

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 1

Scaling DAA: Automated Network Health Check for vCMTS
Platform

A Technical Paper prepared for SCTE by

Marissa Eppes
Data Scientist

Comcast
1800 Arch St, Philadelphia, PA 19103

Marissa_Eppes@comcast.com

Ilana Weinstein
Data Scientist

Comcast
1800 Arch St, Philadelphia, PA 19103

Ilana_Weinstein@comcast.com

Matthew Stehman
Senior Data Scientist

Comcast
1800 Arch St, Philadelphia, PA 19103

Matthew_Stehman@comcast.com

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 4
1.1. Problem Statement .. 4
1.2. Solution .. 5

2. Background ... 5
2.1. DAA Topology .. 5

2.1.1. The PPOD .. 6
2.1.2. The RPD .. 6
2.1.3. The CM .. 7

2.2. DAA Telemetry ... 7
3. Methodology .. 7

3.1. Network Health Check Overview and Terminology ... 7
3.1.1. Pre-Check, Post-Check, and Metric Snapshots .. 7
3.1.2. Service-Affecting vs. Non-Service-Affecting Updates.. 9

3.2. Assessment of Key Performance Indicators .. 9
3.2.1. Deciding When to Alert .. 10
3.2.2. Algorithms and Thresholds .. 11
3.2.3. Custom Algorithm Example – Partial Service .. 14

3.3. Integration with Software Deployment Automation .. 15
3.4. Health Check Cloud Environment .. 16

4. Discussion ... 17
4.1. Usage Analysis .. 17
4.2. Analysis of Check Results .. 18
4.3. Lessons Learned .. 19

5. Future Work ... 20
5.1. Continued Optimization of Nework Health Check: Mid-Split Updates 20
5.2. Continous Monitoring ... 21

5.2.1. Implementation ... 21
5.2.2. Expectations ... 22

6. Conclusion ... 23
Abbreviations .. 24
Bibliography & References.. 25

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 3

List of Figures
Title Page Number
Figure 1: A simplified view of DAA topology ... 6
Figure 2: Conceptual relationship among pre-check, post-check, and historical/pre-deployment/post-

deployment snapshots .. 8
Figure 3: Example views of CM status vs. time during SA updates at the RPD-level 9
Figure 4: Some conceptual check outcomes .. 10
Figure 5: Visuals demonstrating statistical partial service algorithm .. 15
Figure 6: CI/CD integration with health check API — an example workflow .. 16
Figure 7: Diagram of cloud environment ... 17
Figure 8: Health check usage ... 18
Figure 9: Health check results .. 19
Figure 10: Number of KPIs evaluated in health check over time .. 20
Figure 11: Continuous monitoring workflow .. 22
Figure 12: Proof-of-concept anomaly and model in development .. 22

List of Tables
Title Page Number
Table 1: Summary of PPOD-Level KPI Algorithms and Thresholds ... 12
Table 2: Summary of RPD-Level KPI Algorithms and Thresholds ... 13
Table 3: Summary of CM-Level KPI Algorithms and Thresholds ... 13

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 4

1. Introduction
As Comcast progresses through Gen2 of the Distributed Access Architecture (DAA) initiative,
“automating everything” is paramount to the continued growth of the footprint. With the exciting
milestones achieved in Gen1, which took the first DAA customers online, came a laundry list of
operational improvements needed to realistically achieve the desired scale. The common theme among
these needed improvements? Automate. So far, Gen2 has made considerable progress in this regard,
automating everything from individual virtual cable modem termination system (vCMTS) cluster
standups to software and network changes, to incident detection and mitigation (Krishnamurthy &
Medders, 2021).

Since virtualization is the name of the game in the world of DAA, the vast majority of vCMTS
maintenance and upkeep is achieved with cloud component software updates, specifically component
configuration changes. Achieving near total automation involved transitioning software upkeep over to a
DevOps approach, with which changes to individual clusters are managed with cluster-specific
continuous integration/continuous deployment (CI/CD) pipelines. With this setup, a single Git commit
indicating a configuration change to a specific vCMTS component schedules the entire deployment
process, which kicks off a cascade of automated events, including but not limited to silencing alarms,
microservice performance checks, the actual software deployment, and a network health check to ensure
no customer impact. The goal in using this strategy to orchestrate software deployments is to eliminate as
much human interaction as possible, as even the slightest human error introduced at a single step can have
monumental impacts to the cluster configuration and network performance down the line and can lead to
complex outages and delay feature enhancements and releases.

During software updates, preserving or improving the customer experience is of the highest priority. In
Gen1, network health was checked manually; an operator would verify no customer impact by checking
telemetry dashboards and manually flagging any signs of service degradation. Not only is this practice not
scalable but subjecting this critical process to the risk of human error is undesirable as DAA scales and
the customer base grows. Therefore, automating and optimizing network health monitoring surrounding
software updates is of utmost importance. This paper highlights a data-driven approach to developing and
productionizing an automated network health check for use in vCMTS deployment CI/CD pipelines as
part of the Gen2 DAA initiative.

1.1. Problem Statement
As the number of software updates needed to maintain and scale the DAA footprint increases from tens to
hundreds to sometimes thousands per day, it is necessary to not only have these automated processes in
place, but to ensure that they are optimized to near perfection. With millions of customers already
converted to DAA, automated network health monitoring is one of these essential processes, given that
software updates can sometimes cause unintended side effects on the network, resulting in a degraded
customer experience. Software-related service degradation might manifest as anything from interruption
of service to poor traffic throughput, to partial utilization of network capabilities, and more. Even though
most software updates pose little risk to the customer experience, catching these occurrences when they
do happen so that quick mitigative action can be taken is considered to be a critical capability. Therefore,
there is a need for an automated and dependable tool for post-deployment network monitoring, which can
validate that software updates do not degrade service for the existing customer base or flag the occasional
software updates that do.

To deliver true value and support the goal of total automation, this tool needs to be compatible with the
vCMTS deployment CI/CD pipelines and to deliver highly accurate results, alerting the ops team only

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 5

when there is definite service degradation detected following a deployment, while simultaneously
maintaining a level of sensitivity as to not let any undetected service degradation slip through the cracks.
Additionally, to adhere to target maintenance window timeframes, this tool must determine and deliver a
decision on the state of the network back to the CI/CD pipeline within a matter of minutes following the
deployment. Last but not least, if service degradation is detected, the tool must provide a meaningful
summary detailing the reasons for service degradation so that an operator can take the appropriate action.

1.2. Solution
To address this need, the data sciences team has leveraged the rich network telemetry available within the
DAA system to develop a network health decision engine made available as an application programming
interface (API). When called, the API queries cluster-specific telemetry metrics live from a time series
database and performs a suite of algorithms to assess the health of the network. The API response flags
any incidental impact on already-live customers and alerts an operator within a matter of minutes.

The data sciences team has collaborated closely with the DAA engineering and ops teams to identify
relevant network key performance indicators (KPIs)—all in accordance with Data Over Cable Service
Interface Specification (DOCSIS)—to check as part of this process. The application performs i. a pre-
check to gather a baseline measure of network KPIs prior to a software update and ii. a post-check to
draw comparisons among KPIs and ensure that the network remains in a healthy state following a
software update. The post-check assesses the state of the network instantaneously by comparing instant
post-deployment KPI readings to either instant pre-deployment or historical KPI readings. The API is
designed specifically to integrate with the vCMTS software deployment CI/CD pipelines and is robust
enough to offer a one-size-fits-all solution to all clusters, regardless of configuration differences, number
of customers, differences in downstream topology, etc. The API is also compatible with a variety of
software deployment types, regardless of the target component and predicted risk level.

The API is currently integrated and running in a production environment. The application is invoked
during each software update for a variety of vCMTS components ranging from server builds to
configuration updates to operating system upgrades. As measured in recent analytics, the application is
invoked, on average, ~400 times per day and triggers alarms on ~2.5% of invocations. This paper will
take a deep dive into the methodology used to develop the tool and tune the rule-based algorithms, present
performance metrics, discuss lessons learned, and briefly touch on relevant future work.

2. Background

2.1. DAA Topology
While DAA offers a technologically progressive means of providing service to customers, the distributed
architectural setup is rather complex. The access network contains a variety of physical and logical
components ranging from headend Kubernetes servers to a series of leaf-spine switches to downstream
digital nodes all the way down to the customer premises equipment (CPE). When one or more of these
vCMTS components undergoes a software update, the deployment CI/CD pipeline performs a series of
checks on the entire cluster footprint. These checks can be grouped into two general categories:
microservice performance and network health. Because this paper focuses on the latter, the intricacies of
the DAA architecture and the vCMTS cloud environment will be outside the scope of this paper.
However, several past papers cover these topics in detail, namely Distributed Access Architecture Is Now
Widely Distributed - And Delivering On It’s Promise (Howald et al., 2021) and Node Provisioning and
Management in DAA (Gaydos et al., 2018).

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 6

To understand how the automated network health check is performed from a customer impact standpoint,
three topological entities must be understood: i. the physical point of deployment (PPOD), ii. the remote
PHY device (RPD), and iii. the cable modem (CM). Figure 1 portrays a simplified view of relevant DAA
topology.

Figure 1: A simplified view of DAA topology

2.1.1. The PPOD
Located at each primary headend, PPODs comprise the actual servers on which DAA software is
deployed. PPODs and vCMTS clusters are often referenced interchangeably and, in theory, describe the
same technology. However, usage of one term versus the other depends on the context in which the
technology is being discussed; a PPOD can be thought of as an abstract deployment unit, whereas
“vCMTS” is often used in reference to the physical cluster hardware. Given that this paper discusses
DAA from a software standpoint, we will largely use the “PPOD” naming convention going forward.

As Krishnamurthy and Medders discuss, clusters are often spun up with configurational differences,
“each with their own slightly different personalities” (2021). Given that any two PPODs might be
configured differently, the PPOD is the highest-level architectural component on which it makes sense to
perform a series of automated checks and aggregate results. Even when the entire DAA footprint needs to
undergo a particular component update, performing PPOD-level checks eliminates any risk of
confounding configurational differences into the equation. As such, all DAA deployment CI/CD pipelines
are kicked off at a PPOD-level, and subsequent checks are intended to indicate how a particular PPOD
“personality” fairs with any given software update. From the network health perspective, this entails
checking for any service degradation or incidental impact experienced by customers downstream of the
PPOD of interest.

2.1.2. The RPD
Designed to bring digital data transmission as close to the home as possible, RPDs sit on the very edge of
the access network and comprise the gateway between the digital system and the hybrid fiber/coax (HFC)
network, which eventually reaches the home. RPDs are the most downstream digital component of the
access network and can be subject to software updates themselves. Like PPODs, RPDs can have
configurational differences and/or come from different vendors, creating variety among them. Therefore,
RPD-level data aggregations provide diagnostic value when conducting the network health check. The
strategy of grouping together customers downstream of each RPD and analyzing each of these customer
subsets separately provides a more thorough network health validation and, if service degradation is
noticed, helps the responding operator to determine if the source of the issue lives at a particular RPD.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 7

2.1.3. The CM
The CM, which is often used interchangeably with “CPE”, is the final topological entity involved in the
network health check. Individual CM metrics are often the fundamental units used to derive data-based
network health algorithms, and all CMs subscribed to the PPOD-of-interest are taken into account during
the assessment. However, with millions of CMs already dispersed across the DAA footprint, it would be
impractical and disadvantageous to collect, analyze, and report on telemetry data for each and every CM.
In analyzing CM metrics, aggregations at both the PPOD- and RPD-levels deliver a more meaningful and
statistically robust measure of how the customer experience is fairing across the footprint following a
software update. Additionally, if service degradation is detected, this aggregation strategy offers a
diagnostic advantage in that it can pinpoint a lowest common ancestor for problematic CMs, allowing for
quicker isolation of the issue. For these reasons, almost all algorithms operate at either the PPOD- or
RPD-level. The only exception to this aggregation strategy is seen in the analysis of Business Services
over DOCSIS (BSOD) customers. This analysis does perform a CM-level evaluation, which will be
presented in Section 3.2.2.

2.2. DAA Telemetry
One noteworthy enhancement of the DAA system is the improved real-time telemetry offered across each
of the architectural components from the PPOD down to the CM. With the legacy system, telemetry data
was only emitted at 5-minute intervals at the very least. With DAA, data is streamed with 15-second
resolution. This improvement is key to delivering a speedy assessment of network health, as it eliminates
the need to wait for post-deployment telemetry to become available. Additionally, this increased
resolution into telemetry data allows the freedom to explore more check algorithms and provide higher
quality network diagnostics. In Solving The Mysteries of the Distributed Access Architecture, Stehman et
al. details the available telemetry across the access network and further expands on relevant topology
(2021).

3. Methodology

3.1. Network Health Check Overview and Terminology
3.1.1. Pre-Check, Post-Check, and Metric Snapshots

The automated network health check is meant to detect and alert on any unintended customer impact after
a software deployment. This of course entails checking live telemetry metrics directly after the
deployment; however, to establish a PPOD-specific baseline on which to compare these post-deployment
metrics, data collection and analysis is also needed prior to the deployment. As such, the health check was
designed to be a two-part process, consisting of both a pre-check and a post-check. By design, a
completed pre-check is required to start a post-check. From the PPOD CI/CD standpoint, this means that
the API must be integrated both prior to and after the deployment.

Each of the pre- and post-checks can be further broken down into metric “snapshots”. A metric snapshot
can be defined as a collection of related telemetry metrics measured over the same time period and
compiled to create a meaningful KPI. Since most of the evaluation algorithms function by comparing a
given KPI at two different time points, each time-aligned metric snapshot can be considered a single
comparison unit. Pre-check gathers metric snapshots from two different timeframes: i. over the course of
history for the PPOD and ii. in the instant right before the deployment. Respectively, we will refer to
these as “historical snapshots” (“historical-snaps” for short) and “pre-deployment snapshots” (“pre-snaps”
for short). As historical-snaps often consider a wide timeframe prior to a deployment, typically an
aggregation of telemetry data over time serves as the comparative metric value. This could be, for
instance, the 10th percentile of a PPOD’s upstream packet rate over the past seven days.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 8

The post-check works by querying and deriving metric snapshots from one timeframe only—in the instant
right after the deployment. These snapshots will be referred to as “post-deployment snapshots” (“post-
snaps” for short). The post-check also has the capability to load any of the cached historical-snaps or pre-
snaps from the pre-check to perform the actual pre-to-post comparisons. Whether or not post-check
borrows from the historical-snaps or pre-snaps depends on the KPI being compared. As a general rule of
thumb, continuous KPIs, such as traffic flow, tend to be compared post-deployment-to-historical, whereas
discrete KPIs, such as number of CMs online, tend to be compared post-deployment-to-pre-deployment.
In adherence to DevOps daily maintenance schedules, the target completion time of a post-check,
including all queries, data reads, comparison logic, and data writes, is two minutes or less. Figure 2 aims
to further clarify the concepts of pre- and post-checks as well as metric snapshots.

Figure 2: Conceptual relationship among pre-check, post-check, and historical/pre-

deployment/post-deployment snapshots

It should be noted that the pre-check currently possesses the capability to compare pre-snaps to historical-
snaps and assess network health prior to the deployment. The initial concept of the automated network
health check was designed with this capability in mind so that a deployment could be automatically
blocked if the network was deemed to be unfit for a software update. As the DAA initiative progressed,
this feature was decommissioned, as there are other automated alert systems in place capable of blocking
a deployment if the network is not considered healthy enough to undergo an update. Therefore, the main
purpose of the pre-check currently is to gather the snapshots needed to perform comparisons in the post-
check and to confirm that these snapshots are complete. In other words, the software deployment
automation only interacts with network health assessments made in the post-check. Since the data
sciences team has primarily focused on developing and optimizing the post-check functionality, this paper
will focus on the assessment of KPIs in the post-check.

It should also be noted that the data sciences team’s network health check is not the only post-deployment
fail-safe in place within the deployment automation. The DAA engineering team has also incorporated a
series of automated checks, more so pertaining to cloud microservice health; however, there can be slight
overlap when it comes to the KPIs observed among the various checks. While these microservice checks
are deemed to be another essential step within the deployment automation pipeline, they will remain
outside the scope of this paper.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 9

3.1.2. Service-Affecting vs. Non-Service-Affecting Updates
All DAA software updates, regardless of the component being updated, can be placed into one of two
general categories: service-affecting (SA) or non-service-affecting (NSA). The distinction between the
two depends on whether a component update will take customers offline for a brief period. SA updates,
which are scheduled during maintenance windows (normally between 01:00 and 04:00 headend local
time), typically involve RPD reboots causing all downstream customers to experience a brief expected
service interruption. NSA updates, which comprise the vast majority of all DAA software updates, occur
on components that often have service-preserving backup units, and will most likely not result in
interruptions. In other words, SA updates can be considered high-risk, whereas NSA updates can be
considered low-risk. The same automated network health check is performed on both SA and NSA
deployments; however, it is important to make this distinction between the two categories when analyzing
results, as SA updates tend to trigger more alarms than NSA updates, given that it takes some time for
customers to come back online and the network to return to a normal, steady state following SA updates.
As SA updates are high-risk and are purposely scheduled on just a handful of PPODs at a time, an
operator typically oversees SA updates and interacts with the health check response live. Figure 3 shows
examples of typical CM behavior over time during an SA update—specifically the steep drop-off in total
number of CMs online during the RPD reboot, followed by a gradual recovery. The expectation for NSA
updates is that a service interruption like this should not occur.

Figure 3: Example views of CM status vs. time during SA updates at the RPD-level

3.2. Assessment of Key Performance Indicators
The automated network health check, specifically the post-check, works by making rule-based
comparisons between two snapshots of the same KPI. Thresholds and comparison algorithms are specific
to each KPI and will be detailed in this section. When a particular KPI is evaluated against a threshold
and breaks a rule, the KPI is assigned one of two categories: warning or failure. Whether or not a broken
rule indicates a warning or failure depends on the KPI as well as the algorithm being used to assess it,
both of which indicate the severity of the anomaly. Warnings can indicate signs of service degradation,
but typically to a lesser extent than failures. As will be discussed in the next section, KPIs with warnings
are intended to be observed and studied more closely but not quite considered severe enough to
automatically alert an operator. The data sciences team has worked closely with DAA subject matter

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 10

experts (SMEs) in deciding which KPIs should belong in the failure category versus the warning
category.

In addition to warnings and failures, there are a several KPIs which are calculated and presented in the
API response for information only, as they are not indicative of service degradation nor are they held to a
certain threshold. These KPIs are placed in a category called info and are meant to aid in observation and
analytics.

3.2.1. Deciding When to Alert
The API response compiles all individual KPI results and provides a list of all KPIs which have failed the
check and all KPIs which should deliver warnings. If a single KPI evaluation fails, the result of the entire
health check is considered a failure, the PPOD is flagged, and an operator is alerted to take further action.
KPIs in the warning category do not automatically fail the entire health check when a rule is broken.
Rather, these KPIs are manually observed by DAA operators and SMEs as possible contenders for stricter
treatment, further algorithm tuning, or even live operator intervention in the case of SA updates. It is not
uncommon for KPIs to start out in the warning category and later be transferred over to the failure
category when SMEs confirm the relevancy of the KPI, and an optimal algorithm has been decided.
Figure 4 aims to conceptually demonstrate how the overall health check decision is calculated based on
KPIs in the failures category only, despite KPIs in the warnings category.

Alongside the overall health check decision, a summary of the KPI readings and comparisons is presented
to the operator as a diagnostic aid. For PPOD-level evaluations, a summary might include, for instance,
CM counts for given states pre- and post- deployment and list any CMs which have changed state
following a deployment. If an RPD-level evaluation fails, typically the summary will detail KPI readings
and comparisons for the problematic RPD(s).

With this information, an operator can decide on a mitigative course of action in the event that service
degradation is detected. For instance, an operator might perform an RPD reboot and retry the post-check
to see if detected service degradation has been fixed. If nothing can be done remotely, an operator might
decide to send a technician out into the field to intervene with RPD hardware. If a root cause cannot be
identified, the operator might ultimately decide it is best to roll back the software update until further
troubleshooting can be performed.

Figure 4: Some conceptual check outcomes

Failures: {KPI 1, KPI 2}

Check Result: Fail

Warnings: {KPI 3, KPI 4} ALERT

Failures: { }

Check Result: Pass

Warnings: {KPI 3, KPI 4} Con�nue

Failures: { }

Check Result: Pass

Warnings: { } Con�nuePost-Check

Post-Check

Failures: {KPI 1}

Check Result: Fail

Warnings: { } ALERTPost-Check

Post-Check

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 11

3.2.2. Algorithms and Thresholds
As discussed previously, most algorithms operate at either the PPOD- or RPD-level. This means that
more granular CM and traffic metrics will be aggregated to provide a big picture view of the customer
experience downstream of the PPOD and each RPD. This might involve, for instance, counting the CMs
in a particular state downstream of an RPD, or summing all upstream traffic across all RPDs to calculate a
PPOD-level traffic measure.

KPI comparison algorithms can be generally categorized as one of the following: i. percent recovery, ii.
percent increase, iii. greater-than-zero, or iv. custom. Simply put, algorithms that analyze components in
“good states”, such as online, connected, synced, etc., tend to use percent recovery calculations, while
algorithms that analyze components in “bad states”, like partial service, tend to use percent increase
calculations. Some KPIs are analyzed simply by checking if the post-deployment reading is greater-than-
zero. This is typically done with continuous traffic KPIs since the algorithm is only limited to an instant
sample of data post-deployment, eliminating the possibility of any trend analysis. Custom algorithms, as
the name suggests, do not fall into these general categories and are evaluated using customized logic and
thresholds. Table 1, Table 2, and Table 3 summarize KPI algorithms, thresholds, and alert categories at
the PPOD-, RPD-, and CM-levels respectively. These KPIs are observed in accordance with DOCSIS and
are detailed in the latest CableLabs DOCSIS Remote PHY specification and database of DOCSIS
Management Information Bases (MIBs). It may be helpful to reference the “Abbreviations” section on
page 24 to comprehend the KPIs presented.

As seen in these tables, several KPIs have two evaluation renditions. Typically, this is done when two
levels of severity—one that results in a warning and one that results in a failure—are analyzed for the
same KPI. Also noteworthy are the several algorithms/thresholds which have scenario-specific
exceptions, as highlighted in the “Notes” section in each table. An example of this can be seen when
CMs-in-partial-service is analyzed and held to a percent increase threshold (< X % increase), but the pre-
snap count of partial CMs is very low (< 10). In a scenario like this, the addition of just a few more CMs
in partial service post-deployment can cause an entire health check to fail, halting the deployment pipeline
and alerting an operator. This scenario is likely not indicative of service degradation due to a software
update given that it is not atypical to see some random partial service fluctuation. In this scenario, an
exception would be programmed which would forgive a few additional CMs in partial service despite
technically breaching the percent increase threshold.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 12

Table 1: Summary of PPOD-Level KPI Algorithms and Thresholds

Level KPI Algorithm Threshold Notes Category

PPOD

RPDs Online percent recovery > X % RPDs test/pre-production RPDs
omitted from calculation failure

CMs Online - Overall percent recovery > X % CMs uses subset of CMs online in
pre-snap failure

CMs Online - IP v4/v6 percent recovery > X % CMs
IP version breakdown, uses
subset of CMs online in pre-
snap

warning

CMs Online - BSOD percent recovery > X % CMs - failure

CMs in Partial Service percent increase < X % increase in
partial CMs

custom algorithm for low-CM
scenarios failure

CPE Types Online custom N/A breakdown by CPE type info

CPE Types in Partial
Service custom N/A breakdown by CPE type info

MD DS/US Traffic greater-than-zero packet rate > 0 except when packet rate is
historically zero warning

Partial Service
(Statistical Percentages) custom

not statistically
greater than history
(< 3σ)

calculates historical
distributions of percent-CMs-
in-partial

warning

RPDs PTP-Synced percent recovery > X % RPDs - failure

RPD Time Offline custom N/A time each RPD is down during
SA event info

PCMM Connection 1 greater-than-zero COPS
connected/open > 0 - failure

PCMM Connection 2 percent recovery > X % COPS
connected/open - warning

OFDMA Channels custom N/A breakdown of OFDMA
channels info

Mid-Split Enabled CMs percent recovery > X % mid-split
enabled CMs

includes breakdown of mid-split
enablement status pre- and post-
deployment

warning

Mid-Split Utilizing
CMs percent recovery > X % mid-split

utilizing CMs

includes breakdown of mid-split
utilization status pre- and post-
deployment

warning

Mid-Split Enabled
RPDs custom N/A breakdown of mid-split enabled

RPDs info

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 13

Table 2: Summary of RPD-Level KPI Algorithms and Thresholds

Level KPI Algorithm Threshold Notes Category

RPD

CMs Online - Overall 1 percent recovery > X % CMs per RPD uses subset of CMs online in
pre-snap warning

CMs Online - Overall 2 greater-than-zero > 0 CMs per RPD except when RPD had zero
CMs in pre-snap failure

CMs Online - IPv4/v6 percent recovery > X % CMs per RPD
IP version breakdown, uses
subset of CMs online in pre-
snap

warning

CMs Online - BSOD percent recovery > X % CMs per RPD uses subset of CMs online in
pre-snap failure

CMs in Partial Service percent increase < X % increase in
partial CMs per RPD

custom algorithm for low-CM
scenarios warning

CPE Types Online custom N/A breakdown by CPE type info

CPE Types in Partial
Service custom N/A breakdown by CPE type info

MD DS/US Traffic greater-than-zero packet rate > 0 per
RPD

except when packet rate is
historically zero warning

DSG Traffic 1 greater-than-zero
packet rate > 0 per
tunnel, per channel,
per RPD

warns if a single tunnel has
zero traffic post-deployment
for a single RPD

warning

DSG Traffic 2 greater-than-zero
packet rate > 0 per
tunnel, per channel,
per RPD

fails if all tunnels have zero
traffic post-deployment for a
single RPD

failure

OFDMA Channels custom N/A breakdown of OFDMA
channels info

Mid-Split Enabled CMs percent recovery
> X % mid-split
enabled CMs per
RPD

includes breakdown of mid-
split enablement status pre-
and post- deployment

warning

Mid-Split Utilizing
CMs percent recovery

> X % mid-split
utilizing CMs per
RPD

includes breakdown of mid-
split utilization status pre- and
post- deployment

warning

Table 3: Summary of CM-Level KPI Algorithms and Thresholds

Level KPI Algorithm Threshold Notes Category

CM BSOD DS/US Traffic greater-than-zero packet rate > 0 per
CM

except when CM historical
traffic is also zero warning

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 14

One noteworthy feature of our approach is the ease with which custom algorithms and more sophisticated
models can be incorporated. Data required to implement a custom algorithm or model is simply gathered
and processed, often in-query, to produce the desired data format as an abstract metric snapshot unit. This
collection step often takes direction from a configuration file, which might specify the timeframe over
which to gather data, for example. The same steps which perform comparisons and evaluate simple
algorithms against thresholds can be easily abstracted out to incorporate models instead, all while
delivering results and summaries in a format consistent with that of other evaluations. An example of a
custom algorithm is discussed in the next section.

3.2.3. Custom Algorithm Example – Partial Service

One particular KPI worth discussing in-depth is partial service. Partial service occurs when a CM is
online but unable to operate on one or more downstream (DS) or upstream (US) channels, which may or
may not hinder the customer experience. A CM can go into partial service for a variety of reasons,
including loss of communication on a channel, inability to acquire a channel, and/or configurational
incompatibilities. Despite its negative connotation, partial service is actually a beneficial feature in that it
can often allow an impaired CM to have a mostly normal transmit/receive experience on the subset of
channels it has available (Volpe, 2011). Nevertheless, partial service is an indicator that a customer is
either currently experiencing service degradation or at risk for service degradation in the future; therefore,
partial service is an important KPI to monitor during a software update.

As indicated in the algorithm exception example discussed in Section 3.2.2, partial service can be a
notoriously difficult metric to analyze pre-to-post deployment. The difficulty lies in the fact that: i. the
analysis is limited to a brief sample of data instantly after the deployment, as long-term trend analysis is
not in compliance with the two-minute check execution window ii. partial service can naturally fluctuate
due to factors unrelated to DAA software updates, and iii. the expected effect of a particular software
update on partial service is not always known. As demonstrated in Table 1 and Table 2, there are standard
percent increase algorithms in place to analyze partial service. These algorithms vary in efficacy
depending on the size of the CM population observed and tend to capture blatant partial service issues but
might not adequately flag more subtle post-deployment partial service anomalies. It is not obvious how to
define a more sensitive threshold using the percent increase strategy without introducing excessive false
positives; therefore, a new-and-improved custom algorithm was developed. This novel partial service
algorithm attempts to further capture PPOD-specific partial service anomalies using a statistical approach.

The steps to this approach can be summarized as follows: i. perform a historical query in the pre-check to
get a sample of partial service snapshots, ii. form distributions of percent-CMs-in-partial specific to the
PPOD over several time periods, iii. assume normality and calculate thresholds for each distribution by
considering statistical convention “three standard deviations above the mean” (a.k.a. 3σ) to be the cutoff,
iv. calculate instant post-deployment percent-CMs-in-partial and compare to the thresholds. Essentially,
this algorithm answers the question: “Is partial service outside the normal range following a software
update?”. Figure 5 aims to visually depict how these steps are used to evaluate the KPI. An instant pre-
snap reference point is also included to indicate the difference pre-to-post deployment in relation to the
historical distributions.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 15

Figure 5: Visuals demonstrating statistical partial service algorithm

3.3. Integration with Software Deployment Automation
As previously mentioned, the network health check integrates with each CI/CD pipeline both prior to and
after the software deployment for pre-check and post-check respectively. This setup technically requires
four endpoints: i. initiation of pre-check, ii. polling of pre-check status, iii. initiation of post-check, and iv.
polling of post-check status. The reason for this setup is that each check execution can take up to several
minutes, which can exceed the connection time limitations of the cloud resources chosen to implement
this application. Check executions are run as asynchronous background processes kicked off by the
initiation steps, and the polling steps are intended to deliver a quick indication as to whether the check is
complete or still running. Therefore, polling loops are needed within the automation to continue polling a
check until the check is complete and delivers results.

When a pre-check is started for a PPOD, a universally unique identifier (UUID) is generated and passed
back in the response of the first endpoint call. This UUID is used for reference throughout the remainder
of the workflow to ensure each step accesses the correct cached snapshots and process metadata. UUIDs
also serve the purpose of representing unique PPOD/software update/timestamp combinations, which is
helpful in debugging and analytics.

The application is capable of post-check retries, which take new post-snaps and compare them to the
same pre-/historical-snaps when the post-check initiation endpoint is called again. This feature can come
in handy particularly during SA updates, when network recovery is gradual and variable from scenario-to-
scenario. Typically, a retry is a manual process kicked off after an operator has waited for recovery
following an SA update or intervened to correct a detected network issue. Figure 6 demonstrates how the
health check features discussed above integrate to form a CI/CD workflow.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 16

Figure 6: CI/CD integration with health check API — an example workflow

3.4. Health Check Cloud Environment
The health check operates entirely in a cloud environment. The API is hosted using a cloud API gateway
service and interacts with a state machine, which orchestrates the health check workflow. A single state
machine is used to manage both pre- and post-check, allowing each execution to be defined by the UUID
described in the previous section. This is made possible by using callback functionality, which waits for a
token to be passed back to the workflow before moving from pre-check to post-check (or from post-check
n to post-check n+1). Check logic, which includes telemetry queries, comparisons, evaluations, etc., is
carried out using serverless cloud workers. Check execution metadata, cached snapshots, and final results
are all stored in a cloud database, which can be queried upon calling the API polling endpoints to retrieve
the API response. The response should either indicate that a check is still running or deliver the completed
check results. Unexpected errors (e.g., errors connecting to or querying from the telemetry database)
would also be detailed in the response so that a retry can be performed. Verbose check data intended only
for ad hoc analysis is also stored in the cloud database. Figure 7 presents a diagram of the health check
cloud environment, demonstrating the workflow and interactions among cloud services.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 17

Figure 7: Diagram of cloud environment

4. Discussion
4.1. Usage Analysis

Since the very first production release in 2020, usage of the automated network health check has
increased drastically and should continue to increase as Comcast scales DAA deployments. During the
initial release stage, API calls were relatively sparse, as the DAA footprint at the time was much smaller,
and the automation initiative was only beginning. Nowadays, it is not uncommon to see the API called
hundreds, if not thousands, of times per day, depending on the components scheduled for maintenance.
The health check is constantly interacting with more and more PPODs, customers, and types of software
updates, as DAA continues to scale and engage in automation efforts. As demonstrated in Figure 8, this
upward-trending call rate aligns proportionally to the standup of new digital clusters1, which is a proxy to
the growth rate of the DAA footprint.

While this substantial increase in call rate is undoubtedly a testament to the utility of the health check, it is
also an indicator that the data sciences team must consistently perform due diligence to ensure that the
check infrastructure and selected cloud resources continue to scale to meet the needs of the DAA
automation initiative. For instance, cloud environment settings—namely microservice memory,
provisioned concurrency settings, and programmed timeouts—are frequently tweaked to maintain
reliability and performance of the health check. Additionally, telemetry queries performed in the health
check are stress-tested frequently to ensure that the telemetry database can safely handle the large request
loads typically seen during a burst of concurrent network health checks.

1 The health check was released and integrated in 2020; however, health check data was not stored in an optimal
format for analytics until later. Therefore, visuals will only show trends for more recent timeframes.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 18

Figure 8: Health check usage

4.2. Analysis of Check Results

To depict failure and warning rates, Figure 9 breaks down the percentages of passes, failures, and
warnings for both SA and NSA updates respectively over the past year2. As expected, low-risk NSA
updates appear to deliver a consistently high pass rate, with a very small percentage of calls resulting in
failures. As demonstrated by this data and confirmed by DAA operators and SMEs, the health check has
been optimized to a steady state and performs proper due diligence surrounding NSA software updates.
The check is capable of alerting the ops team only when necessary, but does not over-alert with false
indicators of service degradation. Achieving optimal sensitivity is especially important for NSA updates,
as they comprise ~91% of all DAA software updates.

As expected, SA updates typically show a higher failure rate, given that customer recovery following an
RPD reboot can be a gradual process and the automation can prematurely run the post-check before
recovery is complete. Additionally, high-risk SA updates tend to need more network intervention than do
low-risk NSA updates, even after a recovery period is observed. While these frequent failures might seem
burdensome, they are typically no hinderance to the automation process, given that an operator oversees
SA updates as part of maintenance protocol. In these failure scenarios, the main value of the network
health check is in the post-check retry capability, not necessarily the alert functionality. The retry
capability allows the operator to intervene and repeatedly check all 36 network KPIs with the click of a
button, until customer recovery is complete and service is fully restored. As previously mentioned, the
operator may also choose to act on warnings during SA updates.

The warning rate for NSA updates consistently hovers around 20%, while SA updates show a more
variable warning rate. In both NSA and SA updates, a slight uptick can be seen in recent months, which is
attributed to the launch of Comcast’s mid-split trials and relevant KPIs recently introduced to the check
for testing. These warnings are not necessarily causes for concern, but rather demonstrate the
troubleshooting and finetuning process when new KPIs are added. The results of newly added KPIs are
often studied on a case-by-case basis, validated against telemetry dashboards, and discussed with DAA

2 Prior to August 2021, warnings were inconsistently defined and consisted of general comments to the end user in
addition to observed KPIs. Therefore, results prior to this date will be omitted from analysis for the sake of
consistency.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 19

SMEs in terms of optimal sensitivity. Using this iterative process, we might adjust thresholds, add
programmed exceptions, or even break out a single KPI into two KPIs, as seen done in Table 1 and Table
2. In Section 5.1, we will take a deeper dive into the mid-split initiative and discuss next steps for mid-
split-related checks.

Figure 9: Health check results

We attempted a correlation analysis to better understand individual KPI result trends, but the findings are
somewhat skewed, given that not all KPI results are independent of one another. Additionally, the large
variety of component update types further confounds the analysis, but we will continue to seek out ways
in which we can glean insight from the expansive data we have collected. We can, however, state that the
two most common independent modes of check failure are PPOD-level/RPDs-online, which currently
requires 100% RPD recovery following a software update, and PPOD-level/CMs-in-partial-service. These
two failures have trickle-down effects on other KPIs; for instance, a missing RPD will also manifest as a
DSG traffic failure and likely a CM-online failure, but the converses are not necessarily true. As warnings
are constantly being tweaked and do not always have optimal thresholds, we will not discuss them in this
context.

4.3. Lessons Learned
During the initial development stage of the health check, it was believed that only a few basic metrics—
namely variations of RPD recovery, CM recovery, and CMs in partial service—would need to be
observed. The initial design, which consisted of a handful of functions, was not well future-proofed, and
quickly became unmanageable as DAA progressed and the need to observe new KPIs was realized. The
team ended up refactoring the source code using an object-oriented approach to modularize the steps
taken—namely metric snapshot querying, comparing snapshots, and evaluating against thresholds—so
that new KPIs could easily be added without compromising the existing code. In retrospect, this strategy
proved essential in optimizing the check to its current state, which evaluates more-than-triple the number
of KPIs at inception. Figure 10 demonstrates the extent to which KPIs have been added over time.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 20

Figure 10: Number of KPIs evaluated in health check over time

Another key lesson learned was “make everything configurable”. Not only are algorithm thresholds
configurable, but so are historical-snapshot timeframes and applied percentiles, the ability to assign KPI
evaluations to the warning, failure, or info categories, the ability to turn on/turn off programmed
algorithm exceptions, etc. This strategy greatly aided in the maintenance of unit testing and allowed
finetuning of algorithms with a simple update to a configuration file.

Last but not least, optimizing storage of check data has greatly aided in our analytics, not only for
informational purposes (like this paper), but also for debugging specific scenarios and further
optimization of the health check based on retrospective analyses. As previously mentioned, we store all
API responses, complete with health check results and summaries, in a database, and each is tied to a
specific UUID for easy traceability. A verbose version of the check results, which contains more detail
than the DevOps team requires but is helpful for our internal analytics and debugging, is also stored per
each UUID. Additionally, placing check results in a relational database has vastly improved the efficiency
of these analytics and has also enabled network health check results to be featured in other data science
applications, such as Stehman et al.’s “Sherlock” analytics tool (2021).

5. Future Work

5.1. Continued Optimization of Nework Health Check: Mid-Split Updates
As alluded to previously, the data sciences team is in constant communication with DAA SMEs to discuss
the addition of new KPIs and ways in which current KPI algorithms can be improved. This is expected to
be an ongoing process as DAA progresses and Comcast launches other initiatives that overlap with DAA,
particularly in support of 10G and full duplex (FDX) technology.

On the road to 10G and FDX, Comcast is actively working on deploying mid-splits to enable higher US
and DS speeds within its digital footprint. Simply put, this is accomplished by incorporating an
orthogonal frequency division multiple access (OFDMA) channel into the broadband spectrum,
effectively doubling the available US spectrum (Olfert, n.d.). Enabling mid-split for customers across the
DAA footprint requires a handful of configuration changes to each cluster’s custom resource document
(CRD). As such, the mid-split enablement process is orchestrated with the standard PPOD software
update CI/CD automation, and the network health check is run after each attempted enablement.

To monitor the effectiveness and stability of each attempted mid-split enablement during the trial period,
we started by adding several info and warning KPIs at both the PPOD- and RPD-levels, as it was not
immediately clear what pass/fail criteria should be or if they were even needed. These KPIs looked at
things like: CMs which successfully became enabled, CMs which became enabled but went into partial

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 21

service on the OFDMA channel, CMs which started seeing OFDMA traffic flow, OFDMA channels
connected per RPD, etc. As referenced, in Section 4.2, we have seen a slight uptick in overall warnings
rates due to this update, as we experiment and continue to tune these KPIs.

Observations like these have prompted further analysis and troubleshooting of the mid-split enablement
process and have helped the data sciences team to brainstorm a few new purposeful rule-based
algorithms. For instance, one KPI we intend to monitor more strictly in the future is CMs which go into
partial service on the OFDMA channel due to mid-split enablement, as this is indicative that field
technicians might need to intervene with an RPD’s hardware to return network performance to a stable
state. As the mid-split initiative expands, we will continually aim to identify meaningful KPIs and
finetune algorithms, just as we have been doing throughout the lifetime of the network health check. The
hope is that we can add KPIs and algorithms that will help operators to determine intervention strategies
when mid-split specific service degradation occurs. Additionally, we will continue to perform analytics
on mid-split results—failure, warnings, and info—to look for ways in which network monitoring and
diagnostic reports can be improved.

5.2. Continous Monitoring
The network health check adds tremendous value to the DAA initiative in that it provides thorough
network monitoring in the moments right after a software update and supports the goal of total
automation by eliminating the need for manual observation during maintenance windows. This tool has
been optimized to catch many signs of service degradation so that an operator can take quick mitigative
action. However, some signs of software-related service degradation do not manifest until several hours,
or even days after the deployment. Similarly, some impairments are not easily detected with a quick
telemetry sample and require long-term trend analysis to detect. Given that the network health check is
only intended to take a quick on-demand snapshot of the network health, it is not a good tool for
continuous monitoring. Therefore, there is a need to develop a new tool, which will expand on the
network health check approach and add the capability for long-term network health monitoring of each
PPOD following a software update. This tool will differ from other production network monitoring tools
in that it will try to pinpoint signs of service degradation specifically caused by or correlated with
software updates, as opposed to all signs of service degradation in general. This distinction is key in
delivering an optimized diagnostic tool designed specifically for DAA operations.

5.2.1. Implementation
With continuous monitoring, post-deployment anomalies will be detected using rule-based and machine
learning (ML) algorithms, as well as time series analysis techniques, pushing the network monitoring
initiative to the next level with artificial intelligence (AI). The proposed workflow for continuous
monitoring is illustrated in Figure 11, which depicts an anomaly detection algorithm consistently
observing the network for a set period after deployment. In a similar manner to the live health check, the
DAA DevOps team will receive alerts when service degradation is detected or concerning anomalies are
noticed. However, the workflow will differ slightly in that the continuous monitoring tool will run as a
cron job and periodically push alerts to a publish/subscription (pub/sub) service available to the DAA ops
team.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 22

Figure 11: Continuous monitoring workflow

Continuous monitoring is considered an extension of the network health check but will be an independent
product due to the magnitude and nature of monitoring metrics, algorithms, and alerts. Metrics in
development for continuous monitoring include CM online status, partial service, MD traffic, customer
contact metrics, and more. Figure 12 displays a recently noticed anomaly overlayed by a deep learning
model in development to detect it. This particular anomaly is characterized by a select subset of CPE
device types experiencing random brief service interruptions as a result of an erroneous configuration
setting pushed through the deployment automation. This is an example of a scenario that went undetected
with the instant telemetry analyses provided by the live network health check. An anomaly like this
requires pattern analysis over time, making it an exemplary candidate for continuous monitoring.

Figure 12: Proof-of-concept anomaly and model in development

5.2.2. Expectations

The data sciences team is currently testing the waters with some proof-of-concept models intended to
capture anomalies following deployments in the long run. As these models improve and software-related
anomalies are better understood, the hope is that continuous monitoring can play an even bigger role in
the automation initiative—possibly even rolling back software automatically if it can be determined with
near certainty that an erroneous deployment resulted in service degradation. With this initiative, we also
hope to perform analytics at an even higher-level aggregation by examining groups of PPODs over the
same timeframe following a common software update. Although we had mentioned that this would not be

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 23

a good approach for the live network health check, we hope that advanced time series techniques and
possibly unsupervised methods, in conjunction with the expansive amount of data available, might be
able to help identify problematic PPOD configurations, or even more specifically, erratic
configuration/software interactions. In summary, the expectation for continuous monitoring is twofold: i.
continue to bolster DAA automation by detecting and alerting on known anomalies and ii. use advanced
analytics to increase our understanding of anomalous network patterns resulting from rapid scaling and
constant enhancements occurring as part of the DAA initiative.

6. Conclusion
In response to the DAA engineering team’s call to automate, the data sciences team has developed a live
network health check meant to replace eyes-on-glass network health monitoring surrounding software
updates. This was made possible thanks to the near real-time network telemetry streaming across the
DAA footprint, allowing for quick and nimble analysis of network health KPIs. With the guidance of
DAA SMEs and consistent feedback from the DevOps team, the data sciences team has been able to
finetune and optimize the health check algorithms to achieve the dependable, steady decision engine
currently in production today. While there have been a handful of key operational improvements that have
supported the expansion of DAA, automated network health monitoring has been particularly impactful
given the strict need to preserve the customer experience while performing updates and maintenance.
With improvements like this health check, the footprint has been able to expand considerably, as made
evident by the substantial increase in vCMTS clusters launched since the health check was first
integrated. Despite the rapid growth of the DAA footprint, operational manpower needed to sustain the
DAA initiative has mostly remained steady or even reduced in some scenarios, demonstrating the utility
of the automated network health check.

While the health check is a valuable tool meant for use during brief maintenance windows, it is limited in
that it cannot perform continuous monitoring over a more expansive timeframe following a software
update. This is the next key need that the data sciences team will aim to tackle in support of DAA
expansion and automation. With the continuous monitoring initiative, we intend to go beyond the scope
of quick rule-based evaluations and enter the domain of anomaly detection and ML to deliver an even
more thorough, diagnostic view of network health following software updates.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 24

Abbreviations

API application programming interface
AI artificial intelligence
BSOD business services over DOCSIS
CI/CD continuous integration/continuous deployment
CM cable modem
COPS common open policy service
CPE customer premises equipment
CRD custom resource document
DAA Distributed Access Architecture
DOCSIS Data Over Cable Service Interface Specification
DS downstream
DSG DOCSIS set-top gateway
FDX full duplex
HFC hybrid fiber/coax
IP internet protocol
KPI key performance indicator
MD MAC domain
MIB management information base
ML machine learning
NSA non-service-affecting
OFDMA orthogonal frequency division multiple access
PCMM PacketCable MultiMedia
PPOD physical point of deployment
PTP precision time protocol
RPD remote PHY device
SA service-affecting
SME subject matter expert
US upstream
UUID universally unique identifier
vCMTS virtual cable modem termination system

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 25

Bibliography & References
Humanoids Optional: Deploying vCMTS at Scale with Automation, Bhanu Krishnamurthy and Gregory
Medders, SCTE Expo 2021

Distributed Access Architecture Is Now Widely Distributed - And Delivering On It’s Promise, Dr. Robert
Howald et al., SCTE Expo 2021

Node Provisioning and Management in DAA, Robert Gaydos et al., SCTE Expo 2018

Solving The Mysteries of the Distributed Access Architecture, Matthew Stehman et al., SCTE Expo 2021

Data-Over-Cable Service Interface Specifications, DCA - MHAv2, Remote PHY Specification. CM-SP-
R-PHY-I14-200323

http://mibs.cablelabs.com/MIBs/DOCSIS/. Accessed June 2, 2022.

Brady Volpe. “DOCSIS 3.0 Partial Service”. The Volpe Firm, December 7th, 2011,
https://volpefirm.com/docsis-3-0-partial-service/. Accessed June 15, 2022.

Matthew Olfert. “Getting Started with OFDMA”. Broadband Library, n.d.,
https://broadbandlibrary.com/getting-started-with-ofdma/. Accessed June 15, 2022.

http://mibs.cablelabs.com/MIBs/DOCSIS/
https://volpefirm.com/docsis-3-0-partial-service/
https://broadbandlibrary.com/getting-started-with-ofdma/

	1. Introduction
	1.1. Problem Statement
	1.2. Solution

	2. Background
	2.1. DAA Topology
	2.1.1. The PPOD
	2.1.2. The RPD
	2.1.3. The CM

	2.2. DAA Telemetry

	3. Methodology
	3.1. Network Health Check Overview and Terminology
	3.1.1. Pre-Check, Post-Check, and Metric Snapshots
	3.1.2. Service-Affecting vs. Non-Service-Affecting Updates

	3.2. Assessment of Key Performance Indicators
	3.2.1. Deciding When to Alert
	3.2.2. Algorithms and Thresholds
	3.2.3. Custom Algorithm Example – Partial Service

	3.3. Integration with Software Deployment Automation
	3.4. Health Check Cloud Environment

	4. Discussion
	4.1. Usage Analysis
	4.2. Analysis of Check Results
	4.3. Lessons Learned

	5. Future Work
	5.1. Continued Optimization of Nework Health Check: Mid-Split Updates
	5.2. Continous Monitoring
	5.2.1. Implementation
	5.2.2. Expectations

	6. Conclusion
	Abbreviations
	Bibliography & References

