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1. Introduction 
Battery health is critical to the reliability of the outside plant network for cable internet providers. 
Unfortunately, the health of a battery is continuously being degraded due to use, environment, abuse, and 
many other known and unknown factors. This makes the change in battery performance variable and 
difficult to predict, with a battery’s calendar age an ineffective method to determine performance. 
Although discharge events can be tracked readily, the challenge is that the vast majority of outages result 
in partial battery discharges, with power restored at inconsistent and variable times. To address this 
challenge, Comcast set out to use a partial discharge analysis to determine the state-of-health (SoH) for 
each battery powering the over 250 thousand outside plant power supplies in its network. SoH is defined 
here as the percentage capacity (or runtime) a battery can deliver as compared to its new or original 
rating. This was done without removing the battery from the site, without the need for any external 
equipment, without the need to visit the site, and without ever having the downstream load unprotected. 
 
Previously, the replacement approach for power supply batteries was based on the calendar age of the 
battery. This did not account for the many factors that may have degraded the battery prematurely. As 
such, it may have resulted in the early replacement of batteries in good health or the delay in removing 
batteries in poor health, which translates directly to a false sense of reliability. The absence of a view into 
battery health made capital planning more difficult, as battery attributes (model, count, age, etc.) were the 
only information available to justify replacement. By providing a health score for batteries, long-range 
capital planning can focus on the true condition of batteries rather than their calendar age. This view into 
asset condition allows for the most effective use of resources by targeting the locations of greatest need. 
Views into future years’ battery replacement quantities are much more predictable using current battery 
health metrics and their degradation rate. 
 
The replacement of the batteries of greatest need also significantly improves the reliability of the outside 
plant powering network. Power supplies can withstand commercial power interruptions more effectively 
when poor performing batteries are identified and replaced. Improved power supply reliability directly 
impacts customers who may have a backup generator available or may continue to have commercial 
power during isolated power outages. Providing front line maintenance technicians with a view into each 
battery’s SoH promotes an effective, efficient, and proactive maintenance strategy for power supply 
battery replacements.  
 
A SoH assessment was accomplished  by developing a unique algorithm used to predict the performance 
of outside plant batteries when subjected to a controlled, partial discharge event, specific to the power 
supply’s unique load. In this way, Comcast will be improving the reliability of the outside plant network 
by advancing beyond a calendar age replacement cycle. Access to this information aids in the continued 
effort to improve infrastructure reliability. The use of a dynamic deep cycle battery discharge test with a 
prediction of the battery state-of-health will continue to improve Comcast’s best-in-class powering 
network.   
 

2. Background 

2.1. Identification of the Proposed Solution 

In traditional power backup applications to the utility grid, batteries are continuously on standby, ready to 
be discharged when utility power fails. In today’s Hybrid-Fiber Coax network, these batteries are 
primarily valve-regulated lead-acid batteries, which have an underlying chemistry whereby the SoH is 
impacted over time by various influences including charge/discharge cycles, temperature, time and other 
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factors.  Partial discharge events are common, where power is restored at completely inconsistent and 
variable times before the battery has been completely depleted. In contrast, full discharge events (where a 
battery is fully depleted) are undesirable. If a full outage continues to the point of depleting a battery, the 
site then fails and customers experience a service interruption as the outside plant equipment necessary 
for delivering services is no longer powered. In summary, backup batteries are designed to accommodate 
numerous partial discharges but are oversized and configured such that full discharges are uncommon by 
design.  

The goal of the proposed algorithm is to determine the SoH of a battery which can be used for battery 
replacement planning to ensure optimal uptime during the discharge. The existing methods for the SoH 
determination in literature can be divided into two categories [1]:  

1. Determining the SoH in a laboratory by changing effective parameters, such as temperature, 
in a wide range.   

2. Determining the SoH using the AC impedances and conductance measurements.  

Pascoe and Anbuky have proposed a model for Valve Regulated Lead Acid (VRLA) batteries based on 
the discharge rate, ambient temperature, charge rate, initial state-of-charge (SoC), and SoH degradation 
[2]. This model was further developed in different operating conditions by Jossen [3]. These methods, and 
others similar to them are admittedly effective, but require external equipment, as well as the removal of 
batteries for testing, leaving the load unprotected. As an indirect process, two methods using the 
Alternating Current (AC) conductance and impedance have been proposed for assessing the SoH of 
VRLA batteries. These methods are less accurate and are most effective in identifying outliers, i.e., the 
failed battery in a battery bank [4, 5]. In short, there was no accurate method uncovered that could assess 
a battery’s SoH without performing offline checks or using external equipment.  

2.2. State-of-Health Algorithm  
This paper describes a method to use partial discharge events to predict the SoH of a battery while the 
battery is in operation. By using a unique combination of measured and derived metrics that are collected 
only during the initial portion of the battery's discharge, the battery health can be predicted without 
relying on a total discharge of the battery. Using a thorough knowledge of chemistry and the 
electrochemistry occurring within the lead-acid battery, critical metrics were selected at very specific 
timestamps. The timestamps were selected to capture specific modes of known failure and degradation. 
The metrics of interest are listed below. It is important to note that the same metric taken at different 
timestamps can reflect different internal mechanisms within the lead-acid chemistry.    

• Voltage   
• First derivative of voltage  
• Second derivative of voltage  
• Change in voltage from optimal  
• Change in voltage from charge (prior to discharge event)  
• Recovery of voltage from discharge to charge (after discharge event)  
• First and second derivatives of the recovery voltage   

 

The figure below shows the voltage discharge curves of a set of VRLA batteries as captured by an actual 
power supply that has switched to battery back-up mode and is using these batteries for backup power. 
This set of voltage curves indicates a range of battery SoH, with one battery in particular much worse 
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than the others. This is not an unusual situation found in the field. An additional complication is that this 
site has two sets of batteries connected in parallel to increase the required runtime for that site. This figure 
shows the primary items of interest in relation to the voltage discharge curve that were considered in the 
analysis. 

 

  

Figure 1 - Points of Interest in Voltage Discharge Curve 

 

In addition to these metrics determined from the voltage curve, there are additional items useful to the 
predictive algorithm. This includes the following items.  

• Temperature 
• Number of batteries 
• Output load and/or current 
• Immediate vs. distant history 
• Cycle history – depth, number, accumulated energy 
• Charge status – time on recharge, time from last discharge, stability of battery voltage 
• Battery information – manufacturer, model, age/install date 

 
 
An important part of algorithm creation is the correlation of the metric to the electrochemistry of the 
battery. For example, the battery voltage drop due to the coup-de-fouet (the initial voltage drop seen in 
lead-acid batteries) is used to indicate the state-of-charge, electrolyte strength, and plate health, primarily 
the negative plate [6, 7]. Another example is the first derivative of the battery voltage due to the coup-de-
fouet. This value is used to indicate the degradation of plate core health, primarily the negative plate and 
primarily due to cycling. Other metrics and their timestamps were selected because of their correlation to 
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other internal battery mechanisms, such as active material crystal size, positive grid corrosion, negative 
plate sulfation, and electrolyte purity [8, 9, 10]. 
 
A further consideration for this algorithm was the time scale. Discharge events in the field have 
traditionally been measured in time (hours and minutes) with a minimum runtime depending on the 
criticality of the downstream equipment. A conventional discharge curve is shown in Figure 2 below.  

 
 

 
Figure 2 – Coup-de-fouet of a VRLA Battery 

 
However, because the downstream load varies with every power supply, the time value will vary. That is, 
a five-hour discharge on a lightly loaded battery is not the same as a five-hour discharge on a highly 
loaded battery and the voltages are not comparable. To normalize the runtimes due to varying 
downstream loads, the battery discharge curves were plotted against 'Percent of Original Capacity 
Removed.’ In this way, discharge curves and voltages were made to be directly comparable. An important 
implication of this is that when a discharge was made to a predetermined percent capacity, the discharge 
time would vary based on the downstream load on that power supply. In this way, the discharge times for 
each power supply are dynamic and fully time varying.  

 

3. Data Collection 
The dynamic deep cycle testing leverages the ANSI/SCTE 38-4 outside plant power supply management 
information base (MIB) for measurements. This long-established standard contains all the data points 
necessary to measure a deep cycle battery test.  
 
The MIB exposes key power supply voltage and configuration information in the psDeviceTable. The 
MIB reports each battery’s voltage in each battery string in the psBatteryTable. Each individual output 
current is reported in the psOutputTable. The power supply itself must instrument and report all these 
values.  
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The data collection interval is key for deep cycle testing. The practical limit for Simple Network 
Management Protocol (SNMP) data collection in an operational outside plant network is one sample per 
second. Polling the power supply data at slower than five minutes for these tests reduces the fidelity of the 
curve fitting and requires longer test periods which then become detrimental to battery health. Collecting 
the data at intervals between one second and two minutes per sample has been shown to provide sufficient 
accuracy for the curve fitting.  
 
Another benefit of this dynamic testing is that high-rate data polling does not need to be sustained. 
Contemporary collection systems may already be capable of ingesting these data points at rates that can 
be used directly in the curve fits. If not, running higher speed collection for a brief period before the start 
and after the end of the deep cycle test is sufficient to collect the data necessary to analyze battery health. 
This allows operators to manage the overall amount of data the polling system retains.  
 

 
Figure 3 – Collection of Data by Time 

 
By utilizing this well-known SCTE standard, operators can reuse much, if not all of their existing power 
supply data collection infrastructure to support the deep cycle battery testing analysis.  

4. Results 
As described in the earlier sections, there are a large combination of metrics that can be selected for a 
predictive algorithm. For example, the battery's voltage during the discharge is a single metric but can be 
measured in many ways. It can be recorded at numerous different times, which will represent different 
chemical actions within the battery. How it deviates from the norm, the magnitude of the change over 
time and the rate of that change over time can also be measured, as each of these can indicate a 
completely different mechanism within the battery. High-resolution discharge events were carried out in 
the lab to determine which metrics were most critical to a SoH prediction.  

4.1. Training  

A representative set of batteries was recorded under a controlled discharge in the lab for initial training 
development. The batteries had a SoH range of less than 25% to over 100%.  As described previously, the 
discharges were normalized to a ‘Percent of Original Capacity Removed’ scale. The voltages were 
analyzed for the full discharge, down to 100% capacity removed. Additionally, a very high-resolution 
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discharge was run to highlight the voltage curves during the initial 5% of the discharge. Representative 
curves are shown in the figures below.  

       
Figure 4 – Battery Voltages During Discharge Testing  

Metrics were selected to differentiate the high performing batteries from the low performing batteries 
using these curves as a basis for ‘good’ vs. ‘bad.’ In particular, the voltage, the deviation of the voltage 
from an optimal value, its first derivative, and its second derivative, each at selected points throughout 
these discharge curves were selected. All derivatives were time based. After some review, ten total 
metrics were selected, and each were normalized to range from 0 to 1, so they would be mathematically 
comparable. They were then combined using a weighting factor based on experiential knowledge of the 
lead-acid battery chemistry. The final output of this algorithm provides a predicted state-of-health 
between 0% and 100% based on four major metric classifications: voltage, voltage deviation from 
optimal, first derivative of voltage, and second derivative of voltage.  

  [Normalized voltage at selected intervals between 0 and 25%] x [weighting factor(s)]   + 

[Normalized voltage deviation from optimal at selected intervals] x [weighting factor(s)] + 

[Normalized first derivative of voltage at selected intervals] x [weighting factor(s)]  + 

[Normalized second derivative of voltage at selected interval(s)] x [weighting factor(s)]  =  

Percentage State-of-Health 
 

4.2. Verification Runs 

As a preliminary test of the algorithm, batteries from ten separate field locations were removed from their 
installations and brought to the lab. They were capacity discharged to determine their actual states-of-
health (plotted as ‘Actual’ in the figure below). The algorithm was then run on the initial 25% of each 
discharge curve of these batteries to determine the prediction vs. the actual SoH (shown as ‘Prediction’ in 
the figure below). This comparison is shown in the table below and in the scatter plot as shown with the 
average difference between the predicted and actual less than 13%. Admittedly very small, these 
preliminary, non-optimized results are extremely promising. It is premature to apply an Analysis of 
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Variance (ANOVA) analysis to these comparisons because of the sample size, but the f-statistic value and 
the P-value both strongly indicate that the two sets represent the same group.   

        
Figure 5 – Dataset from Verification Testing 

Several of the battery predictions were well correlated to their actual battery health. However, others 
displayed prediction variations larger than desired. To better understand this, each separate metric was 
looked at individually. The ten metrics used are shown as calculated and normalized in the algorithm. 
When each metric was looked at individually, it is evident that some are better at differentiating between 
the battery’s health condition than others. The differentiation can be affected somewhat by the constants 
originally selected for the calculation of that metric. A nominal effort was begun to optimize the 
algorithm by manually adjusting these constants. Also, the same effort was expanded to manually adjust 
the weighting factor of each metric and the normalizing factor of the compilation of all metrics. The 
optimization of this algorithm has progressed but is far from complete. This effort appears very promising 
and will continue in earnest in the next phase of this project when a much larger number of sample sets 
will be examined. 

 
Figure 6 – Calculated Metric Values for Batteries Tested SOH 
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5. Implementation 
This algorithm can be implemented within the Power Supply Notebook (PSNB) so that each battery will 
generate a health score. The PSNB is an application that manages the inventory and tracks the status of 
Comcast’s outside plant power supplies. There are over 250 thousand power supplies that are managed 
using the software. Power supplies provide telemetry each minute, reporting of the device status, and 
select parameters, all of which are displayed within the PSNB. Maintenance tickets can be generated from 
within the application based on the information available. Incorporating the results from the dynamic 
deep cycle test of the battery health score into the PSNB application ensures that battery replacements are 
managed effectively, and the correct power supply maintenance is performed.  

Maintenance technicians utilize the PSNB to review power supplies’ telemetry and to document 
maintenance work completed. Importantly to this project, it also allows remote testing of power supplies 
to ensure their effective operation. This feature will be used to implement a dynamic testing profile based 
on the algorithm of this work. Within this tool, battery health scores will be initiated, tracked, and 
recorded, all through the PSNB application. A detailed history of power supply discharge events is also 
available as a reference and verification method for the resulting battery health score. The real-world 
power supply performance history and battery health score are imperative in determining maintenance 
plans for battery replacement.  

The ability to view current power supply status, historical events, and the results of the battery testing in 
one location is critical to the planning process. A poor battery health score will prioritize the power 
supply in the maintenance plan. The ease of creating maintenance plans is greatly increased by utilizing 
the battery health score as a key driver, and the ability to access the information for all power supplies in 
a single location is a key new feature. Additionally, this will enable the tracking of proactive maintenance 
progress and the monitoring of battery replacements and logged work within the PSNB.  

6. Conclusion  
The preliminary results presented of the dynamic duration deep cycle testing and algorithm to determine 
battery health have shown to be extremely promising. By normalizing the discharge data, the downstream 
load can be utilized to generate battery health values that can be compared directly, despite variations in 
the downstream loads. The current algorithm developed is applied to only the initial portion of the 
discharge and a battery health prediction is made. A key characteristic of this method is that only a partial 
discharge is necessary, and as such, the power supplies are never left unprotected due to a fully depleted 
battery. Using the Power Supply Notebook to implement the testing capabilities allows for complete 
integration of the power supply monitoring, maintenance tracking, and battery health ratings in one 
unified application. The PSNB also allows remote testing of any site with full data collection and access. 
The use of this functionality is expected to improve the reliability of the outside plant network and the 
effectiveness of the capital replacement program for the worst performing batteries. It is believed that a 
dedicated machine learning effort would significantly improve the accuracy of this model and is already 
planned as a future improvement. 
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Abbreviations 
AC Alternating current 
ANSI American National Standards Institute 
SCTE Society of Cable Telecommunications Engineers 
MIB Management information base 
ANOVA Analysis of Variance 
PSNB Power Supply Notebook 
SoC State-of-charge 
SNMP Simple Network Management Protocol 
SoH State-of-health 
VRLA Valve Regulated Lead Acid 
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