

© 2022, SCTE®, CableLabs® and, NCTA. All rights reserved. 1

Bitcode Obfuscation

Protecting Software Without Source Code Access

A Technical Paper prepared for SCTE by

Rafie Shamsaasef
Director of Software Engineering

CommScope
6450 Sequence Dr, San Diego, CA 92121

1 (858) 404-2205
rafie.shamsaasef@commscope.com

Lex Aaron Anderson
Senior Security Architect

CommScope
PO Box 37-942 Parnell 1052, Auckland, New Zealand

+64 935 803 75
aaron.anderson@commscope.com

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Introduction to Software Obfuscation .. 3
3. Control-flow and Data-flow Obfuscation ... 5

3.1. Control Flow Obfuscation ... 5
3.2. Data Flow Obfuscation ... 5

4. Bitcode obfuscation techniques .. 5
4.1. What is bitcode? ... 6
4.2. Why bitcode protection? ... 6
4.3. How does it work? .. 7

5. Exploring the usage of bitcode obfuscation .. 7
5.1. Mobile applications ... 8
5.2. Cloud Server Applications and Web Services ... 10
5.3. IoT Applications .. 10

6. Conclusion ... 11

Abbreviations .. 12

Bibliography .. 13

List of Figures

Title Page Number
Figure 1 - Encryption vs Obfuscation .. 4
Figure 2 - LLVM Architecture .. 6
Figure 3 - Cloud-based bitcode obfuscation use-case. .. 7
Figure 4 - iOS Mobile App Framework .. 8
Figure 5 - iOS Mobile App Framework with App Obfuscation .. 9
Figure 6 - Sample Cloud App with Obfuscation .. 10

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 3

1. Introduction
Software obfuscation techniques have become increasingly popular in recent decades due to their broad
applicability toward malware threats and intellectual property protection. Reverse engineering and
tampering attacks are prominent means for software piracy and exploitation. Obfuscation is a collection
of techniques for securing software and protecting applications from harmful malware. The goal of these
techniques is to increase the cost and feasibility for attackers to exploit security vulnerabilities and carry
out successful attacks against software implementations.

Bitcode obfuscation is a form of obfuscation that operates on an intermediate code representation rather
than the original source code or native binary. This technique is based on sound and proven mathematical
principles that retain the security characteristics of native binary while also maintaining the portability
and platform independence of source code. Obfuscating at the bitcode level enables developers to utilize
obfuscation-as-a-service without exposing their source code or proprietary libraries, while achieving
levels of protection not possible with source-code obfuscation. As such, bitcode obfuscation is a
promising field for developing the next generation of software protection services in the cloud.

In this paper, we offer technical details of control-flow and data-flow obfuscation techniques based on the
idea that no source code or other dependencies are required to apply strong obfuscation directly to the
intermediate bitcode representation rather than the original source code or the native binaries. We
conclude by providing insights into the usage of obfuscation in relation to the security requirements of
connected and cloud software systems.

2. Introduction to Software Obfuscation
In software development, obfuscation is the act of generating source or machine code that is difficult for
humans and automated tools to reverse engineer. The goal is to achieve maximally unintelligible code
without introducing unacceptable levels of overhead. Many techniques have been described in the
literature that have both heuristic and tractable security basis. A combination of techniques can provide
synergy in terms of the work factor required to reverse engineer the resulting binary code.

Programs often use high-level programming language constructs, common design patterns, and reusable
components. These software engineering practices make code easier to reverse engineer and exploit
(Wikipedia, 2022). It is therefore not appropriate (nor sufficient) for programmers to deliberately
obfuscate their code to attempt conceal its purpose (security through obscurity), since many advanced
tools exist to deobfuscate code that has not been sufficiently protected (OWASP, 2016).

Obfuscation is not the same as encryption. There is a common misconception to think of obfuscated data
or code being the same as encrypted ones. While they both manipulate the original data/code to a different
form, they are fundamentally different processes. Encryption requires a key and deploys a well-known
cipher algorithm such as AES to convert the data or code to an unreadable form; where a decryption
process is needed to perform reverse operation and get back the original data/code. Obfuscation on the
other hand utilizes algorithms which often do not require a key. The obfuscated data and code can be used
as-is without a need to de-obfuscate them. In-fact the goal is to make the code hard to de-obfuscate while
retaining the original purpose and minimizing overhead as much as possible.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 4

Figure 1 - Encryption vs Obfuscation

When it comes to source code or binary object encryption versus obfuscation, the encrypted object must
be decrypted prior to execution rather the obfuscated object can be executed while remaining in the
obscured form. It is possible for obfuscated elements to be captured and de-obfuscated, but the
obfuscation presents a barrier to understanding and analysis (Arini Balakrishnan, 2005).

Several notions of obfuscation were shown in (Barak, et al., 2001) and (Balakrishnan & Schulze, 2005).
The main result is that a strong notion of obfuscation cannot always be achieved. Over a decade later,
Garg, Gentry, and Halevi (Garg, Gentry, & Halevi, 2013) gave the first candidate construction of an
efficient general-purpose indistinguishability obfuscator, called multilinear jigsaw puzzles. While
indistinguishability obfuscation promises secure general-purpose obfuscation, it remains an open question
as to whether any practical real-world indistinguishability obfuscators can be implemented under this new
model.

There are many mature obfuscation techniques offering a wide range of protections based on heuristic
approaches to manipulate source code and even binary without altering the logic or the purpose of the
code. The strength and weakness of obfuscation approaches can only be determined by effectiveness of
the attacking and exploitation mechanism. Tools such as disassemblers and decompilers are often
deployed to perform reverse engineering attacks by extracting sensitive information, adding malicious
code and application cloning (Barak, et al., 2001). Although code obfuscation can thwart many attacks,
given enough time and effort any of these techniques can be eventually overcome by reverse engineering
process. Regardless, programs are obfuscated every day in the real world without any provable security
guarantee. Nevertheless, obfuscation and diversification remain viable protection tools from the practical
perspective (Garg, Gentry, & Halevi, 2013) (Goldwasser & Rothblum, 2007).

While obfuscation can be applied to programs written in any language, they are more effective for
programs that are compiled to binary without the need for a virtual machine (VM). There are limited
techniques that can be considered to obscure high level languages (i.e. Java and C#) instructions and
control flow such that are heavily relying on their underlying VMs. Unlike C/C++, decompilation of Java
programs is a much simpler task and therefore may be fully automated by attackers. Class hierarchy,
high-level statements, names of classes, methods and fields can be retrieved from class files emitted by
the standard javac compiler. Every current obfuscation product is easily circumvented by off-the-shelf de-
obfuscation tools for java. The challenge gets even worse when trying to obfuscate a Python program. For
Python, it basically comes down to renaming and hiding some of the instructions that can even be easily
de-obfuscated (OWASP, 2016).

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 5

3. Control-flow and Data-flow Obfuscation
Obfuscation protects an application from reverse engineering, protecting proprietary source code,
intellectual property and to increase the difficulty of exploitation. Obfuscation can be split into two main
types: Control-flow and data-flow obfuscation. Together, these can provide a synergy that is similar in
nature to how individually weak confusion and diffusion components when used together in cryptography
lead to strong ciphers like AES (Anderson L. , 2015) (Worldwide Patent No. WO2018106439A1, 2018).

3.1. Control Flow Obfuscation

The aim of control-flow obfuscation is to make a program’s execution difficult for an attacker to
understand and hence reverse-engineer. Typical control-flow obfuscation methods include:

• Instruction substitution replaces assembly-level operations with randomly chosen code blocks
that perform the same operation in different ways. The aim is to add resilience against both static
analysis and dynamic analysis of the program code as well as automated attacks that look for
code fingerprints.

• Bogus-control-flow obfuscation modifies a program’s control-flow by adding entry points that
evaluate complex expressions to determine the outcome of conditional jumps: either to jump to
valid program code or to randomly altered “junk” code blocks.

• Control-flow-flattening rearranges a program’s basic blocks in a randomized manner to give a
program a uniformly random structure, where the original program’s control-flow is only able to
be re-established by the runtime computation of a control variable representing the state of the
program.

• Virtual-machine interpreter obfuscation incorporates known hard mathematical problems in
the computation of the control-flow to further increase the cost of reverse-engineering attacks.

3.2. Data Flow Obfuscation

Data-flow obfuscation is about randomizing the instructions that compute logical and arithmetic
operations in a program (Worldwide Patent No. WO2018106439A1, 2018). Data-flow obfuscation
methods include:

• Randomized branch encoding involves representing data-related logical and mathematical
operations as a branching program composed of a sequence of permutations. Sequences of these
branching programs are then concatenated together. When these programs are converted back to
machine code, the result is uniformly randomized and unintelligible code that bears no
resemblance to the original algorithm.

• Randomized input, output encodings can be used to make the obfuscated code even harder to
reverse-engineer, as well as protecting constants and allowing seamless secure chaining to and
from the obfuscate application.

4. Bitcode obfuscation techniques
Obfuscation (and other protection methods) can be applied directly to bitcode files. This enables
application protection to be applied via a third-party service, and as such reduces the need for in-house
tools and expertise in application security.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 6

4.1. What is bitcode?

Bitcode is a platform-independent, universal low-level intermediate representation (IR) used by LLVM
compilers and tools, such as Clang, XCode, Microsoft Clang-CL, Objective C/C++ Swift, GO, EM-
Scripten, Rust, and many others. Bitcode is the file format for LLVM IR (LLVM Documents, 2003).

Figure 2 - LLVM Architecture

• Front-end compilers compile source languages to LLVM intermediate representation.
• The LLVM IR can then be optimized and transformed by middle-end tools that are front-end and

source language agnostic. In addition to optimization, these transformations can include
obfuscation and other protection techniques.

• Finally, back-end tools convert the LLVM IR to native machine language for any of the many
supported platforms and architectures. These back-end tools are agnostic to both the front-end
and the middle-end layer, thus facilitating broad platform and language independence of the
LLVM architecture.

4.2. Why bitcode protection?

Developers are naturally focused on developing and delivering their features and services to their
customers. As a result, security is often neglected to varying degrees at both management and operational
levels. Security policies may be insufficient to identify unprotected, weak, or otherwise exploitable code,
and under-tuned security parameters. Even if good policies are in place, expertise and resources required
to manage and implement security may be insufficient to ensure adequate security protections are in
place.

A well-designed cloud-based bitcode obfuscation solution can incorporate security policies and
parameters to bridge the gap between in-house expertise and practices and robust security
implementations.

• The cloud-based service would allow the definition of security policies and would then verify that
these policies are correctly implemented during the application of bitcode obfuscation.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 7

• Audit reporting of security coverage and any identified weaknesses can be provided to
appropriate parties in the organization.

• Since the compilation of source code is done prior to the application of bitcode protection; and
linking is done afterwards, confidential source code and proprietary libraries do not need to be
exposed to the middle-end when applying bitcode protection to an application.

• Bitcode is platform and target agnostic, therefore protection can be applied across all LLVM
supported source languages and target architectures. This will allow developers to set global
security goals or customize security per target platform.

• Alternatives, such as source-code obfuscation methods can be quickly broken and circumvented
with readily available de-obfuscation tools (GitHub, 2022). Bitcode obfuscation is not vulnerable
to these same attacks.

4.3. How does it work?

Obfuscation is applied directly to bitcode files via a LLVM middle-end according to a set of protection
parameters. No source code, header files, libraries or other dependencies are required in order to
obfuscate the bitcode. In addition to the protected bitcode, the middle-end can generate audit reports and
logs to assist with the monitoring, implementation, and management of the protected code.

Figure 3 - Cloud-based bitcode obfuscation use-case.

• Unprotected bitcode is sent to a cloud-based middle-end that can apply dataflow and control-flow
obfuscation to the bitcode according to a set of supplied protection parameters.

• The middle-end pass manager executes a series of passes to apply the control and dataflow
obfuscating transforms. These passes are interleaved with each other and with optimization
passes to ensure that the obfuscation complexity matches the tuning requirements specified in the
protection parameters.

• The higher the complexity, the higher the runtime overhead, thus the importance of enabling
developers to tune the amount of obfuscation applied by the middle-end. Further tuning is
possible via LLVM function and inline attributes (LLVM Project, 2022), which can be embedded
in the source code and remain readable from the bitcode by the middle-end transform passes.

5. Exploring the usage of bitcode obfuscation
Bitcode obfuscation offers strong protection against tampering and reverse-engineering attacks for
software programs running in non-secure environments. These techniques allow tunability to achieve a
balance between security and performance; and can be applied to a wide range of applications targeted to

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 8

various platforms and devices. In this chapter we explore how obfuscation can be utilized to protect
specific types of applications in different industries.

5.1. Mobile applications

Mobile applications (running on iOS or Android devices) often process customer credentials and other
sensitive data, while containing differentiated business logic. With stiff competition in the mobile
application space as well as an increasing background security of exploits and attacks, it is crucial to
protect applications against reverse-engineering by adversaries seeking to gain proprietary knowledge of
the app. It is additionally important to prevent adversaries seeking to circumvent authorization and
authentication, and to protect against the extraction of sensitive and confidential information.

Secret business logic embedded in the app’s source code is considered intellectual property of the app
owner and should not be exposed. Generally, all mobile code is susceptible to reverse engineering
according to OWASP (OWASP, 2016). Even though security of iOS and Android mobile platforms has
always been improving, access to low-level security components is not always available to apps. An
attacker will typically download the targeted app from an app store and analyze it within their own local
environment using a suite of different tools to statically analyze the code/binary and perform reverse
engineering attack.

Let’s take an iOS app for example and examine its structure to understand how obfuscation can protect it.
The language of choice to develop an app for iOS devices is either Objective C or Swift. They are both
compiled into LLVM bitcode binary suitable for Apple App Store submission. The following picture
shows the application framework and underlying components of iOS platform (Lucideus, 2019).

Figure 4 - iOS Mobile App Framework

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 9

The app utilizes iOS SDK APIs to access certain functionalities performed by low level libraries while
containing a series of business logic and confidential codes within the app layer. App developers are
essentially creating complicated puzzles of these APIs glued together with their app’s specific codes to
build a unique experience to serve the purpose of the app. While there is no secret about the usage of the
iOS SDK APIs, the very experience created by the app becomes the intellectual property and requires
proper protection. Furthermore, Apple App Store recommends iOS app developers to submit a bitcode
version of their app for Apple to perform post-processing on the submitted app for thinning or optimizing
purposes. Including the bitcode version of the app will allow Apple to re-optimize the app binary in the
future without the need to submit a new version of the app to the Apple App Store (Apple Help, 2020).

An effective obfuscation should be at the bitcode layer to preserve protection against reverse engineering
of the binary while still being compliant to Apple App Store. The final iOS app will be placed in a
sandbox to create isolation from other apps running on the same device providing some level of security
and protection. However, the app is still susceptible to reverse engineering attacks using static analysis
offline. Applying obfuscation in the application layer and entry calls to iOS SDK APIs makes it hard for
the advisories to identify and follow the app logic. Of course, any software obfuscation comes with an
overhead associated with making control flow unpredictable. A bitcode obfuscation level can then be
tuned to an acceptable level to balance desire app performance and protection.

Figure 5 - iOS Mobile App Framework with App Obfuscation

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 10

The bitcode obfuscation provides a protection mechanism at the app layer that does not depend on
underlying mobile platform security while conforming with Apple App Store requirements. It makes
static analysis of the mobile app more complicated even with sophisticated tools.

5.2. Cloud Server Applications and Web Services

With the advent of cloud virtualization, more and more companies are pushing their server applications
and web services to public cloud environments where they can clearly benefit from the scale, reliability,
and availability of such services. This process requires a comprehensive analysis of cloud readiness of
such applications. Companies typically rush to virtualize their server app to cloud without performing
much needed due diligence evaluations. As a result, these server apps are posed to attacks when deployed
in the cloud. Relying on cloud provider security alone is not an option when it comes to securing an app
running in the cloud. Even though cloud providers typically come with a certain level of industry
accepted secure environment, the security of data and application remains the ultimate responsibility of
the cloud customers in every cloud model.

With exploitation of server apps using reverse engineering methods, an attacker can reveal information
about back-end processes, steal intellectual property and gain intelligence needed to perform subsequent
code modification (Dolan, Ray, & Majumdar, 2020). Web services are not exempt from these types of
attacks either. A viable protection solution would require independence of the app protection from the
underlying cloud platform. The notion of In-App protection means that the app is self-contained in terms
of protecting its code and data within its binary regardless of its deployed environment.

Modern server applications and web services are typically written in high languages such as Java,
JavaScript and GO. As discussed in the introduction, protecting such apps with obfuscation is not
effective. Therefore, it’s recommended to move all business critical and secret sauces in the app source
code to native languages such as C/C++ for the obfuscation to be more appropriate. For example, if the
cloud application is written in Java, there should be a Java Native Interface (JNI) layer to access C/C++
native code that are obfuscated as shown in the following diagram.

Figure 6 - Sample Cloud App with Obfuscation

5.3. IoT Applications

The rapid expansion of IoT devices creates opportunities for companies to be more innovative with the
purpose and scope of their IoT applications. This large ecosystem comprises a variety of devices that are
being used in diverse environments including healthcare, industrial control, and homes (Dolan, Ray, &

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 11

Majumdar, 2020). From SmartCity to SmartHome to Wearables, IoT devices are entering our world and
the list of IoT apps will grow as technology evolves in the years ahead (Placeholder9) These IoT apps are
edge devices collecting and processing sensitive data on end users' behavior, the user’s devices, habits
and their actions in addition to managing Personally identified information (PII).

Naturally the security of IoT apps remains the focus of various standard and industry bodies to regulate
and advise. Limited security capabilities along with time-to-market pressure leaves IoT application
developers with little or no provisions on securing the app. IoT devices typically come with no hardware
security module, making them vulnerable to various attacks. These sophisticated apps analyze the
collected data with rich business algorithms all within the IoT device. Even though most attack surfaces
are runtime in nature and occur when the IoT app is in action, there is potentially a lot that can be
discovered with statically analyzing and reverse engineering these apps.

As a result, the root of trust, device identity, keys and crypto operations conducted by IoT applications are
exposed. Bitcode obfuscation can potentially reduce and even eliminate such concerns with IoT
applications independent of the IoT device security.

6. Conclusion
In this paper, we introduced bitcode obfuscation as a very effective and powerful tool in protecting
software application against reverse engineering attack. We explored different obfuscation techniques
such as control flow and data flow obfuscation without accessing the original source code. The idea of
operating on the intermediate binary without the need for the source code makes the bitcode obfuscation
more practical to be offered as a cloud service (obfuscation-as-service). We also offered a few examples
of how this protection can be applied to different software application domains and industries.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 12

Abbreviations
AES Advanced Encryption Standard
API Application Programming Interface
GO Google Programming Language
IoT Internet of Things
JNI Java Native Interface
LLVM Refers to the LLVM compiler infrastructure project.
LLVM-IR A platform-independent, universal low-level intermediate

representation (IR) used by LLVM compilers and tools.
SCTE Society of Cable Telecommunications Engineers
SDK Software Development Kit
VM Virtual Machine

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 13

Bibliography
Anderson, L. (2015). A survey of control-flow obfuscation methods used in N-Mesh 2. (October).

Anderson, L. A. (2018, 06 14). Worldwide Patent No. WO2018106439A1.

Apple Help, A. (2020). What is app thinning? (iOS, tvOS, watchOS). Retrieved from
https://help.apple.com/xcode/mac/current/#/devbbdc5ce4f

Arini Balakrishnan, C. S. (2005). Code Obfuscation Literature Survey. University of Wisconsin, Madison,
https://pages.cs.wisc.edu/~arinib/writeup.pdf.

Balakrishnan, A., & Schulze, C. (2005). Code Obfuscation Literature Survey.
https://pages.cs.wisc.edu/~arinib/writeup.pdf, pp. 1-10.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., & Yang, K. (2001, apr). On
the (im)possibility of obfuscating programs
(http://dl.acm.org/citation.cfm?doid=2160158.2160159). Journal of the ACM, 59(2), pp. 1-48.

Brekne, T. (2001). Encrypted Computation. Department of Telematics.

Collberg, C. S., Thomborson, C., & Low, D. (1997). A taxonomy of obfuscating transformations.

Dolan, A., Ray, I., & Majumdar, S. (2020). Proactively Extracting IoT Device Capabilities: An
Application to Smart Homes. (A. Singhal, & J. Vaidya, Eds.) 42-63.

Garg, S., Gentry, C., & Halevi, S. (2013). Candidate indistinguishability obfuscation and functional
encryption for all circuits. Proc. of FOCS ….

GitHub. (2022). GitHub deobfuscation topic. Retrieved from https://github.com/topics/deobfuscation

Goldwasser, S., & Rothblum, G. N. (2007). On best-possible obfuscation. Springer.

Hosseinzadeh, S., Rauti, S., Laurén, S., Mäkelä, J. M., Holvitie, J., Hyrynsalmi, S., & Leppänen, V.
(2018). Information and Software Technology: A systematic literature review. 72-93.

LLVM Doc, D. (2003). LLVM Bitcode File Format. Retrieved from
https://llvm.org/docs/BitCodeFormat.html

LLVM Project. (2022, 06 20). LLVM Language Reference Manual. Retrieved from
https://llvm.org/docs/LangRef.html#function-attributes

Lucideus. (2019, Jan 6). Understanding the Structure of an iOS Application. Retrieved from
https://medium.com/@lucideus/understanding-the-structure-of-an-ios-application-a3144f1140d4

OWASP. (2016). OWASP M9: Reverse Engineering. Retrieved from https://owasp.org/www-project-
mobile-top-10/2016-risks/m9-reverse-engineering

Wikipedia. (2022, 5 24). Obfuscation (software). Retrieved from
https://en.wikipedia.org/wiki/Obfuscation_(software)

	1. Introduction
	2. Introduction to Software Obfuscation
	3. Control-flow and Data-flow Obfuscation
	3.1. Control Flow Obfuscation
	3.2. Data Flow Obfuscation

	4. Bitcode obfuscation techniques
	4.1. What is bitcode?
	4.2. Why bitcode protection?
	4.3. How does it work?

	5. Exploring the usage of bitcode obfuscation
	5.1. Mobile applications
	5.2. Cloud Server Applications and Web Services
	5.3. IoT Applications

	6. Conclusion
	Abbreviations
	Bibliography

