

© 2023, SCTE®, CableLabs® and, NCTA. All rights reserved. 1

A Supply Chain of Weak Links

Open Source Versus Proprietary Software Threat Analysis

A Technical Paper prepared for SCTE by

Brian A. Scriber
Distinguished Technologist and VP of Security Technologies

CableLabs
858 Coal Creek Circle, Louisville, CO 80027

𝕏𝕏 @brianscriber
b.scriber@cablelabs.com

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Abstract ... 3

Categories and Subject Descriptors ... 3

General Terms .. 3

Keywords... 3
1. Introduction .. 3
2. Defining Open Source and Proprietary Software .. 3
3. Software Licensing .. 4
4. Defining Free and Open Source Software .. 4
5. Defining Proprietary Software ... 5
6. Security Assumptions .. 5

Analysis ... 5
7. Empirical vs. Intuitive .. 5
8. Count vs Severity vs Impact Breadth .. 6

Threat Comparison ... 6
9. Forking and Versioning ... 6
10. Patching .. 6
11. Malign Code Insertion and Insider Threats ... 7
12. Continuous Security Review ... 7
13. Software Use ... 7
14. Developer Expertise .. 8
15. Privacy Engineering .. 8
16. Liability and Regulatory Risk ... 8
17. Software Updates and Trust ... 9
18. Linking Libraries and SBOM ... 9
19. Software Monoculture ... 9
20. Publication of CVEs .. 12
21. Hybridization and Proprietization of Open Source .. 12
22. Economic Factors and Software Library Friction .. 12
23. Policy Implications ... 13
24. Mitigations ... 13

Outlook .. 15

Abbreviations .. 15

References .. 15

List of Tables

Title Page Number
Table 1 Activities Supported by Software License Model ... 4
Table 2 Threat Comparisons Where FOSS and Proprietary Software Differ ... 11
Table 3 Open-Source Security Foundation SLSA .. 14

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 3

Abstract
Research explores the assumptions, resourcing, and maintenance realities of software in both closed and
open ecosystems. This work is an evaluation of the Software Lifecycle using a security lens to highlight
advantages and disadvantages of each approach at different development stages. An aggregation of risks
and threats is provided to build an overview of the myths and realities of ecosystem transparency,
modifiability, and ownership while answering questions about forking, hybridization, and proprietization.
With recent supply-chain attacks in the networking industry, and identification of malicious actors within
the open-source ecosystems, these macro-threats are evaluated for applicability to each approach:
monoculture vulnerability analysis, presumption of security review, motivation for feature additions, and
software patching.

Categories and Subject Descriptors
D.2.8 [SOFTWARE ENGINEERING]: Metrics

K.6.5 [MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS]: Security and Protection

K.4.1 [COMPUTERS AND SOCIETY]: Public Policy Issues

General Terms
Security, Economics

Keywords
Security, Metrics, Open source software, Closed source software, Economics, Policy, Monoculture

1. Introduction
There exists a debate centered on the security of open source versus closed source software; this is
predicated upon the false idea that there is one choice that the enterprise or implementation team must
make, and that after selecting one of these two models, the implications of that decision can be ignored
going forward. This paper will address the metrics that go into these considerations, defining the legal
frameworks and contribution models for the different types of software, but it does so not to provide an
answer to either one of these being more secure than the other, but with the objective of identifying the
threats particularly inherent to adoption of either. Awareness of the threats lends itself to the considered
mitigation steps necessary to better buttress a software service to be resistant or resilient to those threats.

2. Defining Open Source and Proprietary Software
Without clarification of definitions, it is possible to get tangled into emotional debates that could distract
from the point of this paper which is to identify the inherent threats different across the approaches. The
definitions are important, and for other contexts, increasingly so, but for purposes here the classification is
based on a threat analysis perspective, not as heavily upon the licensing or legal frameworks.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 4

3. Software Licensing
There are different licensing models that often play into definitions of different software models, for
purposes of this paper, one key element for consideration is if the license publishes the source code,
allows for modification and whether it allows for commercial hybridization or proprietization, but this
paper will not tackle an otherwise contentious issue of whether software licensing nuance makes software
open or not. From a perspective to be reviewed later, determining who contributed, or potentially who
and how the contribution was reviewed, would be interesting concepts to consider, and only a very few
licenses are starting to explore those caveats.

Table 1 Activities Supported by Software License Model

License Allows for Commercial
Hybridization or
Proprietization

Requires
contributions be
attributed to
author

Includes explicit notes on
contribution review

CC BY Yes Yes No

CC BY-SA Yes Yes No

CC (other) No No No

GPL v3 Yes No No

Apache v2.0 Yes General No

MIT Yes No No

Apple Public License 2.0 Limited No No

BSD 3.0 Yes No No

EUPL 1.2 Yes* No No

Open SSL 3 (Now
Apache 2.0)

Yes Somei No

Free and and open also get confused when looking at software like Adobe Acrobat Reader, which is
closed source, but offered free of charge, or tools like the Oracle MySQL database which is open source,
but subject to payment requirements. For purposes of this paper, the actual payment requirements are less
important than the development methodology.

4. Defining Free and Open Source Software
Free and Open-Source Software (FOSS) is commonly used term inclusive of both the free software and
open-source software models. For the purposes here, we can cover all those open models listed above
under Software Licensing as FOSS because the threats from the software development lifecycle will be
similar and the resultant code from non-hybridized or proprietized software will be available for review.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 5

This paper will look at any open contribution model software with subsequent open review of the source
code as FOSS. Oracle’s MySQL, given this definition, would be considered FOSS for purposes of this
paper.

5. Defining Proprietary Software
Proprietary software shall be defined here as those solutions that are developed privately (either
commercially or with no initial intention of public release of the final source code) and for which all
contributors have a commercial agreement (employee, contractor, subcontractor or similar) for the final
released solution. The development process and the resultant deliverables are controlled in a non-public
manner. Adobe’s Acrobat Reader would be considered proprietary for purposes of this paper.

6. Security Assumptions
While comparative security in FOSS vs proprietary code bases has been a topic of research and
measurementii,iii, new threats have emerged during the decade since the some of the most recent novel
work in this space and some salient questions remain in performing a comparison.

Outstanding questions for security considerations include the following: What metrics exist for
comparative analysis? What do those metrics focus on? Is reliability/availability a reliable proxy for
security? Who’s writing the code? Who is reading the code? How frequently is the code reviewed and
how efficient are those reviews at finding vulnerabilities before adversaries? What are the economic
hurdles to getting access to the code or to modifying the code for malicious purposes? How do embedded
software and vulnerabilities therein contribute to the overall security posture?

Analysis
7. Empirical vs. Intuitive
From a methodological perspective, even comparing published vulnerabilities in FOSS and proprietary
solutions limits the sampling to only those known/public vulnerabilities in widespread software packages.
Comparison between the mean time between vulnerability disclosure and fix has shown some advantages
toward FOSSiv.

While the population in that prior study was extremely limited, the impact of the time between discovery
and fix is increasingly important because we see examplesv of adversaries adopting attack behavior to
leverage recent disclosures within hours of CVE publication (e.g., Citrix CVE-2022- 27518, Microsoft
Exchange Server CVE-2022-41040, Confluence Data Center CVE-2022-26134). Metrics for security
currently tend toward reliability and availability and less toward the frequency or severity of
vulnerabilities in a software solution or toward the measurement of how widespread and broadly
impacting a vulnerability in a particular software package might be (e.g., Log4Shell CVE-2021-44228).
Without at least these three axes, comparisons are going to remain difficult.

Availability of metrics for those three dimensions (count, severity, and impact breadth) are difficult to
obtain or even approximate, and the danger of comparing empirical data with intuitive assumptions is a
significant risk to the industry.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 6

8. Count vs Severity vs Impact Breadth
Modern software is manifold, and while legacy systems may have had a monolithic approach to all the
software running in a solution, the modern software leverages packages and libraries in compiled code, it
uses callouts to multiple systems and microservices, the software also relies upon dynamic elements in
configuration or deployment-optimization files. While legacy measurements looked at a system
independently and heavily weighed vulnerability count and severity of vulnerability, the approach failed
to account for the supply-chain implication of the modern technical solution space by including
something beyond the severity concern of a compromise to this specific system. That vector beyond
count and severity is the impact breadth, which addresses the concern with embedded libraries that are
widely usedvi, hardware deficiencies that allow compromise (e.g., Spectre variants, CVE-2017-5753), or
even compilers that have hidden vulnerabilities allowing for illicit code insertion or modificationvii.

For a true measure or comparison between systems or solutions, we would need to weight the count,
severity, and impact breadth, and find the product of all three.

Threat Comparison
Threats across the supply chain, software lifecycle, and in the related processes abound in both FOSS and
proprietary solutions, but over the last ten years the supply chain attacks have changed the risk calculus
and bring consideration to different weights for existing and newer risks. Table 2, below, looks at threats
where the implications differ between FOSS and proprietary software.

9. Forking and Versioning
In FOSS environments, forked codebases split reviewers and active participants across multiple projects.
Fixes in one branch may not be adopted in base software or other branches and take time to migrate if
they do. Fixes may not be appropriate for other branches or may introduce new vulnerabilities.

Support for older versions of software is the analogous behavior in the proprietary world. Budgets may
prevent upgrades, and dependencies between versions may force organizations to stay on platforms or
services that have known vulnerabilities.

10. Patching
Reliability engineering looks at mean time between failures, but security patching can look at mean time
between vulnerability discovery and deployed patch. In this, FOSS seems to have a slight advantage over
proprietary solutionsviii. Not having a managed patching mechanism may be hurting FOSS though,
perhaps more than speed to fix can make up for: the Log4Shell vulnerability (CVE-2021-44228), had a
fix available within a day, but nearly a third of current downloads of that package are of an earlier,
vulnerable, versionix. The true horror from research on downloaded packages is that 96% of the time that
a software package is downloaded, a safer, more recent, version is availablex. Updating build scripts, links
that don’t always point to HEAD, and time available for keeping dependencies fresh are all security
considerations. Another concern with FOSS is that patching and mitigation actions are public and when
the CVE and fix are published, threat actors can take this knowledge, along with sample exploit code and
look for similar toolsets that may have the same code profile (even cut/paste identical code) to apply to
create new zero-day vulnerabilitiesxi. Examples of this came after the Log4Shell vulnerability (CVE-
2021-44228) and leveraging the privilege escalation vulnerability in Linux (CVE-2021-4034).

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 7

Proprietary solutions and hybridized solutions often have a maintenance contract related to updates and
patching, the solution may or may not be managed, but the update process is frequently run by the
solution provider. From an economic perspective software support is often based upon the expected
revenue from newer versions of the software that can include patched updates from prior revisions. If the
solution isn’t widely adopted, if the version is a couple revisions behind the lead for that package, or if the
company supporting it cannot invest in support, patching can take a back seat. With proprietary code, the
users have no option to adopt the code and support it themselves and are beholden to the software
provider.

11. Malign Code Insertion and Insider Threats
FOSS projects open contributor model is often paired with a review prior to adoption by maintainersxii.
Those maintainers may not be experts in reviewing for security or privacy vulnerabilities allowing for
insertion. Intentional contributions enabling nuanced vulnerabilities also occur, the field from which
these are drawn include nation-state APTs, hactivism, organized crime and more. These vulnerabilities
can be leveraged for data exfiltration, ransomware insertion, machine hijacking, fraud, or denial of
service.

The closed list of contributors in corporate or proprietary solutions spaces is not proof against malign
code insertion, there are examples of insider threat actors having actually engaged exfiltration or code
insertion that include departing employees (e.g., Proofpointxiii), through acquired companies’
vulnerabilities (e.g., the Marriott-Starwood acquisition hack in 2014), accidental exposure of proprietary
secrets by employees or contractors (e.g. Microsoft posts to GitHub in 2022xiv).

12. Continuous Security Review
The claim is made that “given enough eyeballs, all bugs are shallow”xv and that this fundamentally
improves the quality and security of FOSS. Opposite questions also arise: “Sure the source code is
available But is anyone reading it.”xvi Questions about the reviewers include their number, qualifications,
incentives/motivations, experience with the particular code base and cryptography, and their belief or
trust in existing code.

Proprietary code differs in the reviews and motivations. Presumably, threat analysis is being performed
(consciously or not) within corporations where vulnerabilities are being balanced against revenues or risk.
For any system, commensurate processes and personnel would be assigned to write, review, test, and
monitor. Those personnel face the same questions as FOSS, but the answers may differ for proprietary
issues and for resource prioritization.

13. Software Use
In FOSS, the software is available for download, compilation, and use, often “as is” and without
warranty. Adversaries have leveraged the trust in using open-source software during campaigns targeting
senior developers, posing as recruiters and asking the developer to use modified versions of open source
tools to demonstrate masteryxvii. As will be shown in section 17, Software Updates and Trust, checksums
are not reliable proof against this type of attack.

Proprietary software is not proof against these types of threats, and with hybridization, the risks
associated with composite software are present in a large majority of software packagesxviii. When the
included software is purchased as a binary library from other providers, particularly when that happens
without an SBOM, the unknowns are effectively being granted full citizenship in the now proprietary

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 8

software or internal process with little understanding of what may happen with the process, the data, or
the distributed final binaries.

14. Developer Expertise
FOSS volunteers may not be security experts or have access to training or mentorship from those with
that expertise. Private employers look for developer experience in open-source projects and encourage
that activityxix. This drives even the experienced developers to contribute and review open-source projects
to gain employment opportunities. With some FOSS implementations (see Table 1) explicitly citing
authors, external credit is available and can lead to being hired to positions with higher compensationxx,
but with that credit comes accountability if vulnerabilities are found.

Proprietary projects face the same hurdle as FOSS when developers leave projects, but hand-offs,
training, documentation, backup developers with depth on important projects can be retained or recruited
within private companies. For security concerns, it may be easier to find compensated help than it will be
to find time from those already employed willing to volunteer time to FOSS. When the cybersecurity job
market sees 35% annual growthxxi with 3.5 million open cybersecurity positionsxxii open globally,
available time from qualified security developers is challenging even for those who can compensate for
that time.

15. Privacy Engineering
Privacy engineering is a relatively new disciplinexxiii. While developers in FOSS are as educated as
developers in proprietary solutions, qualifications for privacy work include strong policy support, some
legal support, and technical understanding of data architecture and understanding of movement of data
through and across systems. While open-source efforts have attracted legal support through groups like
the Law Centerxxiv, it may still be early to expect policy support.

Privacy engineering in the proprietary realm is influenced by a few factors, a few of these include
corporate public perception, regulation and the associated enforcement efforts, as well as the financial
benefits of the data economy that may work against the first two. Looking at liability and risk concerns as
part of the motivation in incentives for support of technologies like privacy protections could advantage
proprietary software over FOSS, but data economy tradeoffs play into this calculus as well.

16. Liability and Regulatory Risk
The EU Product Liability Directive (PLD) update work in 2023 appears to be struggling with FOSS

xxvii, it states “However where software is supplied in exchange for a
price or personal data is used other than exclusively for improving the security, compatibility or
interoperability of the software, and is therefore supplied in the course of a commercial activity, the
Directive should apply.” The implication being that if FOSS is ever incorporated into a product, it is
subject to liability risk, and with respect to the EU Cyber

xxviii

xxv. In
one clause it states: “With the aim of not hampering innovation: (i)free and open-source software
developed or supplied outside the course of commercial activity, as well as (ii) the source code of
software, should be excluded from the definition of products covered under the proposal (Recital13).”xxvi
In a later clause of the full proposal

 Resilience Act and the PLD, major FOSS tool
providers wrote in opposition “it will have a chilling effect on open source software development as a
global endeavor, with the net effect of undermining the EU’s own expressed goals for innovation, digital
sovereignty, and future prosperity.” .

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 9

Software liability for proprietary solutions certainly carries with it the legislative and regulatory risk of
providing a service, but add to this the relatively recent additions to privacy regulation (GDPR in the EU
and state-level privacy regulation in the US, PIPL in China, PIPEDA in Canada, along with several other
sectoral or national privacy regulations in place now). Cybersecurity and Infrastructure Security Agency
(CISA) in the US has subpoena powers related to cyber incidents and they are advocating for SBOM
requirements, particularly for anything deemed critical infrastructure. Violations, delays, or inaccuracies
in reporting may have consequential ramifications.

17. Software Updates and Trust
FOSS builds offer checksums on the binary distributions and allow users to compile these themselves as
well. Checksums are not always present, but in over 88% of cases users may not notice checksums,
understand checksums, know how to go about verifying checksums, or simply don’t bother to verify
packages. Over 33% of those asked specifically to verify software do so improperly and fail to catch a
mismatch (partial pre-image attack)xxix.

Signed binaries from PKI-backed digital certificates of trusted entities are intended to verify the source
and the package contents match those of the trusted entity. While security policies, IDS/IPS, and software
update mechanisms work to automate the verification of these packages, that doesn’t mean supply chain
issues can’t occur with those credentials or the verification assumptions. The SolarWinds supply-chain
attack inserted malicious code upstream of the signingxxx, and the Aug 2023 Microsoft Azure attack using
compromised Managed Service Account credentials to sign requests for new credentials which exposed
user email and potentially virtual hostsxxxi.

18. Linking Libraries and SBOM
FOSS linking is done publicly. There are tools to help organize these, and even some tools to help you
find our who may be including other libraries in their builds. For a cybercriminal, knowing that a
vulnerability exists in a particular software package, and perhaps having an exploit at the ready is more
valuable when there is a clear list of other software that is now vulnerable because of the binary inclusion,
however many levels.

Proprietary software still has the linked vulnerability problem, but the non-public nature of linking
requires more trial-and-error work on the part of the cybercriminal looking for a way to apply an exploit.
Software Bill of Material (SBOM) efforts of latexxxii are pushing for knowledge of all linked libraries by
software owners. While that knowledge is valuable and can help with tracking and stopping
vulnerabilities, the publication of this list of included libraries could be used as a roadmap for criminal
adversaries.

19. Software Monoculture
In agriculture, plant propagation, breeding, and genetic similarities are used to help formulate herbicides
and pesticides that can work without impact to target crops, it also helps in terms of standardization of
equipment used for planting and harvesting and the efficiency of yield for a given quantity of land can be
higher through monoculture farmingxxxiii. The danger of these similarities, or identical genetic makeup in
some cases, is that a threat to a xxxiv, one disease, one
change in economics or distribution pricing can have a massive impact to the monoculture. This is
entirely analogous to the work taking place in software.

 single plant becomes a threat to all plants. One pest

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 10

Reliance upon existing public software is economically incentivized, and when underlying libraries are
leveraged across multiple included platforms, services, or other software it drives further consolidation. In
FOSS, the classic example of this is the reliance upon the OpenSSL library vulnerability (CVE-2014-
0160) and the resultant Heartbleed impact which made the vulnerability in that package a concern across
the ecosystem. Another more recent example has broader implications from the monoculture perspective,
the Log4Shell vulnerability (CVE-2021-44228), which was pervasive with mitigation efforts that
continue today.

Proprietary software is not immune to these considerations. When the operating system, browser, cloud
offering, microservice, or tooling are all identical, a risk to one can become a global crisis. The other
implication to using services outside of software run independently (e.g., an online email management
service), is that an organization effectively makes each of the organizations running those services an
insider to their data, their systems, and this opens the horizontal attack threat surface. When Microsoft
Azure services were attacked in 2023xxxv, Outlook 365 and Azure subscribers were all vulnerable.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 11

Table 2 Threat Comparisons Where FOSS and Proprietary Software Differ

Threat FOSS Implications Proprietary Implications
Forking and
Versioning

Update propagation across forked
codebases, reviewers and participants
split across projects, update applicability
to forks, timeframe, new vulnerabilities.

Support for older versions of software:
budgets may delay/prevent upgrades,
dependencies between versions may force
organizations on vulnerable platforms.

Patching Mean time between vuln. ID and patch
vs. 96% of patched software updates are
available but ignored. Public patching
and mitigation alerts adversaries.

Maintenance contracts, update process is
frequently run by the solution provider,
feature lag, security patch timeframes,
code abandonment risk.

Malign Code
Insertion &
Insider
Threats

Maintainer expertise in developing and
reviewing for security, allowing for
insertion of intentional malware
contributions.

Active employee/contractor data or code
exfiltration or code insertion. Departing
employees, acquired companies, accidental
exposure of proprietary secrets.

Continuous
Security
Review

Reviewer count, qualifications,
incentives/motivations, experience with
the project code, cryptography, and their
belief or trust in existing code.

Liability pits resource prioritization against
revenues and risk: development, review,
testing, and monitoring; FOSS questions
remain regarding experience and trust.

Software Use FOSS is often trusted by technical users,
it is offered “as is” and without warranty,
and checksums are not proof of
invulnerability.

Transitive corporate trust of aggregated
software or packages (FOSS or
proprietary) through business agreements
and redistribution.

Developer
Expertise

Existing security expertise, access to
training or mentorship, pull toward
commercial/paid development,
contribution credit/accountability.

Developers leave projects, hand-offs,
training, documentation, backup
developers with depth can be retained or
recruited, cybersecurity job market is tight.

Privacy
Engineering

Technical understanding of data
architecture and data movement across
systems, strong policy and legal
understanding and research tooling.

Balancing liability/risk of damaging public
perception of corporate entities along with
regulation and enforcement, against
financial benefits of the data economy.

Liability and
Regulatory
Risk

EU Product Liability Directive update
(2023) introduces significant legislative
and regulatory risk to existing and future
open-source projects and teams.

Global privacy legislation/regulation;
security oversight (CISA/DHS Subpoena
Powers), cyber incident reporting, SBOM,
and critical infrastructure designations

Software
Updates and
Trust

Checksum presence, awareness,
understanding, verification knowledge,
consistency of practice, inability to catch
partial pre-image attacks.

Signed binaries from PKI-backed
certificates of trusted entities, IDS/IPS, and
automation aren’t proof vs. attacks
upstream of signing or credential theft.

Linking
Libraries and
SBOM

Linking is done publicly, organization
tools help cyber criminals map
vulnerabilities to exploits to all software
packages that include that vulnerability.

Linked vulnerability problem still exists
but requires more trial-and-error work on
the part of the cybercriminal. Publication
of SBOM could remove this advantage.

Software
Monoculture

Economic incentives for consolidation
lead to wide-striking vulnerabilities such
as Log4Shell and Heartbleed/OpenSSL;
diversifying increases the attack surface.

Identical operating systems, browsers, and
tooling have broad risk. Hyperscaling and
microservices are business insiders that can
yield wide and immediate compromise.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 12

20. Publication of CVEs
When the fixes to published CVEs are made in proprietary code, the mechanism by which the solution
has been secured is not readily available to all observers, however in FOSS, the mitigation is published
and can lead to providing a roadmap for other potential vulnerability exploits.

The implications of CVE publication, notification periods, and bug bounty programs are beyond the
scope of this paper, but the public response, the measurable time between vulnerability listing and fix, are
all information that the adversaries can use to understand which projects may be faster than others to
update, and when fixes may be more challenging to adopt (e.g., such as when an API changes or
parameter structure is modified). The proprietary response may make the fix visible to adversaries who
are leveraging or testing that vulnerability, but for those not observing as actively, it may be difficult to
discern which companies are faster than others at closing vulnerabilities.

21. Hybridization and Proprietization of Open Source
With the economic benefits of code reuse and libraries, FOSS currently exists in between 80-90% of all
modern application codexxxvi. With aggregation, forking, and rates like this, can claims for a distinction
between the two hold up? Proprietization may not be a word (yet), but the hybrid nature of modern
software, the long supply chains, and the somewhat nebulous practices of different open-contributor
projects mean significant threat analysis by cybersecurity professionals.

22. Economic Factors and Software Library Friction
Development costs involve not just the software being custom written for the solution, development costs
now include the analysis, retrieval, documentation, testing and integration of other software to integrate
into the final solution. If those are FOSS, the time spent to integrate those is still part of this equation.
Adding to this are the maintenance costs, including staying up to date on patches, API changes, updates to
tests, internal data management, deployment architecture, regulatory compliance checks (e.g., privacy
regulations on data movement), security review and decisions on how to handle software at its end-of-life.
For each new feature addition to a final software solution, the maintenance and development costs,
referred to above, must be undertaken along with ensuring that the update process is managed, ensuring
that new vulnerabilities aren’t introduced, and population of release notes are made. For providers of
library solutions or packages that get used by other software or included in other software, the list of
activities (and related costs) increases: any other managed software must also be tested, version
differences and mandatory upgrades must be considered, API updates, documentation changes, breaking
changes, migration paths, support for prior versions, compatibility, interoperability and deployability
must be part of the decision and release process. Do SBOMs need to be updated, are known
vulnerabilities closed, are license requirements met, do contributions need to be submitted back to source
projects, and are there any new regulatory requirements around reporting that need to be met.
All of this introduces friction into the process, in a proprietary solution necessary steps may be mandated
by internal processes, checklists, and requirements from groups or clients that have their own list of
requirements to check. In the FOSS environment, volunteers would need to do this job, or limited funds
must be used to make sure to stay close to the verification and validation processes described above. As
these may be considered overhead by some developers, it’s possible that some of these steps could be
overlooked.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 13

23. Policy Implications
As governments and policymakers look to regulations to help get a better hold on supply-chain
insecurities, several actions are taking place. Governments limiting sources of origin for some technical
solutions such as the FCC’s actions to limit access to the U.S. marketxxxvii

xxxviii. Whether
government pressure changes the culture or development models of FOSS remains to be seen, but
discussion has turned to considerations like SBOM, component risk, mandated mean time between
disclosure and patching, product support lifetime expectations, minimum expectations for security and
privacy, and, like what we see in the EU, the reconsideration of product liability in relation to modern
concepts, tooling, and services provided by computational infrastructure. Government policy will play a
part in the nuances between FOSS software security and that of proprietary or commercial endeavors; for
those endeavors that utilize, aggregate, or include FOSS as part of their deliverables, the implications
could be dramatic, and this could also have an impact on FOSS contribution.

 but foreign actors, malicious
actors, and organized crime can all make contributions to most open-source projects so that part of the
chain is potentially still vulnerable. The European Union is exploring product liability extensions which
could have an impact to FOSS, and we noted earlier in this paper the response to those new potential
regulations. The US Government also recognizes the risk in this space as they actively seek feedback on
open-source security for purposes of focus and prioritization through their 2023 RFI

24. Mitigations
This paper has addressed several threats that have a difference in implications, ramifications or nuance
between FOSS and proprietary solutions. This can be overwhelming to see and can feel futile to fight, but
there are some improving solutions and tools to help address supply-chain security that are available
today and coming soon. Some considerations follow:

• Everyone should follow best practices for DevSecOpsxxxix including securing the entire software
lifecycle (development process and production environment), manage authentication and
authorization (use least-privilege principles, encrypt sensitive data, role-based access control,
two-factor authentication, access control lists), monitor (logging and monitoring, penetration
tests, intrusion detection and prevention systems (IDS/IPS), audit regularly), train anyone
engaged or authorized for any part of the process, use secrets management tools like Hardware
Security Modules (HSMs), and have a disaster recovery plan (including regular table-top
exercises and drills).

• For providers of open source software and tooling to handle versioning (e.g., GitHub,
SourceForge, etc.), institute a practice of notification of applicable CVEs, generate and maintain
the SBOM for each software package, complicate or prevent downloading of binaries or source
versions that have been patched in subsequent versions, remove exemplar code or tools that exist
for exclusively malicious purposes, and help to track, attribute, and verify contributors to FOSS.

• For those providing builds or using builds, consider the Open-Source Security Foundation
SLSAxl version 1.0 levels from 2023(see Table 3, below).

• For those in industries identified by CISA as being part of the Critical Infrastructure (Chemical
Sector, Commercial Facilities Sector, Communications Sector, Critical Manufacturing Sector,
Dams Sector, Defense Industrial Base Sector, Emergency Services Sector, Energy Sector,
Financial Services Sector, Food and Agriculture Sector, Government Facilities Sector, Healthcare
and Public Health Sector, Information Technology Sector, Nuclear Reactors, Materials and Waste
Sector, Transportation Systems Sector, and the Water and Wastewater Systems), there are several
resources for improving supply chain securityxli including this report from the FCC and CSRIC
VIIIxlii which list the following suggestions for addressing open source security:

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 14

o Strict internal requirements should exist to protect the company and its customers.
o Third-party suppliers should be held to the same company standards.
o Policies should apply equally to open-source software as with proprietary software.
o Third-party software should be sourced by a centralized configuration management team.
o Centralized configuration management teams should ensure sources are reputable.
o A gating subprocess should validate that patches are applied, and scans are completed.
o A post-scan analysis should be used to reveal issue severity, priority, and applicability.

• For small and medium-sized businesses who are engaging in software in any manner are
addressed by CISA who have highlighted the top six risks where those businesses should focus
their attention and growth: Cyber Expertise, Executive Commitment to Cybersecurity, Supply
Chain Risk Management, Single Source Suppliers, Supplier Disruption and Visibility into
Supplier Cybersecurity Practicesxliii.

Table 3 Open-Source Security Foundation SLSA

SLSA
Level

Description Requirements Example

0 No guarantees. SLSA 0 represents the lack of any SLSA level. Unknown
provenance

1 Documentation
of the build
process

The build process must be fully scripted/automated and generate
provenance. Provenance is metadata about how an artifact was built,
including the build process, top-level source, and dependencies. Knowing the
provenance allows software consumers to make risk-based security decisions.
Provenance at SLSA 1 does not protect against tampering, but it offers a basic
level of code source identification and can aid in vulnerability management.

Unsigned
provenance

2 Tamper
resistance of the
build service

Requires using version control and a hosted build service that generates
authenticated provenance. These additional requirements give the software
consumer greater confidence in the origin of the software. At this level, the
provenance prevents tampering to the extent that the build service is trusted.
SLSA 2 also provides an easy upgrade path to SLSA 3.

Hosted
source/build,
signed
provenance

3 Extra resistance
to specific
threats

The source and build platforms meet specific standards to guarantee the
auditability of the source and the integrity of the provenance
respectively. We envision an accreditation process whereby auditors certify
that platforms meet the requirements, which consumers can then rely on.
SLSA 3 provides much stronger protections against tampering than earlier
levels by preventing specific classes of threats, such as cross-build
contamination.

Security
controls on
host, non-
falsifiable
provenance

4 Highest levels of
confidence and
trust

Requires two-person review of all changes and a hermetic, reproducible
build process. Two-person review is an industry best practice for catching
mistakes and deterring bad behavior. Hermetic builds guarantee that the
provenance’s list of dependencies is complete. Reproducible builds, though
not strictly required, provide many auditability and reliability benefits.
Overall, SLSA 4 gives the consumer a high degree of confidence that the
software has not been tampered with.

Two-party
review +
hermetic
builds

The above are not the complete list of options available for mitigation, but these steps are intended to help
organizations, FOSS tool providers, and software enterprises contribute to a safer software supply chain.

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 15

Outlook
If one assigns a point to each threat and count wins for FOSS versus proprietary solutions, one would be
doing it wrong. Each piece of software is going to have a unique history, contribution model, algorithmic
approach, versioning, lifecycle management, as well as unique teams to develop, support, test, configure
and deploy the solution. For each one of these, a considered approach of the best model, open or
proprietary, belongs in the architectural decision process. Are specialists necessary, are they available in
the open-source community, are they qualified and incented to work on the project? These just scratch the
surface of the questions that will need to be answered. It’s hard to ask them all, which is why looking at
varying threats and how they have evolved since the research literature changed is worth our effort.

Abbreviations

API Application Programming Interface
CISA Cybersecurity and Infrastructure Security Agency (part of Department of

Homeland Security)
CVSS NIST Common Vulnerability Scoring System
DHS Department of Homeland Security
FOSS Free or Open Source Software
HSM Hardware Security Modules
IDS Intrusion Detection System
IPS Intrusion Prevention System
PLD European Union Product Liability Directive
SBOM Software Bill of Materials
SLSA Supply-chain Levels for Software Artifacts

References

i https://wiki.openssl.org/index.php/Contributions
ii Schryen, Guido & Kadura, Rouven. (2009). Open source vs. closed source software: Towards measuring security.
Proceedings of the ACM Symposium on Applied Computing. 2016-2023. 10.1145/1529282.1529731.
iii Schryen, Guido, "Securit y of Open Source and Closed Source Soft ware : An Empirical Comparison of Published
Vulne rabilit ie s" (2009). AMCIS 2009 Proceedings. 387.
ht t ps:/ /aise l.aisne t .org/amcis2009/387
iv Schryen, Guido, "Securit y of Open Source and Closed Source Soft ware : An Empirical Comparison of Published
Vulne rabilit ie s" (2009). AMCIS 2009 Proceedings. 387.
ht t ps:/ /aise l.aisne t .org/amcis2009/387
v CrowdStrike. (2023) CrowdStrike 2023 Global Threat Report., https://go.crowdstrike.com/rs/281-OBQ-
266/images/CrowdStrike2023GlobalThreatReport.pdf
vi Ghafoor, Imran & Jattala, Imran & Durrani, Shakeel & Tahir, Ch. (2014). Analysis of OpenSSL Heartbleed
vulnerability for embedded systems. 314-319. 10.1109/INMIC.2014.7097358.
vii Thompson, K. Reflections on Trusting Trust. Comm. Of the ACM. 27, 8 (1984), 761-763

https://wiki.openssl.org/index.php/Contributions
https://go.crowdstrike.com/rs/281-OBQ-266/images/CrowdStrike2023GlobalThreatReport.pdf
https://go.crowdstrike.com/rs/281-OBQ-266/images/CrowdStrike2023GlobalThreatReport.pdf

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 16

viii Schryen, Guido, "Securit y of Open Source and Closed Source Soft ware : An Empirical Comparison of Published
Vulne rabilit ie s" (2009). AMCIS 2009 Proceedings. 387.
ix Fox, B., The EU’s Product Liability Directive could kill open source, Tech Radar, 10 July, 2023,
https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
x ibid
xi CrowdStrike. (2023) CrowdStrike 2023 Global Threat Report., https://go.crowdstrike.com/rs/281-OBQ-
266/images/CrowdStrike2023GlobalThreatReport.pdf
xii https://wiki.openssl.org/index.php/Contributions
xiii Proofpoint, Inc. v. Samuel Boone, Case# 1:2021cv00667, July 29, 2021, US District Court for the Western
District of Texas, Judge Lee Yeakel
xiv https://www.vice.com/en/article/m7gb43/microsoft-employees-exposed-login-credentials-azure-github
xv Raymond, E. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary
troff edition (1999) https://lists.gnu.org/archive/html/groff/2021-11/pdfRt8tRop5yy.pdf
xvi Levy, E. Wide open source, http://www.securityfocus.com/news/19, 2000.
xvii Goodin, D. Numerous orgs hacked after installing weaponized open source apps, Ars Technica
https://arstechnica.com/information-technology/2022/09/north-korean-threat-actors-are-weaponizing-all-kinds-of-
open-source-apps/ , 29 Sept 2022
xviii Fox, B., The EU’s Product Liability Directive could kill open source, Tech Radar, 10 July, 2023,
https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
xix https://blogs.vmware.com/opensource/2020/08/25/boost-your-career-through-open-source-contribution/
xx Hann, Il-Horn; Roberts, Jeff; Slaughter, Sandra; and Fielding, Roy, "Economic Incentives for Participating in
Open Source Software Projects" (2002). ICIS 2002 Proceedings. Paper 33.
xxi US Bureau of Labor Statistics: https://www.bls.gov/ooh/computer-and-information-technology/information-
security-analysts.htm 8 Sep, 2022
xxii Cybercrime Magazine: https://cybersecurityventures.com/jobs/ 14 Apr, 2023.
xxiii Fennessy, C. International Association of Privacy Professionals: Privacy engineering: The what, why and how
https://iapp.org/news/a/privacy-engineering-the-what-why-and-how/ 8 Aug, 2019
xxiv https://www.zdnet.com/article/lawyers-ride-shotgun-for-open-source/
xxv De Luca, S., European Parliament, “Briefing: EU Legislation in Progress: New Product Liability Directive”
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739341/EPRS_BRI(2023)739341_EN.pdf May, 2023
xxvi Ibid, pp 5.
xxvii Document 52022PC0495, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE
COUNCIL on liability for defective products, https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:52022PC0495, {SEC(2022) 343 final} - {SWD(2022) 315 final} -
{SWD(2022) 316 final} - {SWD(2022) 317 final}, 28 Sep 2022
xxviii Harris, J., Open Letter to the European Commission on the Cyber Resilience Act,
https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act ,
17 April 2023
xxix Alexandre Meylan, Mauro Cherubini, Bertil Chapuis, Mathias Humbert, Igor Bilogrevic, and Kévin
Huguenin. 2020. A Study on the Use of Checksums for Integrity Verification of Web Downloads. ACM Trans.
Priv. Secur. 24, 1, Article 4 (September 2020), 36 pages. https://doi.org/10.1145/3410154
xxx Constantin, L., SolarWinds attack explained: And why it was so hard to detect, CSO, Dec 15, 2020,
https://www.csoonline.com/article/570191/solarwinds-supply-chain-attack-explained-why-organizations-were-not-
prepared.html
xxxi Schneier, B., Microsoft Signing Key Stolen by Chinese, Aug 2023,
https://www.schneier.com/blog/archives/2023/08/microsoft-signing-key-stolen-by-chinese.html
xxxii https://www.cisa.gov/sbom
xxxiii McGuire, A., Ecological Theories, Meta-Analysis, and the Benefits of Monocultures. Washington State
University
xxxiv JM Sirota, E Grafius, W Boylan-Pett, B Ferrari, P Kolarik, A Pyle, B Scriber, Colorado Potato Beetle Control...
Insecticide and Acaricide Tests 18 (1), 153-155, https://academic.oup.com/amt/article-
abstract/18/1/153/4573455, 1991
xxxv Schneier, B., Microsoft Signing Key Stolen by Chinese, Aug 2023,
https://www.schneier.com/blog/archives/2023/08/microsoft-signing-key-stolen-by-chinese.html

https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
https://go.crowdstrike.com/rs/281-OBQ-266/images/CrowdStrike2023GlobalThreatReport.pdf
https://go.crowdstrike.com/rs/281-OBQ-266/images/CrowdStrike2023GlobalThreatReport.pdf
https://wiki.openssl.org/index.php/Contributions
https://www.vice.com/en/article/m7gb43/microsoft-employees-exposed-login-credentials-azure-github
https://lists.gnu.org/archive/html/groff/2021-11/pdfRt8tRop5yy.pdf
http://www.securityfocus.com/news/19
https://arstechnica.com/information-technology/2022/09/north-korean-threat-actors-are-weaponizing-all-kinds-of-open-source-apps/
https://arstechnica.com/information-technology/2022/09/north-korean-threat-actors-are-weaponizing-all-kinds-of-open-source-apps/
https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
https://blogs.vmware.com/opensource/2020/08/25/boost-your-career-through-open-source-contribution/
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm
https://cybersecurityventures.com/jobs/
https://iapp.org/news/a/privacy-engineering-the-what-why-and-how/
https://www.zdnet.com/article/lawyers-ride-shotgun-for-open-source/
https://www.europarl.europa.eu/RegData/etudes/BRIE/2023/739341/EPRS_BRI(2023)739341_EN.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022PC0495
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52022PC0495
https://newsroom.eclipse.org/news/announcements/open-letter-european-commission-cyber-resilience-act
https://doi.org/10.1145/3410154
https://www.csoonline.com/article/570191/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://www.csoonline.com/article/570191/solarwinds-supply-chain-attack-explained-why-organizations-were-not-prepared.html
https://www.schneier.com/blog/archives/2023/08/microsoft-signing-key-stolen-by-chinese.html
https://www.cisa.gov/sbom
https://academic.oup.com/amt/article-abstract/18/1/153/4573455
https://academic.oup.com/amt/article-abstract/18/1/153/4573455
https://academic.oup.com/amt/article-abstract/18/1/153/4573455
https://www.schneier.com/blog/archives/2023/08/microsoft-signing-key-stolen-by-chinese.html

© 2023, SCTE® CableLabs® and NCTA. All rights reserved. 17

xxxvi Fox, B., The EU’s Product Liability Directive could kill open source, Tech Radar, 10 July, 2023,
https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
xxxvii Federal Communications Commission FCC 22-84 Protecting Against National Security Threats to the
Communications Supply Chain through the Equipment Authorization Program
https://docs.fcc.gov/public/attachments/FCC-22-84A1.pdf 25 Nov 2022
xxxviii Office of the National Cyber Director, Request for Information on Open-Source Software Security: Areas of
Long-Term Focus and Prioritization, https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-
for-information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization , 10 Aug 2023
xxxix Baig, A. DevOps.com 15 DevSecOps Best Practices, https://devops.com/15-devsecops-best-practices/ 15 Apr
2022
xl SLSA specification version 1.0, Open Source Security Foundation, https://slsa.dev/spec/v1.0/ 2023
xli CISA Resources and Tools https://www.cisa.gov/resources-tools/all-resources-tools
xlii FCC, CSRIC Report on Recommended Best Practices to Improve Supply Chain Security,
https://www.cisa.gov/resources-tools/resources/csric-report-recommended-best-practices-improve-supply-chain-
security 21 Sep 2022
xliii CISA, Reducing ICT Supply Chain Risk in Samll and Medium-Sized Businesses
https://www.cisa.gov/sites/default/files/2023-05/fs_reducing-ict-supply-chain-risk-smb_fact-sheet_508.pdf May
2023

https://www.techradar.com/pro/the-eus-product-liability-directive-could-kill-open-source
https://docs.fcc.gov/public/attachments/FCC-22-84A1.pdf
https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-for-information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization
https://www.federalregister.gov/documents/2023/08/10/2023-17239/request-for-information-on-open-source-software-security-areas-of-long-term-focus-and-prioritization
https://devops.com/15-devsecops-best-practices/
https://slsa.dev/spec/v1.0/
https://www.cisa.gov/resources-tools/all-resources-tools
https://www.cisa.gov/resources-tools/resources/csric-report-recommended-best-practices-improve-supply-chain-security
https://www.cisa.gov/resources-tools/resources/csric-report-recommended-best-practices-improve-supply-chain-security
https://www.cisa.gov/sites/default/files/2023-05/fs_reducing-ict-supply-chain-risk-smb_fact-sheet_508.pdf

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	2. Defining Open Source and Proprietary Software
	3. Software Licensing
	4. Defining Free and Open Source Software
	5. Defining Proprietary Software
	6. Security Assumptions

	Analysis
	7. Empirical vs. Intuitive
	8. Count vs Severity vs Impact Breadth

	Threat Comparison
	9. Forking and Versioning
	10. Patching
	11. Malign Code Insertion and Insider Threats
	12. Continuous Security Review
	13. Software Use
	14. Developer Expertise
	15. Privacy Engineering
	16. Liability and Regulatory Risk
	17. Software Updates and Trust
	18. Linking Libraries and SBOM
	19. Software Monoculture
	20. Publication of CVEs
	21. Hybridization and Proprietization of Open Source
	22. Economic Factors and Software Library Friction
	23. Policy Implications
	24. Mitigations

	Outlook
	Abbreviations
	References

