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1. Introduction 
Real-time telemetry analysis has always been a core requirement for cable plant operators to detect 
customer-impacting events and dispatch the appropriate field teams. In the age of 10G networks, the cable 
plant’s margin for error is slimmer than ever to offer state-of-the-art technology to potential subscribers. 
Minimizing the time field technicians need to troubleshoot issues will be key to maintaining a high 
cadence for 10G node deployments and conversions. To this end, telemetry-based alerts should not only 
identify problems in the plant but should recommend potential solutions as well.   

We present an approach for combining node-level telemetry data and graph algorithms to help technicians 
resolve plant issues more efficiently and reduce mean time to repair. This approach has been successfully 
applied to use cases on the road to 10G, including distributed access architecture (DAA)-based 2G service 
deployments, streamlining demand maintenance with reduced truck rolls, and improving proactive 
maintenance by detecting likely network impairments. The algorithms involved have been field tested, 
incorporating technician feedback, and are now being integrated into production operations. This paper 
will highlight the importance and impact of combining network telemetry with plant topology to support 
the continued rollout of 10G.   

2. Problem Statement and Use Cases 

For multiple systems operators (MSOs), processes to efficiently identify and isolate network impairments 
are key to running a high-performance network and ensuring that customers receive the level of service 
they expect. Today’s 10G networks can produce vast amounts of real-time telemetry from customer 
premise equipment (CPE). This paper will discuss approaches for combining CPE telemetry with a graph 
database of the hybrid fiber-coaxial (HFC) network to identify and resolve multi-home network 
impairments.   

When multiple customer devices on a node show a degraded level of service, a decision needs to be made 
on what type of resource is needed to resolve the issue. Some scenarios require a network technician to 
address impairments in the HFC plant, while others require an in-home technician for issues inside the 
customer premise. From an operations standpoint, each ticket generated for field teams should ideally 
address as many customer issues as possible. This will reduce the overall number of jobs while 
maintaining or even increasing the number of customer issues resolved. Thus it is critical to be able to 
identify network impairments that are impacting multiple customers or homes at once. The following 
sections will discuss use cases for multi-home network impairment detection algorithms that are being 
used daily as the development of the 10G network continues. 

2.1. Legacy Plant Equipment Detection and Isolation 

The requirements of the network are changing as analog architectures are converted to digital on the road 
to 10G. As laid out in Harb et al. (2023) and Sundaresan (2022), the path to 10G requires potentially 
redesigning the spectrum and channel layouts to increase speeds. If legacy analog components in the HFC 
plant are not designed compatibly with the updated spectrum plans, they can cause issues with CPE 
bonding on these new channels. 

Two areas of the spectrum that demand particular attention are: 

1. 45–200 MHz with transitions from sub-split to mid/high-split designs and 
2. > 750 MHz with the expansion of the existing downstream frequencies to include more 

channels.  
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In the first case, upstream frequencies are expanding into what were previously downstream frequencies. 
If certain components of the legacy network attenuate signals in this frequency range, customer devices 
will be unable to bond on these new channels when the digital network is turned up. In the second case, 
physical limitations of network equipment, such as amplifiers causing signal power roll-off, can prevent 
signals at high frequencies from reaching customers.   

Typically, field teams perform a network sweep for incompatible legacy equipment when preparing for 
digital conversion. However, some network elements can be missed—especially if they are 
undocumented. If this happens, all customers downstream of incompatible network equipment will be 
unable to bond on any channels in the new frequency ranges. These bonding issues can occur 
immediately after the digital cutover or introduction of new channels.  

In Section 4.1, we present an approach to identifying these issues and directing field teams to specific 
network elements of interest. This ability to isolate incompatible network devices enables efficient 
resolutions that minimize negative customer impact. 

2.2. Degraded Modulation Error Ratio 

Customers might continue to experience degraded signal quality, meaning packet loss and 
underperforming speeds, even after the HFC plant is upgraded to 10G-compatible equipment. To identify 
customers with degraded signal quality, we can look for CPE with low Modulation Error Ratio (MER) on 
certain channels. Figure 1 shows example device populations with high and low MERs for downstream 
single-carrier quadrature amplitude modulation (SC-QAM) channels. 

 
Figure 1 – Downstream SC-QAM MER distributions. A.) Majority of devices with good 

MER B.) Majority of devices with low MER 

As in the previous use case, our goal is to identify impairments affecting multiple homes and direct field 
teams to root causes of the impairments. One challenge in this use case is that a radio frequency (RF) 
antenna in the vicinity of a node can cause CPE in separate legs of the plant topology to share similar 
MER characteristics. If this happens, a collection of in-home issues degrading MER, such as loose 
connections allowing ingress, can be mistaken for a shared multi-home issue when viewing telemetry 
alone. Another challenge is that devices only report MER values for channels on which they are bonded, 
but the CMTS can allow different CPE to bond on different channels. Thus, even if multiple devices are 
impacted by a single network impairment, their MER values might be incomparable if the devices are 
bonded on different channels. 
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In Section 4.2, we present a hybrid statistical and graph-based approach that overcomes these challenges 
by combining MER data with the plant topology. As in the previous use case, our algorithm identifies a 
particular network element as the likely root cause of each detected impairment. 

2.3. Downstream Full Band Spectrum Clustering 

Full band capture (FBC) data can reveal network impairments even when channel bonding and MER 
values are nominal. As discussed in Dugan et al. (2022), certain patterns in the FBC waveform indicate 
known network impairment types. Some of these patterns are illustrated in Figure 2 for FBC of 
downstream receive power at the modem.  

 
Figure 2 – Common impairment patterns on full band capture of downstream receive 

power at the modem 

In this use case, output from pre-existing classification and clustering models processing FBC data is 
combined with a graph topology view of the network to identify network elements as root causes of 
multi-home impairments. These root cause elements are combined with results from the previous use case 
to find correlation between MER impairments and spectrum impairments, bundling demand maintenance 
(DM) events with proactive maintenance (PM) events. Our approach to this problem is presented in 
Section 4.3.   

3. Setup 

3.1. Network As a Graph 

Traditional approaches to batch telemetry analysis are generally either implicit (e.g. inferring 
relationships between network elements based on latitude/longitude) or manual (e.g. performing root 
cause analysis by visual inspection of plant maps). Graph-structured data helps us outperform these 
baseline approaches by codifying explicit connections between network elements and allowing for full 
automation. 

The algorithms in this paper operate on data from routing of cable infrastructure (ROCI), a graph database 
representing the access network. Vertices in the database represent the logical and physical entities that 
make up the network, from the cable modem termination system (CMTS) down to CPE. Edges represent 
either physical connections (e.g. by coaxial cable) or logical relationships (e.g. customer account to street 
address). Vertices and edges can have attributes representing properties of the given network element or 
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relationship, such as IP address, cable length, or latitude/longitude. To support real-time analysis, the data 
in ROCI is refreshed automatically as the topology of the access network evolves, by e.g. the addition of 
new customers, the conversion of analog nodes to digital, or the redrawing of plant maps. For more detail 
on ROCI, see Narayanaswamy et al. (2021). 

 
Figure 3 – Graph database schema example for virtual CMTS 

3.2. Telemetry Summary 

Addressing the use cases in Section 2 requires up-to-date telemetry from millions of customer devices. 
Fortunately, DOCSIS management information bases (MIBs) allow vast amounts of telemetry to be 
polled from CPE in near-real time. We briefly summarize the telemetry relevant to our use cases. 

Most CPE have onboard spectrum analyzers and support the ability to report a FBC of downstream  
receive power across the entire frequency range. This view of receive power versus frequency gives a 
detailed view of the signals reaching the CPE and can be processed in a variety of ways based on project 
needs. Frequency-specific variations in the FBC indicate impairments related to amplification and 
attenuation of the signal power levels as the signals traverse the network. The FBC data is used heavily to 
detect HFC plant-related impairments as well as determining if certain frequencies can reach given CPE. 

Even if the CPE receives signal power at a sufficiently high level, it may not be able to decode the 
DOCSIS code words if the signal quality is poor. In these cases, the CPE will drop packets, causing 
slower speeds and degraded customer experience. Channel-level MER can be used to identify these types 
of impairments, where the signal level is high, but noise corrupts the signal before it reaches the CPE. 
Processing MER data at the channel level is key, as it allows for clustering of devices based on 
frequency-specific patterns. This is not possible with aggregated MER values.  

DOCSIS overcomes some amount of noise in a signal by including redundancy in its code words to help 
account for uncertainty in the packet. However, if the MER is too low and packets are lost, then the noise 
will impact the customer. Packet error rate (PER) can be used to measure customer experience in this 
situation. As will be seen in Section 5, MER and PER can be used together to efficiently identify 
customer-impacting, multi-home network impairments.  
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4. Algorithms 

We present a suite of algorithms that address the use cases from Section 2 by combining device telemetry 
with the network topology to identify multi-home network impairments. Broadly speaking, our goal is to 
group together CPE or homes whose degraded service is likely due to the same underlying issue and 
identify the network element that is the most likely root cause. 

We first establish some terminology. A path in a graph is a sequence (𝑣𝑣0,𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) of vertices such that 
there is an edge between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1 for all 𝑖𝑖. A graph is a tree if, for each pair of vertices 𝑢𝑢 and 𝑣𝑣, there 
is exactly one path from 𝑢𝑢 to 𝑣𝑣. The leaves of a tree are the vertices incident to exactly one edge. When 
designing algorithms for the access network, the key data structure is a rooted tree, i.e. a tree in which a 
single vertex is designated the root. In this section, the root of our graphs is always the RF node, and the 
leaves are CPE.  A crawl in a rooted tree is a path (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) where 𝑣𝑣0 is a leaf and 𝑣𝑣𝑛𝑛 is a root. 

Rooted trees enjoy a natural notion of hierarchy, where the root is considered the unique common 
ancestor of all other vertices. Algorithms on rooted trees can leverage this structure in contexts where 
vertices inherit behavior from their ancestors. For example, a misconfigured amplifier can pass a resonant 
peak to all downstream CPE. By identifying the relevant set of CPE and working backwards, the 
amplifier can be identified. 

Our setup presents two main challenges. First, trees are the sparsest connected graphs, making them poor 
candidates for algorithms that rely on interconnectedness to simulate message passing or information 
spread. Many out-of-the-box solutions to problems like clustering and classification fall into this class of 
algorithms. Second, most approaches to analyzing graphs with vertex attributes assume that all vertices of 
the graph are attributed. But that is not the case here; while we have telemetry for the CPE, we have none 
for the internal vertices. In this way, access network graphs can be considered discrete “sensor networks,” 
where the sensors are the CPE.  

4.1. Binary Attribute Clustering: Combinatorial Approach 

We start with the simplest possible case, when the device telemetry consists of a single binary variable, 
and apply our technique to the use case from Section 2.1. In practice, this variable could be truly binary 
(e.g. online vs. offline) or could express whether a continuous variable meets a certain threshold (e.g. 
whether signal-to-noise ratio is above or below 35 dB). For uniformity, we will call the values of this 
binary variable impaired and unimpaired. We will use the terms “CPE” and “device” interchangeably, so 
“device” necessarily means a customer device. 

Let (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) be a crawl in an access network graph, so that 𝑣𝑣0 is a device, i.e. a leaf, and 𝑣𝑣𝑛𝑛 is the 
RF node, i.e. the root. At each step of the crawl, we take a quantitative measurement 𝑚𝑚(𝑖𝑖) of the devices 
downstream of 𝑣𝑣𝑖𝑖. For example, let 𝐷𝐷𝑖𝑖 denote the set of all devices downstream of 𝑣𝑣𝑖𝑖, and let 𝐼𝐼𝑖𝑖 denote the 
set of devices in 𝐷𝐷𝑖𝑖 that are impaired. We could take 𝑚𝑚(𝑖𝑖) to be the precision, i.e. the fraction of devices 
downstream of 𝑣𝑣𝑖𝑖 that are impaired: 

𝑝𝑝(𝑖𝑖) =
|𝐼𝐼𝑖𝑖|
|𝐷𝐷𝑖𝑖|

. 

Alternatively, we could take 𝑚𝑚(𝑖𝑖) to be the recall, i.e. the fraction of all impaired devices that are 
downstream of 𝑣𝑣𝑖𝑖: 
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𝑟𝑟(𝑖𝑖) =
|𝐼𝐼𝑖𝑖|
|𝐼𝐼𝑛𝑛|. 

For further discussion on these measurements, see Section 6.1 of Dugan et al. (2022). 

We fix a value 𝑀𝑀 to act as an inclusive lower threshold for the measurement 𝑚𝑚(𝑖𝑖). Simple modifications 
can be made for upper or exclusive thresholds. Typically, we will assume that the threshold is satisfied at 
the starting device, i.e. 𝑚𝑚(0) ≥ 𝑀𝑀. The terminal is the last vertex in the crawl whose measurement 
satisfies the threshold. In other words, the terminal is 𝑣𝑣𝑠𝑠−1, where 𝑠𝑠 is the smallest value of 𝑖𝑖 for which 
𝑚𝑚(𝑖𝑖) < 𝑀𝑀, or 𝑠𝑠 = 𝑛𝑛 + 1 if no such value exists. The target is the first vertex in the crawl whose set of 
downstream impaired devices is the same as the terminal’s. In other words, the target is 𝑣𝑣𝑡𝑡, where 𝑡𝑡 is the 
smallest index such that |𝐼𝐼𝑡𝑡| = |𝐼𝐼𝑠𝑠−1|. 

An example crawl is illustrated in Figure 4. Each vertex 𝑣𝑣𝑖𝑖 of the crawl is labeled by its index 𝑖𝑖. There are 
11 impaired devices, colored blue, and 4 unimpaired devices, colored gray. We take 𝑚𝑚(𝑖𝑖) = 𝑝𝑝(𝑖𝑖) to be 
the precision and 𝑀𝑀 = 1. The terminal, colored red, is the last vertex in the crawl for which all 
downstream devices are impaired. The target is colored green. The remaining vertices of the crawl are 
colored orange. 

 
Figure 4 – Precision-based crawl in an access network graph with terminal and target 

highlighted 

To cluster the impaired devices on the node, we perform a crawl starting at each impaired device. In this 
way, each impaired device is associated with a target. Sometimes the set of all targets is an antichain, in 
the sense that no target is an ancestor of any other target. In this case, we can partition the impaired 
devices into disjoint clusters by grouping together all devices with the same target. The clusters can be 
interpreted as separate underlying network impairments, each equipped with a corresponding root cause 
vertex, i.e. the target itself, that is interpreted as the source of the cluster’s impairment. The validity of 
these interpretations depends on data quality and the choices of measurement and threshold.  

The targets do not always form an antichain, however. If some targets are ancestors of other targets, 
measures must be taken to prevent the clusters from overlapping. One such measure is to discard any 
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targets that are descendants of another target in the set. The resulting “minimal” set of targets will 
guarantee a partition into disjoint clusters. Another remedy is to order the targets (or, equivalently, the 
impaired devices), and to define each cluster as the set of impaired devices downstream of the target that 
do not belong to any previous cluster. These “exclusionary” clusters will depend on the ordering; 
choosing an appropriate ordering is a potentially subtle problem. 

This procedure can be used to detect incompatible legacy equipment as described in Section 2.1. Here a 
customer device is considered unimpaired if it is bonded on any new channels and impaired otherwise. 
Since all devices downstream of incompatible legacy network elements are guaranteed to be impaired, we 
can take 𝑚𝑚(𝑖𝑖) = 𝑝𝑝(𝑖𝑖) to be the precision and 𝑀𝑀 = 1. Each crawl will then terminate at the last step for 
which every downstream device is impaired.  

The terminals always form an antichain in the case 𝑀𝑀 = 1. They do not necessarily form an antichain, 
however, if 𝑀𝑀 < 1. This threshold could be a more appropriate choice if the impairment in question were 
not guaranteed to impact the telemetry of every single downstream device. An example result for the case 
𝑀𝑀 = 1 is shown in Figure 5, where the impaired devices and root cause vertices are colored according to 
their corresponding cluster (red, green, orange or blue). 

 
Figure 5 – Device clusters and corresponding root cause vertices 

In practice, additional context is often needed to generate meaningful tickets for field teams. For example, 
how many homes are impacted by a given cluster? Is the root cause a cable drop in a multi-dwelling unit 
(MDU)? Is it an “end-of-line” element? Answers to these questions can help decide how to prioritize 
different network events and which personnel to dispatch. The algorithm’s ability to provide these 
answers depends on what data is available in the graph database. 

4.2. Continuous Attribute Clustering: Statistical Approach 

We now consider the case where the device telemetry takes continuous values in order to address the use 
case from Section 2.2. We will continue to use the notation from Section 4.1, where (𝑣𝑣0, 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛) is a 
crawl in an access network graph and 𝑚𝑚(𝑖𝑖) is a measurement at each step 𝑖𝑖 of the crawl. It is convenient 
to think of this process from a statistical point of view, where at each vertex 𝑣𝑣𝑖𝑖 the attribute values of the 
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downstream devices constitute a sample from a probability distribution, and the measurement 𝑚𝑚(𝑖𝑖) is a 
descriptive statistic of this sample. With binary or categorical attributes, the distribution is discrete, and 
the statistic is enumerative. With continuous attributes, the distribution is continuous, and the statistic can 
take more familiar forms like the mean, standard deviation, etc. 

In addition to allowing continuous attributes, we will generalize the previous setup in several ways. First, 
instead of a single measurement 𝑚𝑚(𝑖𝑖), we consider a family of measurements 𝑚𝑚𝑘𝑘(𝑖𝑖). For example, 𝑚𝑚1(𝑖𝑖) 
could be the maximum attribute value across all devices downstream of 𝑣𝑣𝑖𝑖, and 𝑚𝑚2(𝑖𝑖) could be the 
median. Second, instead of a fixed threshold 𝑀𝑀𝑘𝑘 for each measurement, we define dynamic thresholds 
𝑀𝑀𝑘𝑘(𝑖𝑖) that can depend on the current step 𝑖𝑖 or on previous steps. For example, 𝑀𝑀1(𝑖𝑖) could be the 50th 
percentile of the attribute values of all devices downstream of 𝑣𝑣𝑖𝑖. 

Depending on the problem, we will have different criteria for where crawls begin and end. For where to 
begin the crawls, there is no longer a built-in notion of “impaired” devices as in the binary case, so we 
must define a set of impaired devices based on the problem statement and telemetry. As for terminals, 
there are many ways to generalize the termination criterion 𝑚𝑚(𝑖𝑖) < 𝑀𝑀 to the multi-measurement case. 
Typically, a crawl will terminate when 𝑚𝑚𝑘𝑘(𝑖𝑖) < 𝑀𝑀𝑘𝑘(𝑖𝑖) for any 𝑘𝑘. As before, simple modifications can be 
made for upper or exclusive thresholds 𝑀𝑀𝑘𝑘(𝑖𝑖). Following the same clustering process as in Section 4.1, 
we obtain disjoint clusters of the impaired devices with a root cause vertex associated to each cluster. 

We can use this setup to detect pockets of customer devices with degraded MER as discussed in Section 
2.2. Because MER is measured on multiple channels, the telemetry in this example is vector-valued, and 
the relevant probability distributions are multivariate. For simplicity, we will assume that all devices are 
bonded on the same channels. In reality, however, devices are commonly bonded on different channels, 
so the telemetry vectors might contain null values. The null values can be either ignored or imputed. 

In this example, a device is impaired if it is bonded on any sufficiently “degraded” channel, where the 
definition of “degraded” depends on context. We set the following measurements and thresholds: 

• 𝑚𝑚1(𝑖𝑖) the maximum value of 𝑓𝑓(𝑑𝑑) as 𝑑𝑑 ranges over all devices downstream of 𝑣𝑣𝑖𝑖, where 𝑓𝑓(𝑑𝑑) is 
the minimum MER value for device 𝑑𝑑 across all degraded channels 

• 𝑚𝑚2(𝑖𝑖) the median of 𝑔𝑔(𝑐𝑐) as 𝑐𝑐 ranges over all degraded channels, where 𝑔𝑔(𝑐𝑐) is the standard 
deviation of MER values on channel 𝑐𝑐 across all devices downstream of 𝑣𝑣𝑖𝑖 

• 𝑚𝑚3(𝑖𝑖) the 80th percentile of ℎ(𝑑𝑑) as 𝑑𝑑 ranges over all devices downstream of 𝑣𝑣𝑖𝑖, where ℎ(𝑑𝑑) is 
the minimum MER value of device 𝑑𝑑 across all degraded channels 

• 𝑀𝑀1(𝑖𝑖) a constant value; MER above this value is considered “very good” 
• 𝑀𝑀2(𝑖𝑖) a constant value; MERs differing by more than this value are considered “dissimilar” 
• 𝑀𝑀3(𝑖𝑖) a certain percentile of MER values across all devices downstream of 𝑣𝑣𝑖𝑖−1 (the previous 

step in the crawl) and all degraded channels 

The crawls terminate when 𝑚𝑚𝑘𝑘(𝑖𝑖) > 𝑀𝑀𝑘𝑘(𝑖𝑖) for any 𝑖𝑖. For 𝑘𝑘 = 1, the termination condition checks 
whether the MER of downstream devices is too high for the sample to be considered impaired; for 𝑘𝑘 = 2 
and 𝑘𝑘 = 3, the conditions detect whether the current step has added outliers to the previous MER sample. 
In this example, we take the “minimal” approach to clustering described in Section 4.1. Devices with 
healthy MER will be clustered by themselves, due to the crawl termination conditions; all singleton 
clusters and unimpaired devices can be merged to form a cluster of “normal” devices. This is depicted in 
Figure 6, where the lone impaired cluster is orange, and the merged “normal” cluster is blue. 
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Figure 6 – Clustering impaired downstream SC-QAM MER with network topology and 

graph algorithms 

4.3. Cluster Analysis 

So far, we have described graph algorithms that use telemetry and graph structure simultaneously to 
perform clustering and root cause analysis. But this is not always the preferred approach. For some 
problems, it makes sense to operate on telemetry alone, or on the graph structure alone, and to combine 
the results post hoc. Alternatively, we might wish to leverage existing solutions, such as legacy clustering 
or classification algorithms that do not make use of topology, and enrich them with graph data. In this 
section, we apply these approaches to the use cases of Sections 2.2 and 2.3. 

4.3.1. Root Cause Analysis 

In some cases, we are given existing clusters of impaired devices, and our goal is to identify the network 
element that most likely caused each impairment cluster. This is essentially the reverse of the problems in 
Sections 4.1 and 4.2, where we identified a root cause vertex first, and the clusters are obtained as a 
corollary. Hence a different approach is needed. 

For example, suppose that we want to perform root cause analysis for impairment patterns in FBC data, as 
described in Section 2.3. In this scenario, devices are classified by impairment type (e.g. resonant peak), 
and devices with the same impairment type(s) are clustered together if their impairment patterns exhibit 
similar characteristics (e.g. resonant peaks with the same resonant frequency). This clustering step is 
needed to distinguish separate impairments of the same type occurring simultaneously. We can perform 
root cause analysis on these clusters by viewing them in the appropriate access network graph. In addition 
to providing key diagnostic context, this process also allows us to filter out clusters for which the 
clustering algorithm has underperformed, or the underlying data quality is poor. In this way, the telemetry 
and topology can act as checks and balances for one another, instead of as potentially noisy simultaneous 
input. 

Returning to the general setting, let 𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛 denote device clusters. These clusters need not be 
disjoint. In the case of spectrum impairments, for example, the clusters might overlap if some devices are 
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subject to multiple underlying network impairments with distinct patterns; ideally, we would see one 
cluster for each impairment pattern and another cluster comprising all devices with “normal” spectra. 

Naively, we could take the root cause vertex of the cluster 𝐶𝐶𝑘𝑘 to be the lowest common ancestor of all 
devices in 𝐶𝐶𝑘𝑘. However, this approach gives disproportionate influence to “topological outliers,” i.e. 
devices in 𝐶𝐶𝑘𝑘 that are topologically distant from the other devices in the cluster. We need an approach that 
can discriminate some topological outliers, since they are common in practice. 

We will focus on a particular cluster 𝐶𝐶𝑘𝑘 and consider a device “impaired” if it belongs to 𝐶𝐶𝑘𝑘 or 
“unimpaired” otherwise. Recall the definitions of precision 𝑝𝑝(𝑖𝑖) and recall 𝑟𝑟(𝑖𝑖) from Section 4.1. Instead 
of taking these measurements at a step 𝑖𝑖 of a crawl, we now take them at any vertex 𝑣𝑣 in the graph. Thus, 
for example, 𝑝𝑝(𝑣𝑣) is the fraction of devices downstream of 𝑣𝑣 that are impaired. We can define a 
corresponding F-score at each vertex as follows: 

𝐹𝐹𝛽𝛽(𝑣𝑣) =
(1 + 𝛽𝛽2) ⋅ 𝑝𝑝(𝑣𝑣) ⋅ 𝑟𝑟(𝑣𝑣)
𝛽𝛽2 ⋅ 𝑝𝑝(𝑣𝑣) + 𝑟𝑟(𝑣𝑣)

, 

where 𝛽𝛽 is a positive parameter. This score can be interpreted as a weighted harmonic mean of precision 
and recall, where recall is considered roughly 𝛽𝛽 times as important as precision. It is generally high if 
both precision and recall are high, and low otherwise. The usual 𝐹𝐹1 score is the special case 𝛽𝛽 = 1. 

The root cause vertex of cluster 𝐶𝐶𝑘𝑘 is taken to be the vertex 𝑣𝑣 that maximizes 𝐹𝐹𝛽𝛽(𝑣𝑣). Higher values of 𝛽𝛽 
will give more importance to topological outliers, resulting in root cause vertices closer to the RF node. 
Lower values of 𝛽𝛽 will give less importance to topological outliers, resulting in root cause vertices closer 
to impaired devices. Choosing an appropriate value of 𝛽𝛽 depends on the problem statement, the quality of 
the clusters, and the nature of the impairments in question. Figure 7 shows a cluster of devices exhibiting 
similar water wave patterns with a single topological outlier and the associated root cause vertex. 

 
Figure 7 – Cluster of device spectra with similar water wave patterns and corresponding 

root cause vertex  
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It is not always possible to adequately characterize a device cluster with a root cause vertex. Clusters can 
exhibit sparseness, bifurcation, or otherwise low topological correlation when viewed within the network 
topology. Typically, these phenomena point to one or more of the following issues: 

1. Poor clustering performance 
2. Inaccurate data, either in the telemetry or in the graph database 
3. Indistinguishable telemetry characteristics across distinct impairments. 

An example of Item 3 in the case of FBC could be two impairment patterns occurring on the same 
frequencies, such as a water wave superimposed with a standing wave, or two water waves overlapping. 
This poses a separate issue from poor clustering performance, since even an ideal clustering algorithm 
could not necessarily distinguish devices subject to the different underlying impairments without 
additional data. 

To detect clusters with low topological correlation, we enforce lower thresholds for precision and recall. 
Specifically, we set numbers 𝑃𝑃 and 𝑅𝑅 and check whether 𝑝𝑝(𝑣𝑣) ≥ 𝑃𝑃 and 𝑟𝑟(𝑣𝑣) ≥ 𝑅𝑅, where 𝑣𝑣 is the 
candidate root cause vertex described above. If either condition fails, the cluster is rejected as having low 
topological correlation and receives no root cause. The cluster can then be reported and evaluated to 
determine the influence of Items 1–3 above. 

4.3.2. Multi-Cluster Correlation 

When clustering impaired devices based on multiple categories of telemetry, different clusters can point 
to related network impairments, or even the same underlying impairment. For example, a cluster of 
devices with degraded MER and a cluster of devices exhibiting water wave could point to the same issue 
if the water wave is causing the low MER. Thus we need a way to determine if clusters and root cause 
vertices from different sources are correlated, independent of the individual algorithms. 

Let 𝐾𝐾 and 𝐿𝐿 denote two clusters in the same access network graph, potentially from different algorithms, 
with associated root cause vectors 𝑢𝑢 and 𝑣𝑣, respectively. A classical measure of correlation between 
clusters 𝐾𝐾 and 𝐿𝐿 is the Jaccard index: 

|𝐾𝐾 ∩ 𝐿𝐿|
|𝐾𝐾 ∪ 𝐿𝐿|

, 

Where ∩ denotes intersection and ∪ denotes union. This measure is appropriate when the clusters are 
generally “comprehensive,” in the sense that they contain most of the devices they should, and few they 
should not. In practice, however, clustering results are often sensitive, noisy and non-deterministic. This 
can be due to inconsitent data quality, the behavior of the algorithm, or both. 

To address these limitations, we focus on root cause vertices instead of the clusters themselves. 
Ultimately, we want to know if a technician can solve multiple issues by visiting a single network 
element. The particular devices implicated in a cluster often have no bearing on this result, especially 
taking into account the performance of the clustering algorithm. For each vertex 𝑤𝑤, let 𝑆𝑆(𝑤𝑤) denote the 
set of all CPE downstream of 𝑤𝑤. We define the Jaccard index of root cause vertices 𝑢𝑢 and 𝑣𝑣 as 

𝐽𝐽(𝑢𝑢, 𝑣𝑣) =
|𝑆𝑆(𝑢𝑢) ∩ 𝑆𝑆(𝑣𝑣)|
|𝑆𝑆(𝑢𝑢) ∪ 𝑆𝑆(𝑣𝑣)|, 

In other words, 𝐽𝐽(𝑢𝑢, 𝑣𝑣) is the number of common downstream devices between 𝑢𝑢 and 𝑣𝑣 divided by the 
total number of downstream devices. Higher values indicate higher correlation between the root cause 
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vertices. Identical root cause vertices will have Jaccard index 1, while root cause vertices from distinct 
branches of the graph will have Jaccard index 0. A Jaccard index strictly between 0 and 1 occurs when 
one root cause vertex is an ancestor of the other. This definition can be adapted to arbitrarily many sets of 
clusters. 

The Jaccard index of root cause vertices can be used to measure correlation between degraded MER 
(Section 2.2) and impairment patterns seen on FBC (Section 2.3). Here the root cause vertices come from 
the algorithms in Sections 4.2 and 4.3.1, respectively. Root cause vertex pairs with sufficiently high 
Jaccard index are interpreted as expressions of related or identical underlying network impairments. This 
effectively correlates demand maintenance (DM) events with proactive maintenance (PM) events. 

5. Algorithm Performance 
The algorithms in Section 4 perform well when applied to the use cases in Section 2. The precision-based 
algorithm in Section 4.1 has been used to identify legacy equipment preventing mid-split enablement on 
the path to 10G (Section 2.1). In this application, the root cause vertex identified by the algorithm is 
within 300 feet of the actual legacy equipment in 95% of cases. A similar approach has also been used to 
identify root causes of severe roll-off in a region of spectrum intended for orthogonal frequency-division 
multiplexing (OFDM) expansion; see Harb et al. for further discussion (2023). 

The statistical algorithm in Section 4.2 has been used to identify multi-home MER impairments and their 
root causes (Section 2.2). The results of the algorithm are overlayed with PER telemetry to determine 
whether the degraded MER is impacting customers. A relevant network impairment is found at the 
predicted root cause vertex in 85% of customer-impacting cases. To enhance these results, the root cause 
analysis and cluster correlation algorithms in Section 4.3 are used to identify spectrum impairments 
(Section 2.3) that are likely related to or even causing multi-home MER issues. 

5.1. Graph Algorithms vs. Geospatial Clustering 

Network topology data is sometimes unavailable or of insufficient quality for meaningful analysis. When 
this happens, a non-graph-based fallback approach is necessary. There is a question of how such an 
approach will perform when compared to the graph algorithms in Section 4. To answer this question, we 
perform clustering on CPE downstream of 2,071 physical layer (PHY) devices (remote PHY devices 
(RPDs)) with high-quality network topology data and a single binary attribute (“impaired” vs. 
“unimpaired”). We cluster the impaired customer devices on each RPD using three approaches: 

1. (Baseline) All impaired devices assigned to the same cluster 
2. (Geospatial) Density-based spatial clustering of applications with noise (DBSCAN) on 

latitude/longitude alone 
3. (“Ground truth”) Clustering with graph data, precision-based approach described in Section 4.1. 

We assess the performance of the baseline and geospatial approaches, treating the results of the graph-
based clustering as the ground truth. Let 𝑛𝑛 be one of the RPDs analyzed. Define 𝑆𝑆 to be the set of all pairs 
of impaired devices on RPD 𝑛𝑛 such that both devices belong to the same cluster, according to the graph-
based approach. Let 𝑇𝑇 be defined similarly but with one of the non-graph-based approaches instead. The 
precision of the non-graph-based approach for node 𝑛𝑛 can be defined as 

𝑝𝑝 =
|𝑆𝑆 ∩ 𝑇𝑇|

|𝑇𝑇| . 
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In words, 𝑝𝑝 is the fraction of device pairs sharing the same non-graph-based cluster that also share the 
same graph-based cluster. The recall is then 

𝑟𝑟 =
|𝑆𝑆 ∩ 𝑇𝑇|

|𝑆𝑆| . 

In words, 𝑟𝑟 is the fraction of device pairs sharing the same graph-based cluster that also share the same 
non-graph-based cluster. The results are illustrated in Figure 8, where we plot histograms and cumulative 
distribution functions (CDFs) of precision, recall and 𝐹𝐹1 score across all 2,112 nodes. Here the 𝐹𝐹1 score is 
the usual harmonic mean of 𝑝𝑝 and 𝑟𝑟. 

 
Figure 8 – Performance of baseline and geospatial clustering vs. graph-based clustering 

A numerical summary is given in Table 1. We compute the mean and median of precision, recall and 𝐹𝐹1 
score for the baseline and geospatial approaches across all RPDs, and then for each metric compute the 
mean and median difference between the two approaches across all RPDs. While the baseline approach 
has perfect recall by design, the geospatial approach outperforms the baseline in both precision and 𝐹𝐹1 
score, suggesting that it improves on the baseline overall. However, the average 𝐹𝐹1 score for the 
geospatial approach is 0.54, which is still low. This suggests that the geospatial approach does not 
perform similarly overall to the graph-based clustering. 
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Table 1 – Average performance metrics and lift of baseline and geospatial clustering vs. 
graph-based clustering 

 Baseline Geospatial Geo minus baseline 
Precision (mean) 0.30 0.47 0.16 
Precision (median) 0.24 0.40 0.11 
Recall (mean) 1.00 0.87 −0.13 
Recall (median) 1.00 0.98 −0.02 
𝐹𝐹1 score (mean) 0.42 0.53 0.11 
𝐹𝐹1 score (median) 0.38 0.52 0.10 

6. Conclusions and Next Steps 

We presented a suite of approaches to combining node-level telemetry with graph algorithms to identify 
and describe multi-home network impairments. Applying similar algorithms to additional categories of 
telemetry will help to further reduce the number of jobs generated for field teams while increasing the 
number of customer issues resolved. Possible candidates for such telemetry include MER for OFDM 
channels, upstream forward error correction (FEC) rate, and downstream PER.  

With more telemetry comes more complexity, however. The approaches in this paper treat each category 
of telemetry separately, comparing and combining the results at the end (e.g. by cluster correlation in 
Section 4.3.2). As more telemetry is included in our analyses, it will be critical to evaluate this divide-
and-conquer approach against more holistic approaches that attempt to perform clustering and root cause 
analysis on multiple attributes at once. The goal, ultimately, is a comprehensive data pipeline that ingests 
all pertinent customer device telemetry and generates jobs that are optimized for customer impact. 
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Abbreviations 
BG bonding group 
CDF cumulative distribution function 
CMTS cable modem termination system 
CPE customer premise equipment 
DAA distributed access architecture 
DAAS DAA switch 
DBSCAN density-based spatial clustering of applications with noise 
DM demand maintenance 
FBC full band capture 
FEC forward error correction 
HFC hybrid fiber-coaxial 
MDU multi-dwelling unit 
MER modulation error ratio 
MIB management information base 
MSO multiple systems operator 
OFDM orthogonal frequency-division multiplexing 
PER packet error rate 
PHE primary headend 
PHY physical layer 
PM proactive maintenance 
PPOD physical point of deployment 
RF radio frequency 
ROCI routing of cable infrastructure 
RPD remote PHY device 
RX receive 
SC-QAM single-carrier quadrature amplitude modulation 
SG service group 
SHE secondary headend 
TX transmit 
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