

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 1

Translating Customer & Employee Experience with
Shaw’s Data Journey

A Technical Paper prepared for SCTE by

Greg Bone
Principal Architect

Shaw Communications
2400 32 Ave NE, Calgary, AB T2E 6T4

greg.bone@sjrb.ca

Goutam Agarwal
Principal Enterprise Architect

Shaw Communications
2400 32 Ave NE, Calgary, AB T2E 6T4

goutam.agarwal@sjrb.ca

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 4
2. Key Drivers .. 7
3. Overview of Unified Customer Platform (UCP) ... 8
4. Guiding Design Principles ... 10
5. Minimum Viable Product Scope .. 11
6. Components .. 12

6.1. Customer Search ... 12
6.2. Search Results ... 12
6.3. Customer Details View ... 13
6.4. Data API Considerations .. 14
6.5. Snowflake Cloud Data Warehouse .. 15
6.6. API Data Stores ... 15
6.7. Customer Account Linking ... 16

7. Challenges .. 17
8. What’s next for Unified Customer Portal ... 27

8.1. Search Improvements .. 27
8.2. Customer Device Details .. 31
8.3. Real-Time Data Loading Process .. 32

9. Conclusion ... 33

Abbreviations .. 34

Bibliography & References.. 34

List of Figures

Title Page Number
Figure 1 - Pivot in Customer Expectations .. 4
Figure 2 – Shaw’s Customer Experience Strategy ... 5
Figure 3 - Shaw’s Agent Experience Strategy .. 5
Figure 4 – Key Drivers for UCP .. 7
Figure 5 – High Level System Overview ... 9
Figure 6 – UCP - Minimum Viable Product Scope .. 11
Figure 7 – Top Search Bar .. 12
Figure 8 – Search Results page variation where “Service Type” is shown with text in the Account #

column ... 13
Figure 9 – Wireline, no mobile service (in-network wireless quality & eligible for bundle) 14
Figure 10 – UCP – Challenges ... 17
Figure 11 – Union of Customer Types .. 17
Figure 12 – Example of Getting In-Network Status for a Single Account Number 18
Figure 13 – Multiple Account Numbers as Input; Aggregate by Service Provider 19
Figure 14 – Keyword Field Tokenization Keeps Josh Smith as a Single Token .. 20
Figure 15 – Text Field Tokenization Separates Name into Two Tokens .. 20
Figure 16 – Removing Leading Zeros from Account Number .. 22
Figure 17 – Account Number Search Query (Leading Zero not Specified) .. 22

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 3

Figure 18 – Search Results for Query “123456789” ... 23
Figure 19 – Phone Number Mapping Example ... 24
Figure 20 – Phone Number Analyzer .. 24
Figure 21 – Examples of How to Test Different Phone Number Formats .. 25
Figure 22 – Results for Analyzing Phone Numbers .. 26
Figure 23 – Example Synonym File Provides Alternate Names ... 27
Figure 24 – Mapping Settings that Applies the Name_Synonyms Analyzer .. 28
Figure 25 – Testing the Original Analyzer without Synonyms .. 28
Figure 26 – Results of the Original Analyzer .. 29
Figure 27 – Testing the Name_Synonyms Analyzer .. 29
Figure 28 – Tokenization Results of the Name_Synonyms Analyzer ... 29
Figure 29 – Searching Names without Synonyms .. 30
Figure 30 – Both Benjamin Smith and Josh Smith have the Same _Score ... 30
Figure 31 – Searching Names with Synonyms ... 31
Figure 32 – Josh Smith Now has a Higher Score with the Synonyms File ... 31
Figure 33 – Device Data Wireframe .. 32

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 4

1. Introduction
Through industry partnerships and customer connects, we have pursued insights on how the pandemic has
fundamentally shifted consumer and worker behavior, exploring the increased importance of engagement
in a world of remote work, and touchless experiences. We discovered a significant shift in customer
expectations and behaviors: customers have moved beyond speed and are looking for a unified and simple
experience with channel of choice. In a post-pandemic world, preferences have shifted to more
personalized, convenient, and connected experiences.

Figure 1 - Pivot in Customer Expectations

A unified channel touchpoint and agent experience is central to providing a connected customer
experience. Because agents are behind the various customer interaction channels, their experience is the
most crucial factor in meeting these quickly evolving customer expectations. To obtain a 360-degree view
of the customer, agents have traditionally needed to access information from multiple systems and
applications. However, this “swivel chair” experience was inefficient and impacted call times, wait times
and general customer experience. Something had to change.

A Unified Customer Platform (UCP) has since been designed to empower agents through seamless
visibility to any Customer in one place – no more swivels. UCP provides an accurate and centralized look
at all the services a customer subscribes to, across all lines of business. Available 24/7, UCP visualizes
customer and service information (using simple but intuitive UIs and modern search capabilities),
allowing sales and support teams to quickly understand the customer is subscribed services. It also serves
as the foundation to create customer communications and digital journeys, automated marketing and sales
campaigns, enriched customer segmentation and enhanced reporting.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 5

Figure 2 – Shaw’s Customer Experience Strategy

In this paper we introduce the Unified Customer Platform (UCP), a modern platform that helps Shaw
identify customers who meet eligibility requirements for new product offerings.

Figure 3 - Shaw’s Agent Experience Strategy

Eligibility requirements often require taking a 360-degree view of the customer across multiple lines of
business to highlight the products and services that are a good fit. This analysis leads to cross sell/upsell
opportunities and would typically take place outside of a source system with the data analysis occurring in
siloed data sets. Centralizing customer information (account information, subscribed services, history) in

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 6

UCP creates a single-entry point for reviewing cross-sell/upsell opportunities. Accessing customer
information in UCP via an application programming interfaces (API) or a Google-like search interface
was an important design decision. This will be the first time Shaw has had access to a single platform
capable of retrieving customer information for all our customers across all lines of business.

Overall, the care teams using UCP are incredibly happy with the platform. The consolidated customer
information helps reduce the “swivel-chair” previously required to jump between different billing
systems. It provides them with the consolidated account details to best help support the customer base.
The key findings that emerged from building and deploying UCP are:

1) Customer care teams benefit from platforms that aggregate account data from multiple source
billing systems. We saw good adoption from Wireless Care teams who needed to find authorized
users listed on a Wireline Internet services account.

2) Searching for customer accounts using the Elasticsearch search engine is a comfortable and time
saving feature. Expanding customer search to include multiple service addresses and other
business-class? options has been collected.

3) Modern technology stacks inside public clouds like AWS help reduce the overhead of building a
new, common data platform and can deliver extreme performance at reasonable costs.

4) The lack of real-time data feeds into UCP was a constraint placed on us because of how data gets
batched and scheduled upstream. For key data attributes like upgrades to new services, care teams
would like to see an indicator that something is pending rather than no data.

Our intent is to continue to develop the UCP platform as an aggregation platform for a variety of new use
cases that reach beyond care teams. Also adding additional account details like pending upgrades and
customer interactions would help paint a better picture of our customers. Migrating some of the data loads
into event-based streams could also help reduce the data load lag times caused by batched daily loads of
data.

This paper will be organized as follows: we begin by introducing some of the drivers that helped ground
us on why Shaw pursued building UCP in the first place. We will then present an overview of UCP and
how it is being used to improve customer experiences. This is followed by the platform architecture and
design challenges. We conclude the paper with a look at UCP’s journey so far, and likely future states.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 7

2. Key Drivers
The key drivers to provide a personalized, convenient, and connected experiences to our customers started
with the rebranding of the Shaw wireless product suite. If the Unified Customer Platform helps with
selling Shaw Mobile, it could be used for other customer offers in the future. The relatively short project
timelines had us looking at ways to modernize the technology stack so that we can focus on building
business value without the incumbrance of managing infrastructure at scale.

Figure 4 – Key Drivers for UCP

• Shaw wants to deliver a new Shaw-branded wireless product in Western Canada. By bundling
Shaw Wireless with Shaw Wireline services, Shaw expects to increase existing household value
and create a positive experience for the customer via a bundled service offering.

• Having a complete picture of the customer will provide a better agent experience and improve
Shaw’s ability to support the current customer base, improve upsell recommendations, and
maximize the effectiveness of marketing campaigns.

• Modernizing the technology stack for fetching and visualizing customer data will help Shaw
reduce customer support call times, wait times, and general customer experience. Specifically,
we were interested in how a query language for your API (GraphQL, graphql.org) can potentially
create a more consumable API when compared to traditional RESTful (REpresentational State
Transfer) API’s.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 8

3. Overview of Unified Customer Platform (UCP)
The Unified Customer Platform enables searching for both residential and business customers across all
lines of business using a dedicated search engine. Work was done to build data pipelines that aggregated
this fragmented data into a single search index. Searching against this index matches your search terms
against customer names, account numbers, phone numbers, and email addresses. The search results
contain a list of customers, ordered by relevance, that match or partially match the search criteria along
with all the associated child accounts for each customer. Why does this matter? UCP provides a single
view of the customer instead of an account-centric view that was previously spread across five different
source systems. Knowing the customer from an aggregated data perspective provides an enriched
customer interaction, creates cross/up sell opportunities, exposes data insights to better serve the customer
and allows the right offers to be recommended at the right time.

We felt it necessary to build this complete picture of the customer across three distinct layers. 1) a
relational data set that can support reporting and marketing campaigns. 2) An API layer that functions as a
data fetching API and gives clients the flexibility to select what data they need with minimal
transformations. 3) And because agents need to interact with this data while assisting customers, it was
necessary for us to build a new front-end to search and see all the customers data on one screen.

The Unified Customer Platform can be divided up into the following components:

- A front-end user interface that supports customer search and viewing customer details.
- An application programming interface (API) layer that uses the GraphQL to control exactly what

data you get back from the API.
- Local data stores that optimize data fetching and retrieval.
- A data transfer layer that handles loading of the local data stores.
- A cloud data warehouse that aggregates customer data.
- A master data management (MDM) platform that uses a set of business rules for linking customer

accounts across 5 incongruent billing systems.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 9

Figure 5 – High Level System Overview

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 10

4. Guiding Design Principles
When we sat down to develop this new platform, we were getting several different requirements from
different teams. The scope of potential end-users was broad and included Back Office teams, Care teams,
Retail support, Marketing, Finance, Revenue Assurance, Technical Operations, and corporate stores
across multiple lines of business.

Some teams don’t typically interface directly with the customer and have more time to perform
troubleshooting steps. Teams like the Back Office, Marketing, and Finance are good examples of teams
disconnected from the customer experience. Other teams like the technical operations and retail support
provide the necessary support but operate under different expectations for a timelier resolution of issues.
And then there are the customer facing teams like the care teams that operate the call centers and the retail
store reps. The customer facing teams often need to navigate systems and applications while talking to a
customer.

To avoid feature bloat and build a usable product, the design and development teams grounded ourselves
on a few key principles. These include:

Basecamp Like Delivery

- Structure work and teams into cycles that last six weeks. We experimented with three, two-week
sprints and two, three-week sprints. The number of actual sprints and length of sprints could vary
depending on the type of work. But roughly every six weeks we wanted to finish a batch of
product work and start preparing for a new batch of work. We were largely influenced by how
Basecamp (Cisco, 2018)[1] structures their work.

Right Sizing Teams

- Team sizes are kept small. A team is two or three people that is dedicated to a portion of the
product. We had a 2-person team for the UX design, a 2-person team for the AWS infrastructure,
a 2-person team for the front-end, and a 2-person team for data engineering work. In a 6-week
cycle, team sizes could flex up or down depending on the scope of work that needed to be done.

Prioritize Based on Value

- We could not do everything that we wanted to do and do it well. We did not have the time,
resources, people, etc., so we prioritized the features to make the minimal viable product that
executes on a few things and does them extremely well. The top requested feature was the ability
to view account details for wireless and wireline to see if the account owner or authorized users
on the account are eligible for promotions or offers.

API-First Approach

- Employ an API-first approach to building products. An API-first approach means that for any
given development project, the API’s are treated as “first-class” citizens. The API’s can be
consumed by both the client applications, other system platforms, or other development teams.
Therefore, the API’s need to be designed in an intuitive and reusable manner.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 11

5. Minimum Viable Product Scope
The initial set of users for UCP was reduced to the care teams, marketing teams and back-office teams.
Having a targeted user base helped us get both timely feedback and a reduced set of requirements plus
allowed the development teams to course correct between sprint cycles.

The search feature was limited to customer names, account numbers, phone numbers, and email
addresses. Searching by customer name needed to allow for partial matches on either the first name or last
name.

Account details needed to include total monthly revenue totals by line of business, identification of the
different product subscriptions, how long has this person been a customer, account status, payment status,
and any authorized users on the account. Address information for billing and service addresses was also
needed.

The unified customer channel needed to include three distinct access patterns for fetching customer data:
- A relational data warehouse that functions as the foundation for data aggregation and enrichment

of customer data that can be accessed using Structured Query Language (SQL)
- A GraphQL API that provides some flexibility for the client to choose what data gets returned
- A React Web Application that uses the GraphQL API to efficiently fetch customer data

Figure 6 – UCP - Minimum Viable Product Scope

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 12

6. Components

6.1. Customer Search

The goal was to develop a single customer search endpoint that would search across the entire customer
base in a performant manner. To optimize search performance, we are using Elasticsearch, a distributed
search and analytics engine.

Initially, we considered using traditional relational database engines for search, but the search
performance that we got from Elasticsearch was far superior to that of a Postgres database. In addition,
we also had plans to take advantage of Elasticsearch features for including alternate spellings and
nicknames for a customer’s first name and addresses. Overall Elasticsearch felt like the best tool for the
job.

We wanted searching to be simple, intuitive and with minimal navigation. We evaluated different design
options and preferred a single search bar component with some place holder text that tells the user what to
enter for search terms.

Figure 7 – Top Search Bar

Searching across residential and business accounts is the default without a need to provide any extra
context. We also wanted the search engine to support partial matching of customer names and email
addresses.

6.2. Search Results

Search results needs to show the customer, and all their associated linked accounts. (The linking of
accounts will be covered later under the Customer Account Linking section.) When accounts are linked,
there is one account that gets designated as the primary account. The rest of the linked accounts are
considered child accounts. Child accounts can and will span multiple lines of business and be sourced
from different billing systems.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 13

Figure 8 – Search Results page variation where “Service Type” is shown with text in the

Account # column

By clicking on one of the arrows on the right side of the page, the user will navigate to a customer details
view.

6.3. Customer Details View

The customer details page provides a summary of accounts by line of business. Each line of business is
reflected in a separate tab and has a summary of services, date connected, total number of accounts, the
total revenue for all services, and whether the customer is in the mobile network and is eligible for a
wireless bundle.

Below the tabs, there is an account summary section consisting of the account number, authorized users,
revenue per account, source billing system, and account status/payment status. Below the summary are
the account details that includes billing and service addresses and the details for the distinct types of
services.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 14

Figure 9 – Wireline, no mobile service (in-network wireless quality & eligible for bundle)

6.4. Data API Considerations

A customer data API needs to be designed in a reusable way to support multiple use cases. The primary
use case is to serve as the back-end data fetching API for the new UCP front-end. In addition, we received
requests from other platform owners to use this API to enrich customer data by making a simple HTTP
request to our API. This type of integration is attractive because we eliminate the need for replicating
customer data sets between various systems. Replicating large data sets across disparate systems is
expensive, slow, and difficult to maintain.

The decision to use GraphQL over REST was an easy decision from the perspective that by 2020
GraphQL was a proven technology offering many advantages over some of the challenges that faced
traditional REST APIs.

For example,, retrieving an aggregated view of accounts using a RESTful API might require making
multiple calls to the API to get all the required data for each account. Or, if the data has been aggregated
to a centralized landing area, the REST API would most likely be broken up into individual resources that
return a set of data specific to a use case and still require a client to make multiple API calls to retrieve all

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 15

the required data. Also, the data returned from a REST API call has the potential to return a lot of
unnecessary data to the client.

GraphQL is a more modern approach to building API’s that gives clients more control over the data that
they want to get back from an API request. This quote is from the graphql.org web site [2] which does an
excellent job summarizing GraphQL:

“GraphQL is a query language for APIs and a runtime for fulfilling those queries with your
existing data. GraphQL provides a complete and understandable description of the data in your
API, gives clients the power to ask for exactly what they need and nothing more, makes it easier
to evolve APIs over time, and enables powerful developer tools.”

A query language for APIs means that clients can change the shape of data returned by a GraphQL server.
Clients will have control to specify different return fields, run multiple queries in a single request, and add
aliases to fields to accommodate naming differences across front-end and back-end code. This all helps
reduce the amount of data transformations needed on the client to process the data.

In summary, GraphQL is typically served over HTTP/s via a single endpoint with a data schema that
informs clients about the shape and types of data that can be returned from the API. This contrasts with
REST APIs over HTTP which typically expose a suite of URLs (multiple endpoints), with each URL
endpoint exposing a single resource that defines a data format for the return data.

6.5. Snowflake Cloud Data Warehouse

One of the core requirements was to provide a unified customer channel that can be accessed via SQL as
well as an API. It seemed logical that the cloud data warehouse would be a landing zone for customer
data, so we built a customer data mart for this purpose. This customer data mart was designed as the
primary source of data for UCP.

The primary consideration was that we wanted to use a modern data platform that enabled separation of
compute and storage so that we can scale compute and storage separately. This requirement had us
considering a cloud data warehouse (e.g., Snowflake) or a modern cloud data lake in AWS. We ultimately
chose Snowflake because it was an SQL-based cloud data warehouse that allowed us to leverage existing
skill sets with the minimum amount of training required to adopt the new platform. Snowflake’s user
administration was also simpler and more integrated with the product compared to the AWS data lake.

6.6. API Data Stores

The API data stores were needed to meet our performance needs. For the customer search API, we used
Elasticsearch in AWS. There is nothing specific about the Elasticsearch configuration that required it to
be hosted in AWS, so this decision was made mostly out of convenience.

For the customer details lookup API, we used DynamoDB, a fast, NoSQL Key-Value database. The main
consideration was that we needed a database that could manage semi-structured customer data in JSON
format. Other NoSQL datastores like MongoDB could be drop-in replacements for DynamoDB.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 16

6.7. Customer Account Linking

Customer account linking is the process of matching accounts by different attributes like name, service
addresses, phone numbers, etc. Once a grouping of accounts is known for a customer, one account gets
assigned as the primary account and other accounts become child accounts and are linked via a data
relationship.

We took a conservative approach to linking customers by building a recommendation engine that only
recommends accounts to be linked. Administrators need to accept the recommendation before one
account gets assigned the primary account and all the other accounts get linked as child accounts. The
recommendation engine factors in a set of rules that helps prioritize which accounts are considered the
primary.

This process runs on a separate platform and the results for account linking get replicated into Snowflake
for consumption by UCP.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 17

7. Challenges
Building a GraphQL API that returns data for all customer types across all lines of business required
defining a customer data type in a GraphQL schema document. Bringing residential and business
customers together in a single data type requires some flexibility in the design so that we do not create
dependencies for things that are independent.

Figure 10 – UCP – Challenges

What shape of data makes the most sense for querying customers with multiple accounts across all
lines of business?

The customer API must be flexible and return a range of possible data types depending on the subscribed
products and services for each line of business. A customer could be a combination of wireline and
wireless services with data coming from different source billing systems. We wanted to future proof the
API by not adding any dependencies across billing systems. Billing systems can make changes that are
independent of other billing systems and the customer API needs to be able to handle any type of data.

The types of data for a residential customer could differ dramatically from a business customer and the
API needs to dynamically handle this. We wanted to remain consistent with GraphQL best practices by
having a single API endpoint for all the distinct types of customers and to be able to return all the
customer data in one HTTP request. If you only are interested in detail for one type of customer, for
example, wireline customer details, the request payload can change to reflect the exact details for a
specific customer or even multiple customers.

For the API to handle a range of possible field types, there is a union type that’s part of the GraphQL
specification.

Figure 11 – Union of Customer Types

A query that returns the ServiceProvider type is designed to receive more than one billing account number
that could be any one of the ServiceProvider types. If the account lookup fails, the AccountNotFound type
gets populated.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 18

In cases where a client is passing in a single account number and already knows the type of service
provider, they can build an extremely specific query that reduces the API response to the pieces of data
that they care about.

Figure 12 – Example of Getting In-Network Status for a Single Account Number

In this example, the client is only interested in finding out whether the customer is in network and has
good wireless coverage quality to be able to offer them a Shaw Mobile bundle.

In other cases, we could enter multiple billing accounts for a single customer. In this example, the
$getDashboardInput is an array that accepts multiple billing accounts of type getAccountInput. The
account numbers getting passed in could be one of the three different service providers or a failure
condition when account number is not found.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 19

Figure 13 – Multiple Account Numbers as Input; Aggregate by Service Provider

How did we normalize customer data to make searching for customers fast and accurate?

As mentioned above, one of the design considerations for search was to use Elasticsearch as the search
engine for finding customers by customer name, account number, email address or phone number.
Elasticsearch, or one of its derivates like AWS OpenSearch, typically ranks extremely high in popularity
for enterprise search capabilities. DB-Engines ranks Elasticsearch #1 in popularity as of June 2022. [3]

Today, a lot of the undifferentiated heavy lifting for provisioning and scaling an Elasticsearch cluster is
handled by third-party cloud providers. We will not go into tremendous detail on the physical
infrastructure that is needed to search across millions of customer records. Instead, we will spend more
time discussing how the customer data is indexed to achieve fast and efficient searches.

The physical infrastructure for an Elasticsearch cluster in AWS that will support searching across millions
of customers could look like the following.

• Use Amazon OpenSearch Service for managing a six-node search cluster running either an
Elasticsearch 6.8 cluster or an Opensearch 1.2 cluster.

• Typically, there would be three master nodes and three data nodes all running on instance types
of either c5.xlarge.search (Elasticsearch) or m6g.xlarge.search (OpenSearch).

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 20

Indexing data in Elasticsearch is done using analyzers that translate data into tokens that are more suited
for search. A token in Elasticsearch contains the string, type, and some positional offsets. In large blocks
of unstructured text, the same token could appear in multiple positions. For the examples here, we are
dealing with structured data as text or keywords and therefore the positional offsets are not as important.

In Elasticsearch there is a difference between a text field and a keyword field. The text fields get analyzed
and broken down into different tokens, whereas a keyword field is typically represented as a single token.

The tokenization of a customer’s full name as a keyword field could look like this:

Figure 14 – Keyword Field Tokenization Keeps Josh Smith as a Single Token

Whereas the tokenization of a text field for a customer’s full name as a text field would look more like
this:

Figure 15 – Text Field Tokenization Separates Name into Two Tokens

Only text fields can be sent through an analysis process that structures data into tokenized formats that are
optimized for search. Elasticsearch ships with built-in [4] and custom analyzers. Custom analyzers will be
needed to improve search hits for account numbers and phone numbers.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 21

Normalizers are like analyzers but are performed on keyword fields and only produce a single token.
Keyword fields are usually structured data types that are recognizable fields like email addresses, phone
numbers, and account numbers that are typically used for filtering and sorting.

Now that there is a better understanding of the difference between keywords and text fields, we can jump
into some of the things that we had to do to improve searching by account numbers and phone numbers.

Account numbers defined as keywords will get normalized to make searching against them simpler.
Because we are dealing with a handful of different billing systems, we could see variations with how
account numbers are formatted. Some accounts are all digits; sometimes accounts include leading zeros,
other times they do not; and some accounts have characters that prefix a set of digits that could be
capitalized or lower case.

The first step is to deal with the leading zeros, so we do not require this as part of search. The char_filter
will replace any of the leading zeros with an empty string. For this example, we will just focus on the
customer_account_number.keyword field. This field uses the keyword normalizer with a custom filter
(char_filter) that removes the leading zeros and forces the final token to be lowercase.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 22

Figure 16 – Removing Leading Zeros from Account Number

Using the above settings, searching for a customer using an account number no longer requires specifying
leading zeros. The query below uses account number “123456789” as the search term.

Figure 17 – Account Number Search Query (Leading Zero not Specified)

The query string of “123456789” normally will not match an account number that is indexed with
“0123456780” because of the zero prefix. However, if you look at the results below you will notice that
the document returned from the query “123456789” matches a document that contains a zero prefix.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 23

Figure 18 – Search Results for Query “123456789”

Normalizing phone numbers required a little more work to get satisfactory results. Phone numbers needed
to be only numerical digits, 10 digits minimum, not empty, required removal of all zero prefixes, so that
different formats for phone numbers could be handled. In the example below, we use a custom phone
number analyzer and search analyzer.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 24

Figure 19 – Phone Number Mapping Example

And below you can see how the phone number analyzer is configured. There is a char_filter for removal
of all non-digit characters from the phone number. The us_phone_number is a custom tokenizer that
removes any leading 1’s from the phone number and preserves the original number.

Figure 20 – Phone Number Analyzer

We can test how the phone_number analyzer works by using the _analyze feature of Elasticsearch. The
_analyze feature runs an analyzer with a text string and outputs the generated tokens.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 25

Figure 21 – Examples of How to Test Different Phone Number Formats

The first two _analyze examples resolve to these two tokens [18005551111, 8005551111] while the last
example resolves to [8005551111]. The important thing to notice that each example has the 8005551111
as one of its tokens. Actual output from the _analyze command is shown below.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 26

Figure 22 – Results for Analyzing Phone Numbers

Because account numbers, email addresses, and phone numbers are stored in different fields we needed to
use what Elasticsearch calls a multi-match query. In a multi-match query, we are running multiple queries
with the same search term. Because the search term gets applied to different search fields, we rely on the
relevance score to build the search results page.

Search algorithms apply rules and mathematical calculations to derive a relevance score so we then can
do a little manipulation of the scores. For example, we boost complete matches against full name and last
name higher than a partial match that uses a wild card search. Elasticsearch uses Lucene under the hood
so by default it uses the Practical Scoring Function [5]. The details of the scoring function go beyond this
paper, but it is worth noting that Elasticsearch does give you the ability to tune the scoring algorithm and
change relevance scores.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 27

8. What’s next for Unified Customer Portal
There are a lot of opportunities for us to continue development of UCP so that Care agents continue to
have better interactions with the customers. Below are three features that we are currently pitching to the
UCP product owners.

8.1. Search Improvements

For customer search we would like to add synonyms for both customer first names and alternate spellings
for address searches. To accomplish this in Elasticsearch you need to start with a synonyms file that
correlates between a name and different nicknames.

Figure 23 – Example Synonym File Provides Alternate Names

Maintaining a synonym list is difficult to do manually so we would like to explore some novel ways on
how to automatically push updates to this file. The plan will be to start with an initial list of nicknames
that we can eventually compare against actual search logs so that we can measure the synonym list for
completeness.

Once a synonym list is added to an Elasticsearch index you can map the synonyms to an analyzer. The
example below uses a synonyms field instead of a file, but it is sufficient to prove out how we can take
advantage of nicknames. The filter object defined next to number 1 creates the synonyms. The number 2
section tells Elasticsearch to use the name_synonyms analyzer for the name field. And Section 3
configures the analyzer to tokenize text into lowercase and add the synonyms data.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 28

Figure 24 – Mapping Settings that Applies the Name_Synonyms Analyzer

We created three analyzers in the example above and we can use the _analyze function to show how text
gets tokenized and synonyms are incorporated.

Figure 25 – Testing the Original Analyzer without Synonyms

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 29

The tokenizer named original keeps the text “Josh Smith” as a single token, but it does make it lower
case. Take note that these synonyms are not included in this example when using the original tokenizer.

Figure 26 – Results of the Original Analyzer

By changing the analyzer from 'original’ to ‘name_synonms’ you will see the tokenization of “Josh
Smith” look different from the above example.

Figure 27 – Testing the Name_Synonyms Analyzer

There are now three separate tokens for “Josh Smith” that can be used for searching [“josh”, “joshua”,
“smith”]

Figure 28 – Tokenization Results of the Name_Synonyms Analyzer

Searching for “Joshua Smith” without synonyms will get a match on “smith” but both “josh smith” and
“ben smith” are scored the same.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 30

Figure 29 – Searching Names without Synonyms

Figure 30 – Both Benjamin Smith and Josh Smith have the Same _Score

After adding synonyms to the search query, you get a good match for a “Joshua Smith” query which will
be ranked higher than “ben smith.”

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 31

Figure 31 – Searching Names with Synonyms

Figure 32 – Josh Smith Now has a Higher Score with the Synonyms File

8.2. Customer Device Details

We would like to enhance the customer details by adding device metrics. Device data that is associated
with the service line can provide a Care agent more context on how well their mobile plan is working and
if changes are needed.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 32

Figure 33 – Device Data Wireframe

8.3. Real-Time Data Loading Process

Our goal has always been to move to more of a real-time data load process for customer account linking
and customer search. The challenge is that we are currently dealing with a lot of upstream legacy systems
that only support batch exports of data.

There is still some room to optimize the schedules being used for batch loads. Transitioning to event-
based schedules will help us load data as soon as it is ready. Snowflake recently announced its Unistore
workload which expands the capabilities of Snowflake to support modern transactional data and
analytical data in one platform. Keeping data in snowflake could eliminate the Snowflake-to-DynamoDB
data load which moves the freshness of data up by 30 minutes.

Real-time data processing will require source systems to support event-based data streams. The UCP
platform would subscribe to these event streams and use the data to build additional metrics about a
customer.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 33

9. Conclusion
Prior to the introduction of the Unified Customer Platform, our front-line agents would need to access
multiple back-office systems across different lines of business. This “swivel chair” experience was time
consuming and very inefficient while serving customers that lead to customer frustration and longer call
times.

UCP simplifies this for our agents by allowing them to quickly search for a customer by name, account
number or phone number. Once the customer is found, UCP displays the accounts and service attributes
for all services that the customer subscribes to, eliminating the need to find these accounts across multiple
interfaces. UCP provides all the information needed for an agent to understand the current customer
engagement with Shaw across different LOBs. In addition, our agents can use the information in the tool
to determine if a customer is eligible for any current promotions. UCP serves the intent that we were
after: to utilize the data to best serve our customer base and allow our agents to talk intelligently with
them.

Over time, we will continue to build on the foundation that we have built and extend the platform by
including the ability to link customer accounts in a more formal and verified manner in real time. Our
value-based iterative delivery and ability to unlock the true value of enterprise data will help us meet the
goals that we have set for ourselves.

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 34

Abbreviations

5G 5th Generation
API Application Programming Interface
AWS Amazon Web Services
DB Database
EMR Elastic Map Reduce
ETL Extract Transform Load
Gbps Gigabit per second
GraphQL Graph Query Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
LOB Line of Business
MDM Master Data Management
MRC Monthly Recurring Charge
MRR Monthly Recurring Revenue
MVP Minimum Viable Product
NoSQL Not Only SQL
REST REpresentational State Transfer
S3 Simple Storage Service
SQL Structured Query Language
UCP Unified Customer Platform
URL Uniform Resource Locator
UX User Experience

Bibliography & References
[1] https://m.signalvnoise.com/how-we-structure-our-work-and-teams-at-basecamp/

[2] https://graphql.org/

[3] https://db-engines.com/en/ranking/search+engine

[4] https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html

[5] https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html

https://m.signalvnoise.com/how-we-structure-our-work-and-teams-at-basecamp/
https://graphql.org/
https://db-engines.com/en/ranking/search+engine
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/practical-scoring-function.html

	1. Introduction
	2. Key Drivers
	3. Overview of Unified Customer Platform (UCP)
	4. Guiding Design Principles
	5. Minimum Viable Product Scope
	6. Components
	6.1. Customer Search
	6.2. Search Results
	6.3. Customer Details View
	6.4. Data API Considerations
	6.5. Snowflake Cloud Data Warehouse
	6.6. API Data Stores
	6.7. Customer Account Linking

	7. Challenges
	8. What’s next for Unified Customer Portal
	8.1. Search Improvements
	8.2. Customer Device Details
	8.3. Real-Time Data Loading Process

	9. Conclusion
	Abbreviations
	Bibliography & References

