths:
 - ✓ The best link budget of any other standardized wireless communication technology.
 - ✓ Operates under unlicensed frequency ISM bands 915MHz FCC Part 15.
 - \checkmark Deep penetration inside homes/buildings low freq.
 - ✓ Low-power consumption / long battery life (~ 10 years).
 - ✓ Cost efficiency (infrastructure implementation).
 - ✓ High capacity multi-tenant interoperability.
 - ✓ Scalability easy to add sensors and gateways.
 - ✓ Security embedded end-to-end AES-128 bits encryption.
 - ✓ Allows FUOTA (Firmware Updates Over-The-Air).
 - ✓ Resilience multiple spreading factors result in interference protection.
- Weaknesses:
 - \checkmark Not good for high data-rate transmissions.

The LoRaWAN Channels for North America follow the entire FCC Part 15 regulations for the 902 - 928 MHz ISM band, which is better known as the 915 MHz Band. This frequency plan is detailed in Figure 7, Table 1 and Table 2.

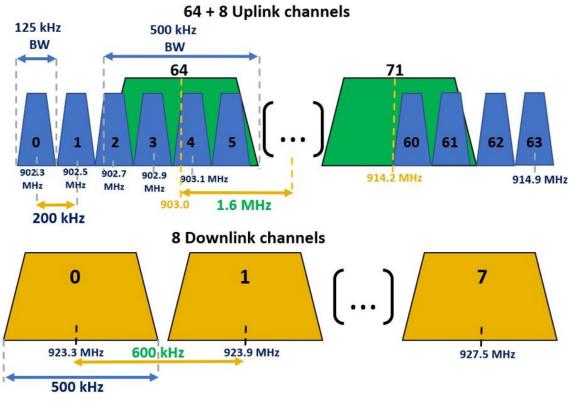


Figure 7 – LoRaWAN Channels for North America [2]

Description	Upstream – 64	Upstream – 8	Downstream – 8
Channels numbered	0 to 63	64 to 71	0 to 7
Number of channels	64	8	8
Frequency starting at	902.3 MHz	903.0 MHz	923.3 MHz
Linearly increment	200 kHz	1.6 MHz	600 kHz
Frequency ending at	914.9 MHz	914.2 MHz	927.5 MHz
Bandwidth	125 kHz	500 kHz	500 kHz
SF varying	SF7 - SF10	SF8	SF7 - SF12
Coding rate	4/5	4/5 - 4/8	4/5 - 4/8

Table 1 –	US 902-928	MHz Freque	ncies Plan [6]
-----------	------------	-------------------	----------------

Table 2 – LoRaWAN Regulation for North America [6]
--

Description	LoRaWAN specification for North America
Frequency Band	902 - 928 MHz
Max. Tx Power Uplink	(30 dBm allowed) 20 dBm is typical
Max. Tx Power Downlink	27dBm
Max. dwell time	400 milliseconds on Up-Links

3. Methodology and Equipment Setup

This section details the methodology and equipment setup for the entire LoRa solution deployment process. First, the LoRA network was deployed on the 3rd floor of the Charter Colorado office lab (location 1) in which RSSI and SNR were measured on each floor through the field test device (FTD). Second, using the experimental results of RSSI and SNR, the propagation model was calibrated on the design tool to adjust the theoretical results. Third, once the propagation model was calibrated, the Radio Frequency (RF) and networking design was carried out for the Charter premises in North Carolina (location 2). Fourth, gateways and sensors had been pre-commissioned in our laboratory, as well as the HTTP connection between the LNS and the App Server. In addition, all the dashboards, triggers and alarms need to be tested prior to the actual installation. Fifth, when all the components are working properly, the next step is to mount all gateways and sensors in the planned place. Finally, we validate all the gateways and sensors are up, running, and sending data. Moreover, all the action points were tested. This process is illustrated on Figure 8.

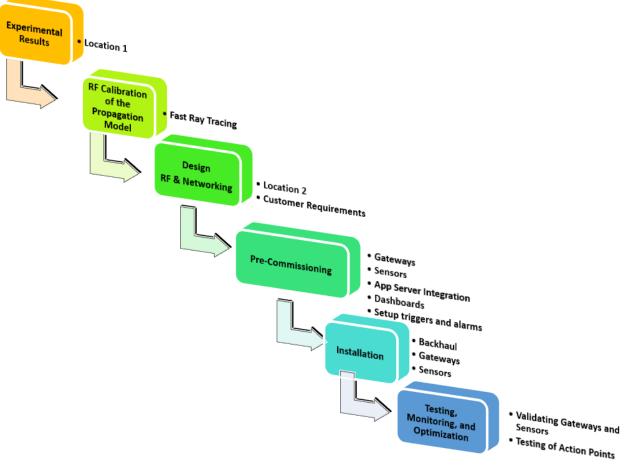


Figure 8 – Deployment Process

3.1. Experimental Results at Location 1

Figure 9 shows the five points of interest where the FTD was used to capture the RSSI and SNR values on each floor at the location 1. In the same way, one gateway was located on the corner of the building on the third floor (green section in the southeast). The legend shows the gateway setup used on the design tool.

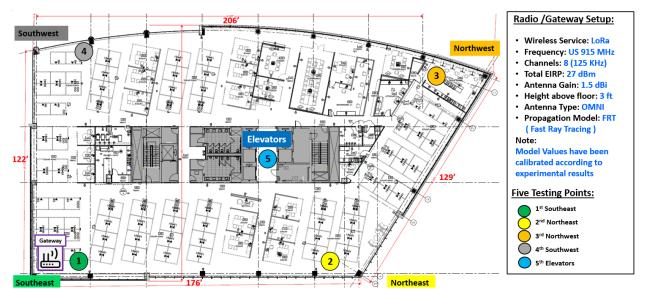
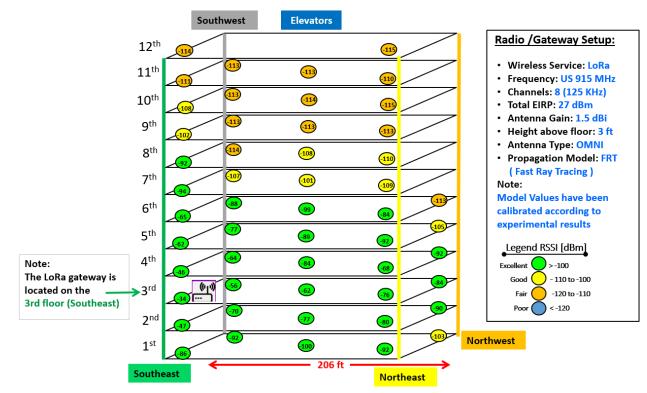



Figure 9 – Location 1 Setup and RF Specifications

Figures 10-13 show the result obtained using the FTD to measure the RSSI and SNR on each floor. The gateway located on the third floor was able to cover the entire floor, as well as one floor below and above, with optimal levels of RSSI and SNR, covering 25,000 sq. ft.

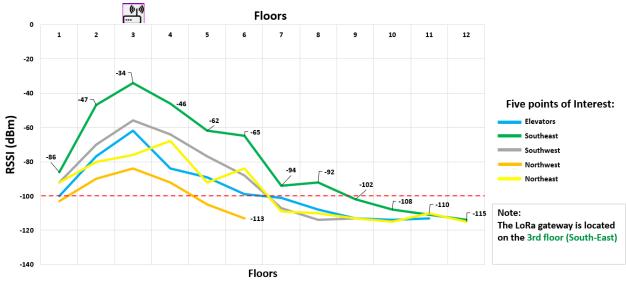


Figure 11 – Location 1 Summary Results Signal Strength RSSI

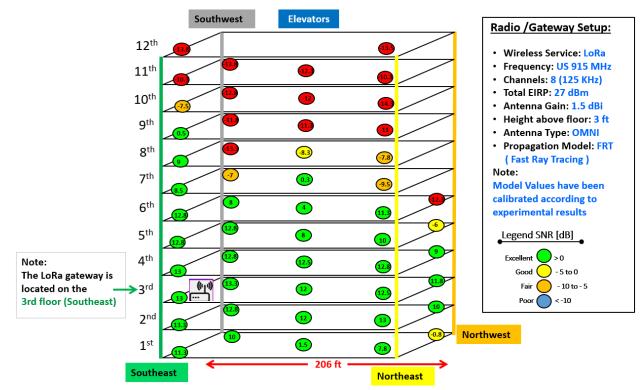


Figure 12 – Location 1 Walk Test Results Signal Quality SNR

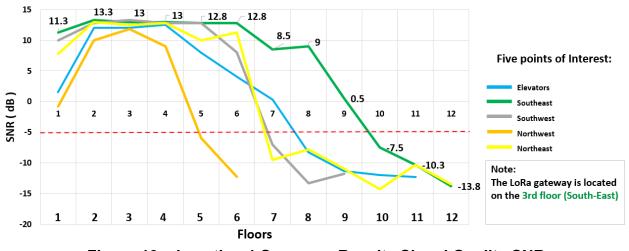


Figure 13 – Location 1 Summary Results Signal Quality SNR

3.2. Propagation Model Calibration at Location 1

All these data surveys were utilized to calibrate the propagation model on the design tool. The path loss parameters and the physical properties of the materials have been calibrated (transmission and reflection losses), as well as model coefficients of the Fast Ray Tracing (FRT). Table 3 details the transmission loss values for different materials and the FRT model coefficients which have been calibrated on the 917 MHz band for LoRa technology. Using the calibrated model, one example of signal strength RSSI is shown on Figure 15.

Parameters of th (Band 900)	Model Coefficients of FRT (Band 915MHz LoRa)	
Type of Material	Transmission Loss [dB]	Wall loss factor 1 (p1): 4
Drywall	1.75	Wall loss factor 2 (p2): 2
Glass Indoor	2	DLOS (y1): 4.70
Glass Outdoor	7	RP (y2): 3.77
Drywall individual workstation	0.15	DNLOS (y3): 4.27
Concrete Heavy	27	Body loss (Δ y1): 4
Elevators (Metal)	75	

Table 3 – Calibration of the Model Propagation

- DLOS (y1): Direct line of sight path only.
- RP (y2): Reflected path only.
- DNLOS(y3): Direct non-line of sight path.

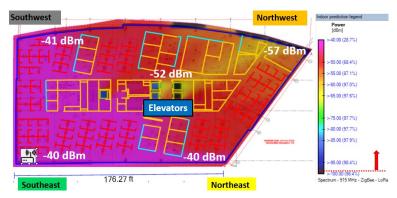


Figure 14 – Before Calibration of RSSI (Theoretical ≠ Experimental)

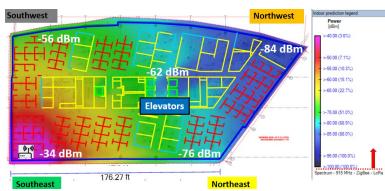


Figure 15 – After Calibration of RSSI (Theoretical ≈ Experimental)

4. Results

Determined by the building size, shape and design, the placement of gateways were strategically located at the location 2 premises to cover the entire building. Four gateways were needed to cover the entire building, and their locations will warrant appropriate signal strength and quality levels.

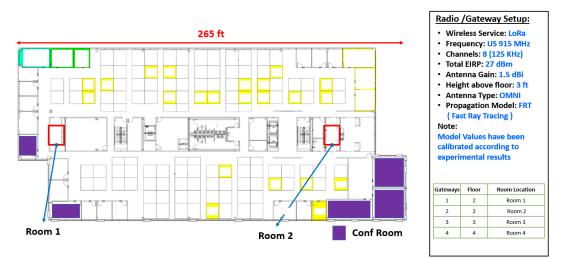


Figure 16 – Location 2 Setup and Specifications

4.1. Design / Planning

4.1.1. RF Design for Location 2

Once the propagation model was finally calibrated, the heatmaps for RSSI, SNR and best server were made for each floor. The results are shown on Figures 17-20. The criterion for the design is focused on RSSI > 97 dBms and SNR > 2 dB, based on the experimental results.

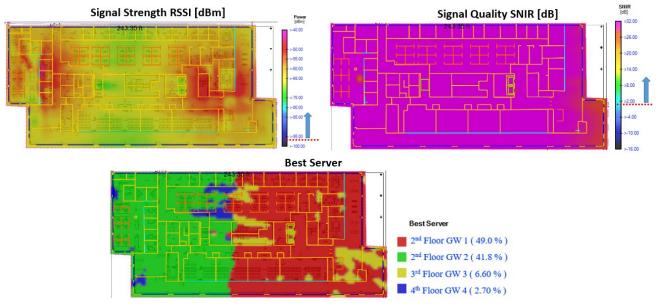


Figure 17 – Location 2 Design 1st Floor

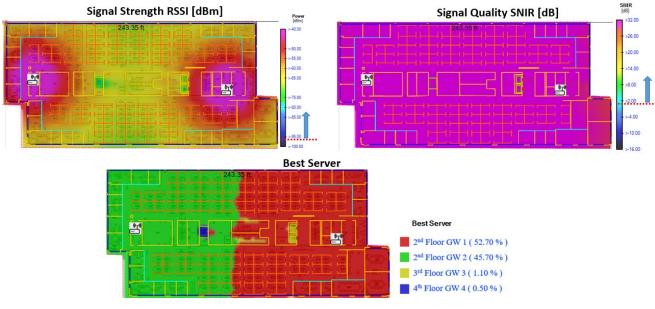


Figure 18 – Location 2 Design 2nd Floor

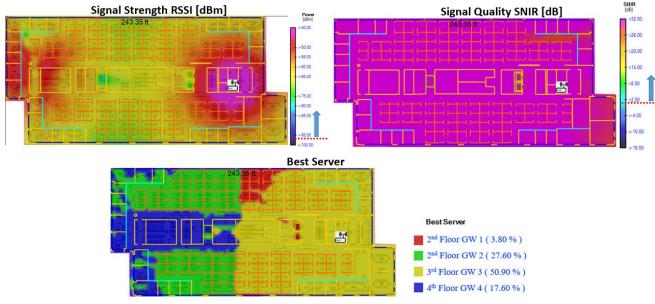


Figure 19 – Location 2 Design 3rd Floor

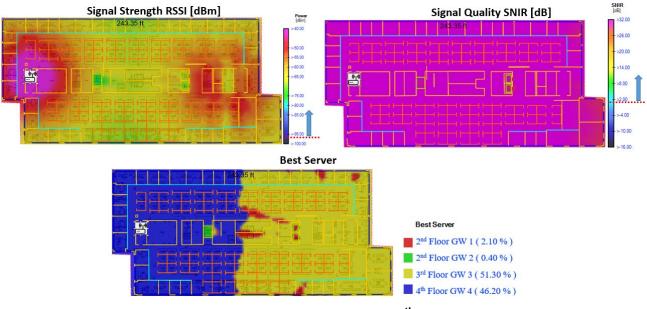


Figure 20 – Location 2 Design 4th Floor

4.1.2. Networking Design

The networking design is based on how many gateways were needed and their respective locations. Therefore, this design required three PoE (Power over Ethernet) switches and one router (Figure 21).

Opt. Outdoor GW

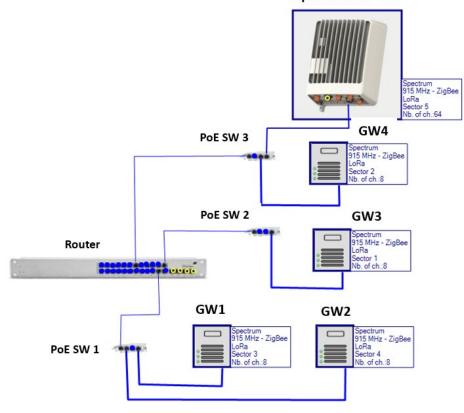


Figure 21 – Networking Design

4.2. Pre-commissioning on LNS and App Server integration

All the gateways and sensors were pre-commissioned, which means the gateways are up and running on the Network Supervision Tool (NST) and the sensors are sending data on the Data Access Sub System (DASS) platform through the GWs (Figure 22). The sensors' information is decoded on the LNS and then sent to the App Server for user-friendly data visualization via dashboards (Figure 23). Finally, all the components (sensors, GW, LNS and App Server) were working together and the next step was to mount all equipment in its planned location at the location 2 premises.

Gateway Registration on NST (Network Supervision Tool)

Gateways - Devices	Alarms - Acc	counts -	Audit Tr	rail	Jobs	Profiles -	Analytics -
Select gateways by tags		Refresh gal	teways			7820	
show 50 v entries	First Previou	Is Next	Last				
Name 👫	Galeway ID 41	Status 🛔	🚺 4t	Sec.			
						7800	
Browan_FG1_9bb6	5813d3fffe469bb6	•	2				
Browan_VCSII_3rd_Floor_9bf5	5813d3fffe469bf5	•	2	[#] Q /			
Outdoor Gateway Mega Tektelic	647fdafffe0113dc	•	0				
Tektelic_Copy/Print_C202	647fdafffe015739	•	0				8
Tektelic_Copy/Print_C302	647fdafffe0157ad	•	0		June -	/ 👷	781
Tektelic_Pan/Copy_C232	647fdafffe015728	•	0	* escent E			
Tektelic_Pan/Copy_C432	647fdafffe01572f	•	0	" George	12	Jam	
Tektelic_VCSII_3rd_Floor_8748	647fdafffe008748		2		Da		Strail 1

Adding Sensors on DASS (Data Access Subsystem)

=	orbiwise charter-St	oging								ñ
D	evices									
Sho	wing 41 devices.									
+	Add Device	v/o profile	C Refresh List							
Shor	wing per page 50 \$					First	Previous	1	Next	Lost
	DevEUI	Status	Comment	Groups	Apps		Lost Seen			
	DevEUI	Status	Comment	Groups Groups •	Apps Apps •		Last Seen	2023 - (08/04/	2023
	(Status	-			sampleap	1			2023
	DevEUI		Comment		Apps •	sampleap	08/04/2	3 1/33/34	6 PM	2023
	DevEUI 64-7F-DA-00-00-00-22-18	1	Comment Desk 9		Apps • thingsboard,		08/04/3	13 1:33:34 13 2:34:52	6 PM 2 PM	2023
	DevEUI 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-18	1 1 1	Comment Desk 9 Desk 3		Apps • thingsboard, thingsboard	opi_test	08/04/3 04/13/202 04/13/202	13 1:33:34 13 2:34:53 13 11:06:1	6 PM 2 PM 11 AM	2023
	DevEUI 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-1D	1 1 1	Comment Desk 9 Desk 3 3F - C306 Motion 2		Apps • thingsboard, thingsboard, thingsboard,	opi_test	08/04/3 04/13/202 04/13/202 04/13/202	13 1:33:34 13 2:34:53 13 11:06:1 13 1:46:13	6 PM 2 PM 11 AM 7 PM	2023
	DevEUI 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-1D 64-7F-DA-00-00-00-38-26	1 1 1 1	Comment Desk 9 Desk 3 3F - C306 Motion 2 2F - C233 Motion		Apps • thingsboard, thingsboard, thingsboard, thingsboard,	opi_test	08/04/2 04/13/202 04/13/202 04/13/202 08/04/202	(3 1:33:34 (3 2:34:5) (3 11:06:1 (3 1:46:1) (3 1:46:1)	6 PM 2 PM 11 AM 7 PM 6 PM	2023
	DevEUI 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-18 64-7F-DA-00-00-00-22-10 64-7F-DA-00-00-00-38-26 64-7F-DA-00-00-00-38-27	1 1 1 1	Comment Desk 9 Desk 3 3F - C306 Motion 2 2F - C233 Motion 2F - C226 Motion		Apps • thingsboard, thingsboard, thingsboard, thingsboard, thingsboard	opi_test	08/04/3 04/13/202 04/13/202 04/13/202 08/04/202 08/04/202	13 1:33:36 13 2:34:55 13 11:06:1 13 1:46:15 13 1:46:15 13 1:46:16 13 2:37:46	6 PM 2 PM 11 AM 7 PM 6 PM 6 PM	2023
	DevEUI 64-7F-0A-00:00:00:22-18 64-7F-0A-00:00:00-22-18 64-7F-0A-00:00:00:03-82 64-7F-0A-00:00:00:03-82 64-7F-0A-00:00:00:38-27 64-7F-0A-00:00:00:38-28	* * * *	Comment Desk 9 Desk 3 3F - C306 Motion 2 2F - C233 Motion 2F - C236 Motion 2F - C208 Motion		Apps - thingsboard, thingsboard, thingsboard, thingsboard, thingsboard thingsboard	opi_test	08/04/2 04/13/202 04/13/202 08/04/202 08/04/202 08/04/202	13 1:33:34 13 2:34:54 13 11:06:1 13 1:46:17 13 1:46:17 13 1:46:14 13 2:37:44 13 2:36:41	6 PM 2 PM 11 AM 7 PM 6 PM 6 PM 1 PM	2023
	DevEUI 64-7F-DA-00:00:00-22-18 64-7F-DA-00:00:00-22-18 64-7F-DA-00:00:00-22-10 64-7F-DA-00:00:00-38-26 64-7F-DA-00:00:00-38-27 64-7F-DA-00:00:00-38-29 64-7F-DA-00:00:00-38-29	1 1 1 1 1 1 1 1 1 1 1	Comment Desk 9 Desk 3 3F - C306 Motion 2 2F - C233 Motion 2F - C236 Motion 2F - C206 Motion 2F - C200 Motion 2F - C207 Motion		Apps • thingsboard, thingsboard, thingsboard, thingsboard, thingsboard thingsboard thingsboard thingsboard	opi_test	08/04/3 04/13/202 04/13/202 04/13/202 08/04/202 08/04/202 08/04/202 08/04/202	13 1:33:34 13 2:34:52 13 11:06:12 13 1:46:12 13 1:46:12 13 2:37:44 13 2:36:42 13 2:52:22	6 PM 2 PM 11 AM 7 PM 6 PM 6 PM 1 PM 1 PM	2023
	DevEUI 64-7F-DA-00:00:00:22-18 64-7F-DA-00:00:00:22-18 64-7F-DA-00:00:00:22-10 64-7F-DA-00:00:00:38-26 64-7F-DA-00:00:00:38-28 64-7F-DA-00:00:00:38-28 64-7F-DA-00:00:00:38-28	1 1 1 1 1 1 1 1 1 1 1 1	Comment Desk 9 Desk 3 3F - C306 Metion 2 2F - C233 Metion 2F - C208 Metion 2F - C206 Metion 2F - C206 Metion 2F - C206 Metion 2F - C206 Metion		Apps • thingsboard, thingsboard, thingsboard, thingsboard, thingsboard thingsboard thingsboard thingsboard thingsboard	opi_test	08/04/1 04/13/202 04/13/202 04/13/202 08/04/202 08/04/202 08/04/202 08/04/202 08/04/202	13 1:33:34 13 2:34:52 13 11:06:1 13 1:46:12 13 1:46:12 13 1:46:14 13 2:37:44 13 2:37:44 13 2:36:42 13 2:57:31	6 PM 2 PM 11 AM 7 PM 4 PM 4 PM 1 PM 1 PM 3 PM	2023

Figure 22 – LoRaWAN Network Server

	Push Settings to ThingsBoard		Getting Sensors Data on ThingsBoard					
Manage Apps			3F - C306 Device details					
Account ID	thingsboard Enter account ID with only letters, numbers, dash (" - "), underscore (","), dat (") and "()." The ID must be at least 6 aboraters long.		DETAILS ATTRIBUTES	LATEST TELEMETRY ALARMS EVENTS	RELATIONS AUDIT LOGS			
Password								
assword Confirmation			Latest telemetry					
Imin Rights	URL:		Last update time	Кеу 个	Value			
sh Settings	https://iot-application.tektelic.com:443		2023-08-04 14:44:08	Humidity	53.5			
files	Enter volid URL starting with http:// or https:// and port number		2023-08-04 14.44.06	Humony	00.0			
s .	Path prefix: \$(skip_topic)/api/v1/\$(devtags.accessToken)/telemetry		2023-08-04 14:58:41	Motion_detected	Empty			
	Authentication Methods:	ſ.	2023-08-04 14:58:41	Motion_value	0			
	None *		2023-08-04 14:44:08	Temperature_C	22.6			
			2023-08-04 14:44:08	Temperature_F	72.68			

Figure 23 – LNS and App Server Integration

4.3. Walk Test at Location 2

Once all the components are in place and operating properly, the FTD was used to characterize the GWs' signal on each floor at the location 2 premises. Figures 24 - 27 show the actual results of signal strength RSSI (measurement of how strong the sensor can hear a signal from a GW), signal quality SNR and best server. On each floor, several measurements were obtained, and the results show that all the samples are above -100 dBms of RSSI and above 0dB of SNR, which means the entire building is covered with appropriate LoRa signal levels for the suitable sensor functionality.

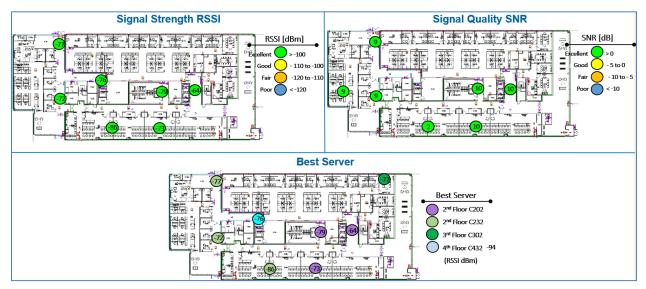


Figure 24 – Location 2 Walk Test Results 1st Floor

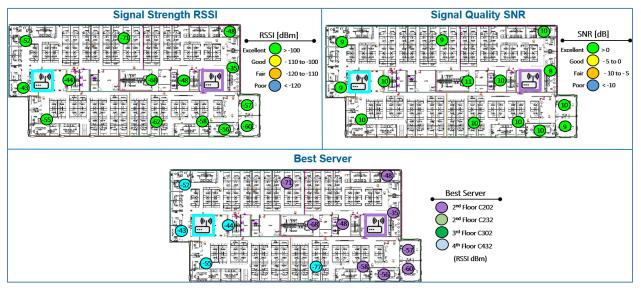


Figure 25 – Location 2 Walk Test Results 2nd Floor

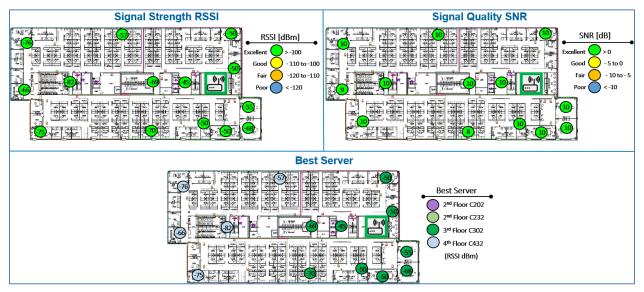


Figure 26 – Location 2 Walk Test Results 3rd Floor

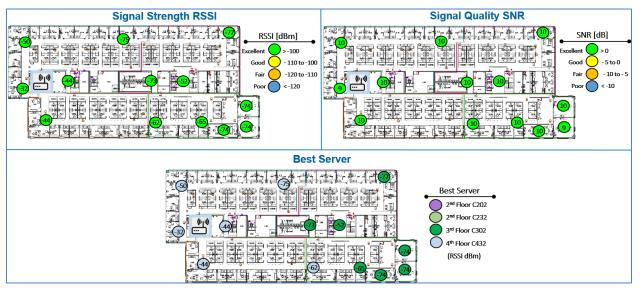


Figure 27 – Location 2 Walk Test Results 4th Floor

4.4. Application Server's Dashboards

The entire campus is exhibited on the main webpage; accordingly, the friendly menu allows a user to dive into specific, building, floor, room, and sensor information (Figure 28). Figure 29 indicates where exactly the sensor is located on the blueprint and allows the user to see real-time and historical data (Figure 30 and Figure 31).

Bidgt P Bidgs		Bldg	5 - Sei	nsors	by Room	ì
	E	Entity name 个	File Room	IDF	Meeting Rooms	Work Stations
Bidgs		Floor - 1		1		
Bidg2		Floor - 2	1	1	5	9
	F	Floor - 3	2	1	5	÷.
	F	Floor - 4	÷	1	-	
Bidgt-30						

Figure 28 – Application Server Main Menu View

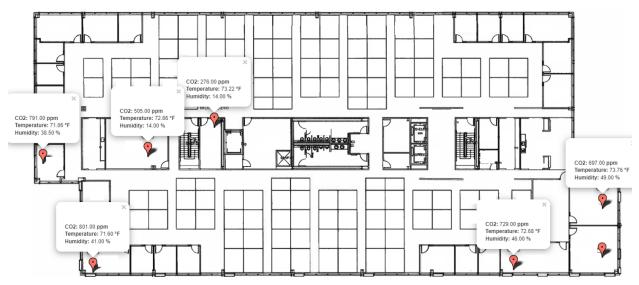


Figure 29 – Application Server Sensors Placement on 2nd Floor

Entity name	Temperature "F	Humidity %	CO2 ppm	Meeting Rooms - History CO2 B C Meeting Rooms - History Occupancy
206	73.76	49.5		
207	77.36	39.5	725	
208	72.86	46.5	718	200 Jul 29 Jul 30 Jul 31 Aug 01 Aug 02 Aug 03 Aug 04 0ff 13.00 13.10 13.20 13.30 13.40 13.50
226	71.6	41	801	
233	71.06	41	793	- C206 595.3 - C207 - C207 624.33 - C207
235	72.86	14	505	- C208 605.64 - C208
IDF - C246	73.22	14	276	- C226 635.41 - C226 C226
	Work Stations			
	Entity name	Status		
	Desk - 1	Empty		
	Desk - 2	Empty		
	Desk - 3	Empty		
	Desk - 4	Empty		

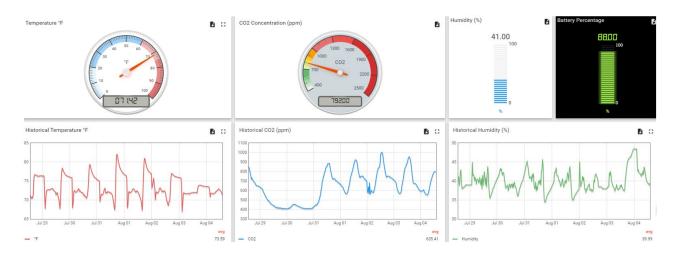


Figure 31 – Application Server Sensors Data Room C226

5. Conclusions and Best Practices

- Using the calibrated propagation model, the measured results show that all the samples are above -100 dBms of RSSI and above 0dB of SNR which means the entire building is covered with appropriate LoRa signal levels for the suitable sensor functionality.
- Based on the results obtained, the planning of the physical gateway placement is significant for developing low-power, long-distance communication via LoRa.
- The gateways are strategically located in order to cover the entire building, and their locations will warrant appropriate signal strength and quality levels. Therefore, one LoRa gateway can cover at least one floor below and one floor above it. Depending on the building size, shape, and design results, it is generally recommended to place gateways on different corners and alternating floors.

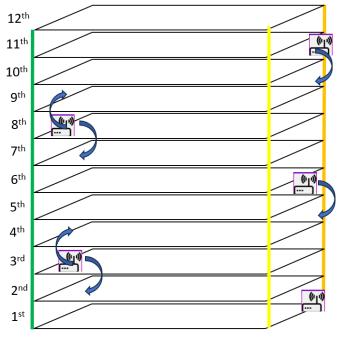


Figure 32 – Gateways Placement Strategy

Action points will be implemented with the goal of enhancing employee comfort, improving operational efficiencies, the efficiency of room occupancy, and reducing operating costs, according to the Table 4 - Action Points.

Environmental Variables	Units	Triggers	Actions - Send email notifications +
Temperature	Fahrenheit (F°)	> 80	Turn on the backup AC
		< 62	Turn on the backup Heater
Humidity	Percentage (%)	> 75	Turn on the dehumidifier
		< 25	Turn on the humidifier
CO2	Parts per million (ppm)	> 1000	Turn on the fans and open doors
Remaining battery	Percentage (%)	< 25	Change batteries
Motion	String	Empty	Turn off the lights

Abbreviations

3GPP	3rd Generation Partnership Project
ABP	Activation by Personalization
ADR	Adaptive Data Rate
AES	Advanced Encryption Standard
АррКеу	Application Key
AppSKey	Application Session Key
App Server	Application Server
BW	Bandwidth
CR	Coding Rate
CSS	Chirp Spread Spectrum
DDR	Dynamic Data-Rate
DevAddr	Device Address
DevEUI	Device Extended Unique Identifier
DL	Downlink
DLOS	Direct Line of Sight
DNLOS	Direct Non Line of Sight
DR	Data Rate
FCC	Federal Communications Commission
FRT	Fast Ray Tracing
FTD	Field Test Device
GW	Gateway
GPS	Global Positioning System
ІоТ	Internet of Things
НТТР	Hypertext Transfer Protocol
ISM	Industrial, Scientific, and Medical
JS	Join Server
KHz	Kilohertz
LNS	LoRaWAN Network Server
LoRa	Long Range
LoRaWAN	Long Range Wide Area Network
LPWAN	Low Power Wide Area Network
MAC	Medium Access Control
MHz	Megahertz
ms	Milliseconds
NaaS	Network as a Service
NB	Narrow Band
NS	Network Server
NwkSKey	Network Session Key

OTAA	Over the Air Activation
PHY	Physical
RAN	Radio Access Network
Rb	Bit Rate
RF	Radio Frequency
RP	Reflected Path
RSSI	Received Signal Strength Indicator
RX	Receive
SCTE	Society of Cable Telecommunications Engineers
SF	Spreading Factor
SNR	Signal-to-Noise Ratio
ТоА	Time-on-Air
TX	Transmit
UL	Uplink
Wi-Fi	Wireless Fidelity

Bibliography & References

- [1] Semtech, "What is Lora?" https://lora-developers.semtech.com/learn/get-started/what-islora Accessed: Aug. 17, 2023.
- [2] Lopez Chalacan, Victor Hugo. "Performance Evaluation of Long Range (LoRa) Wireless Rf Technology for the Internet of Things (IoT) Using Dragino LoRa at 915 Mhz." (2020)
- [3] Lopez, V., et al. "Evaluation of communication delays in LoRaWAN networks for indoor emergency scenarios." Journal of Communications Technology and Electronics 66.Suppl 2 (2021): S149-S158. K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, "A comparative study of lpwan technologies for large-scale iot deployment," ICT express, vol. 5, no. 1, pp. 1–7, 2019.
- [4] RF Wireless World, "Formula/Equations used in LoRa Data Rate Calculator" <u>https://www.rfwireless-world.com/calculators/LoRa-Data-Rate-Calculator.html</u> Accessed: Aug.09, 2023.
- [5] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, "A comparative study of lpwan technologies for large-scale iot deployment," ICT express, vol. 5, no. 1, pp. 1–7, 2019.
- [6] LoRa-Alliance, "RP2-1.0.3 LoRaWAN Regional Parameters". <u>https://resources.lora-alliance.org/document/rp2-1-0-3-lorawan-regional-parameters</u> Accessed: Aug.09, 2023