

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 1

Reducing Investigation Time for Researchers, And Enabling
Automated Configuration Updates by Digitizing Contextual

Information

A Technical Paper prepared for SCTE by

Ajay Gavagal
Data Solutions Architect

Comcast Corporation
1800 Arch Street Philadelphia PA 19102

215-286-3078
Ajay_gavagal@cable.comcast.com

Mehul Patel
Distinguished Architect
Comcast Corporation

183 Inverness Dr West, Englewood, CO
303-658-7826

mehul_patel@cable.comcast.com

Sinan Onder
Vice President

Comcast Corporation
1800 Arch Street Philadelphia PA 19102

267-260-0964
sinan_onder@comcast.com

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Personnel & Motivation ... 4
3. Defining Contextual Information .. 5
4. Day 1 vs. Day N Scenario ... 6
5. Proposal/Solution .. 9
6. Conclusion ... 14

Abbreviations .. 14

List of Figures

Title Page Number
Figure 1- Sample flow of telemetry data and personnel involved ... 3
Figure 2- Exchange of contextual information across personnel .. 5
Figure 3- Alerting application deployed with contextual data within configuration .. 8
Figure 4- Cascading failure due to non-digitization of CI .. 8
Figure 5- Contextual Data Object ... 11
Figure 6- Buildup of domain contextual data object .. 12
Figure 7- DCDO enabling a full cycle of automation ... 13

List of Tables
Title Page Number
Table 1- Sample CI and probable storage systems .. 6
Table 2- Sample list of elements in CDO's ... 10

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 3

1. Introduction
Contextual Information (CI) is an asset to every enterprise for its digitization to be achieved end-to-end.
The digitization of contextual information and its changes can build a sustainable growth engine for
development of new products and services. It can lower cost of software changes and lead to high
productivity. To explore how we can achieve digitization of contextual information, in this paper we start
with a scenario, explain the personnel involved, the kind of questions that get asked by these personnel,
explain the problem that is in exchange of contextual information, and finally provide a possible solution
for it. In this paper we also will explore the mechanics of contextual information and how it can benefit
small or large use cases for data analysis and machine learning.

We start with a simple question that requires analysis into telemetry data, investigate the journey of how
that question gets answered within an enterprise. Let us assume there is a device “X.” This device is part
of the internet protocol (IP) network. This device also has a capability to provide consistent telemetry
such as its state. State here refers to the overall condition of the device, for example, is the device
online/offline, and if the device is offline then reasons for being offline such as error conditions. Given
this telemetry data, business owners can ask specific questions that can help them in business impacting
decisions. Such as, evaluating device models from various vendors. A sample question might be to find
out if a specific device model breaks down more than others. Given the value that can be achieved from
answers to such questions using telemetry data, leadership allocates time and resources to capture data
from device “X,” ingest its telemetry into a storage layer and then appropriately make that data available
for use cases such as alerting, analysis, and machine learning.

Figure 1- Sample flow of telemetry data and personnel involved

Note: Arrow direction represents data flow.

In the diagram above, which is common flow of data across enterprises, we see five different personnel
getting involved in ingesting, storing, alerting, analyzing, and actioning on the insights. In the section
below, each of the five personnel are analyzed. Moreover, and some of their motivations behind enabling
insights from this data is highlighted.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 4

2. Personnel & Motivation
Business owner(s) are motivated to provide high reliability in the overall service offered to customers.
Here device “X” is a critical part of the IP network and should be made reliable and stable. Any
disruptions in service due to device outages can negatively impact the customer experience. By choosing
the right device models with the highest reliability they look to reduce disruptions. Their eventual goal is
to have high customer satisfaction by providing reliable service. Business owners also often have limited
budget to achieve the previously mentioned goals. So, they look to strike a fine balance between the
highest reliability possible given their allocated budgets.

Product owners are looking to gain value through telemetry data and look for opportunities where the
products or features they own, can save cost, or improve productivity. Product owners typically get
measured on customer satisfaction, and hence want to see their customers succeed. To ensure customer
satisfaction, the speed of deploying features is one of the many criteria’s they focus on, in designing and
engineering features. In large enterprises, due to pace of evolution, in many instances this criterion can
become the highest priority, while other criteria can take lower priority.

Engineers are specifically interested in maintaining a reliable stream of data to consumption platforms
with low latency. Any disruptions in data pipelines are a disruption to data flow where engineers are
called upon to fix the issue. Engineers also must optimize data pipelines for low cost of computation
while providing maximum data resolution. Given these opposing set of goals, namely cost vs. data
resolution, they must make decisions on the resolution of data to fit either compute or storage
requirements.

Data consumers on the other hand are keen on getting data that is reliable and of high quality to help them
ease their job. Data cleaning is usually a large part of their projects. Given the velocity, variety, and
volume of data available within an enterprise, it is safe to assume that data cleaning is a regular routine.
However, data consumers are typically/usually demotivated by data cleaning since they view this as time
taken away from more exciting tasks, which is to find insights in the telemetry data that provides an
accurate representation of the real world.

Finally, network technicians want to see lower repeat issues. They want to ensure lower number of
disruptions in the network. They depend on meaningful insights that help reduce avoidable maintenance
and repairs. They are usually demotivated with technology and process that is more of a hinderance to
their work than assist them, for example: cases where device recalls are made.

Below is a representation of the personnel and exchange of contextual information mentioned above:

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 5

Figure 2- Exchange of contextual information across personnel
Now that we have seen the scenario and personnel involved, let us understand what we mean by
contextual information and which of the above personnel might be responsible for such information and
possibly where it might be made available in an enterprise.

3. Defining Contextual Information
We start by defining what we mean by contextual information. Contextual information can include but
not limited to any metadata that provides context and perspective around telemetry data. For example,
application configuration information used to set up the data pipeline, inherent limitations of data, data
lineage information such as source and target systems for the entire data pipeline chain, data catalog such
as list of data sets available, schemas and their versions, and many more. To better explain this with an
analogy, consider contextual information as controls in the control pane of a manufacturing line and the
telemetry data as the products being manufactured through the machinery itself.

Continuing with this analogy, in a manufacturing line, the controls (switches and dials) are usually set to
certain values to ensure a constant production of the product. To either increase or decrease production
that meets demand the demand, these dials in the control pane need to adjust. If the controls are not
digitized and automated, then a human intervention is required every time to increase or decrease
production. Also, considering the changes in the control values, they are not frequent, but too rare either.
If these changes in the control values are not propagated or communicated to the entire manufacturing
line, as an example to the packaging department or to the inventory department, the whole manufacturing
line fails.

Similarly, consider an application that polls devices in the IP network at every A mins (frequency) to
receive B resolution of data. In this case the telemetry data polled by the application is the product, while
the polling frequency and the resolution detail polled are the controls in the control pane. If changes to the
polling frequency or the resolution of data is not communicated by the application to downstream
consumers, the whole data pipeline fails, causing cascading failures.

By nature, Contextual information is usually distributed in multiple systems. These systems may or may
not talk to one another. Issues that prevent systems from communicating with one and other can include
but are not limited to: mix of legacy and new applications, varying hardware/software platforms, varying
cloud environments and varying feature capabilities. Let us consider the first example of telemetry data

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 6

from device X discussed in this paper and see how contextual information may be distributed among
many systems.

Device vendors publish object identifiers for each device property and define functions, attributes in
libraries allowing customers to consume and ingest such information. When telemetry data from the
device is ingested, the schema of the data is registered in a schema registry to ensure changes/versions are
tracked for field names, descriptions, data type changes. Information such as source, target,
transformation logic and resolution of data are stored in application configuration. If data takes few forms
such as raw, transformed and aggregated with retention periods increasing with lower resolutions of data
then such information might be stored in the configuration of the application as well or in a catalog.
Finally, the data catalog could be from well-defined tables or a simple list of storage paths once data is
processed and written to a location. The ingestion application is registered in a service catalog that is
maintained across the enterprise. Such a service catalog would contain information like, application name,
purpose, source, destination, developers, support personnel etc.

Table 1- Sample CI and probable storage systems

Contextual Information Probable Storage System

Object identifiers, descriptions, limitations,
values etc.,

Libraries published by device vendors

Data resolution, polling frequency etc., Application configuration

Quality of datasets – raw, enriched,
transformed, aggregated etc.,

Wiki pages, word documentation, schemas within DB’s,
segregation by paths in an object store

Data catalog Schemas within DB’s, segregation by paths in an object
store, wiki pages

Application information Service catalog

Application code and versioning Version control, code repository

Change information Tools that support CI/CD such as Concourse

4. Day 1 vs. Day N Scenario
Now that we have outlined the scenario, personnel with their motivations, defined CI, its nature, and the
systems/applications where it might be stored, let us have a look at how a data consumer looking to
generate alerts on telemetry data from device X discovers CI on day 1 (i.e., when designing the
application) and day 2 to day N (when the application is deployed and needs to be maintained).

Initially a “discovery” phase to scrub, understand, document, if necessary, all the above-mentioned
contextual information from various systems is required. We will discuss later why it is important to
reduce the time involved in this phase. Since the focus initially is on generating alerts atop of telemetry

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 7

data from device X, the engineer might take the below attributes into consideration when designing an
alerting application:

• Source of device X telemetry data
• Target to provide alerts once processed
• Various conditions within the telemetry data
• Values that signify these conditions
• Any exceptions to the conditions such as occurrences of NULL values or random values
• Applications that provide enrichment information to values within telemetry data (dependency)
• Data types of values
• Frequency of source data & target
• Volume of data at source & target
• Latency of data at source & target
• Modifications/transformations done to values to make them human friendly. For example:

consider state information containing ‘1’ for online and ‘0’ for offline or vice versa. To make this
more human friendly, one might be converted to “online” and 0 might be converted to “offline”
to remove ambiguity for the data consumer

• Source and destination schema of the data

In a perfect world, all the above contextual information and their source systems are digitized and work
cohesively (without any linkage breaks) to make the engineers’ life easy to consume such information
programmatically and design the alerting application in a fully digitized manner. However, it is far from
reality since a lot of this information may not be digitized for easy consumption, for example, there might
not be easily accessible application programmable interfaces (APIs) that provide information on all the
modifications done to data values to make them human readable or a programmable interface that
provides the frequency and resolution of the polling application. CI might be available within
configuration of applications (as code) or free text documentation or audio/video clips (when recorded as
training videos). In such situations, scrubbing through just free form information during discovery phase
and then building configuration objects that contain contextual data and using this in alerting applications
might be the accepted norm, but is not ideal and does not achieve digitization. This rapid prototyping and
is also known as fast go-to-market strategies to justify the acceptance of non-digitization of contextual
information. As previously discussed in the section, large enterprises have deadlines, priorities to meet,
especially during the development phase since it costs time and money.

Since some of these CI inputs arrive from data discovery for the engineer to use them for building
configuration objects manually for the alerting application, we have a breakage in the chain of digitization
on day 1 (day 1 here is referring to the application deployed in production) itself. We are interested in
showing how using non-digitized CI from day 1 causes a cascading set of problems on day 2 to day N
(refer to figure 4). So let us assume that the engineer has configured required CI and successfully
deployed the application that generates alerts atop of the telemetry data.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 8

Figure 3- Alerting application deployed with contextual data within configuration

On day two, let us assume there is now a machine learning model set up to consume alerts from the
alerting application. Now we have a two-layer dependance on the non-digitized contextual information.

Now let us also assume there is change in multiple attributes of the contextual information such as change
in schema (data type changes), source system change, destination system change, data value changes
(such as two or more values combined to one or a single value split into multiple), change in frequency of
data, change in resolution of data etc. Since CI elements were not fully digitized on day 1, these can be
treated as breaking changes for all downstream layers.

Below is a representation of cascading failure can occur on when CI is not fully digitized and
transmitted.

Figure 4- Cascading failure due to non-digitization of CI

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 9

If we do not address this problem of non-digitization of CI but kept adding more layers downstream that
sends notifications to customers based on recommendations from the machine learning model, this cycle
continues until, it collapses due to unmanageable changes in CI.

To give a scale, if there are A number of measurements available from a device going through B number
of CI changes and there are C number of dependent data consumers downstream, then we can assume that
there would be A*B*C number of changes to manage or intervention due to non-digitization of CI.

This problem only exacerbates if engineering groups are distributed between domains in an enterprise and
reporting into various leaders. Groups having many individuals working on a single project with
individuals distributed in various geographies. Then there are problems that the enterprise is not in control
of such as vendors making devices smarter, software/hardware changes etc., the list goes on. And finally,
the growth in volume, variety and veracity of data generation does not help either, where we are having to
re-think our traditional well-defined storage formats with well-defined meta data stores to a more loosely
bound structure where metadata is distributed all over the place.

If each time CI changes need to be reviewed, handled before re-deploying applications, then it is both
very human centric and time consuming. This process is highly error prone and leads to lot of wastage in
money and lowers productivity.

5. Proposal/Solution
One of the first things we observe as we review the list of CI elements is that it is diverse, sourced from a
lot of systems/applications. Remember CI is meant to provide context and perspective to the telemetry
data and its use and hence it includes everything that addresses this requirement.

With the evolution of software, we have an exceptionally good understanding of metadata needed to build
applications, microservices and event-driven structures. However, we are lacking a standardized
framework of required CI elements, its storage and transmission when cutting across pure software
development activities and into more of the realm of data analytics/science activities that prototype and
launch machine learning (ML) models that in turn assist software development. The CI elements of
interest are varied between these two kinds of activities and hence an encompassing standardized set
might be a good one to have to start with. We do not have a standardized list and that is for another day
and another research paper. But in the absence of such a list, how should we produce one to address the
problem in the short term at least?

One way is to see the kind of questions that get asked to an engineer/analyst/scientist when they present
findings:

• What is the source of this data?
• Why did we not use an alternate source to answer the question on hand?
• What does a value mean? For example, in case of state information from a device X, what does

online really mean? What does it signify?
• Do we know what is the source of truth between two similar datasets from two different

applications?
• What assumptions have been made when generating an alert/analysis/ML model on telemetry

data?
• What is the built-in latency into an alert/analysis/ML model? Can we reduce it?
• What thresholds were used to generate this alert?

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 10

• Who is the owner of this data?

The personnel asking these questions encountered doubt in the alerting mechanism, or analysis generated
or the recommendations from the machine learning model. Based on this, it can be observed that this is
just non-digitization of CI manifesting as the problem. The question is not asked to see if answer is
known, but it is purely to get more context and perspective on the data. This data could have been
transformed from pure raw telemetry to an alert, analysis, or an ML model that is helping drive the insight
to help make a business decision.

With that in mind, let us start with a list that solves for these above questions and then build from there. It
should be noted that this is not a comprehensive list of CI elements and should not be treated as one. We
are merely trying to answer the above questions and providing a means to solve the problem. If these
questions are not of high priority within your enterprise, then this list should be reformed to fit your
enterprise needs.

Table 2- Sample list of elements in CDO's

Sample CI standardization Description

Source system Refers to the device, application etc., providing the telemetry data

Target system Refers to the storage layer, application etc., where data is persisted after
transforming the telemetry data

Data Frequency, Data
Resolution etc., Explaining how frequently fresh data arrives, how deep can the data go etc.,

Data lineage The source system/application where the data originated, got transformed,
stored etc.,

Data description Describes the telemetry data and can include field descriptions, value
explanations, value limitations etc.,

Data schemas Structure of the data

Data catalog If more than one stream in the telemetry data, then list or catalog of those
datasets

Exceptions Exceptions when data might not be transmitted, transmitted with errors etc.,

Transformations applied Changes to the datasets applied between source to destination

Next, we discuss the approaches we can take to solve for CI list to be transmitted through the entire
lifetime of the data within an organization i.e., through various domains:

1. Ensure all contextual information is documented, distributed at regular intervals
o Time consuming, human intensive and error prone if not for impossible.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 11

2. Ensure all applications transmitting data provides interfaces for not only data, but also contextual
information about the data (including metadata)

o Well defined micro services powering every application within the organization with
great programmable interfaces that data consumers can interact with to gain contextual
knowledge, we can deem this problem solved.

However, this is not always the case since there will be standalone applications that do not have interfaces
but are vital within enterprises. These applications came about as prototypes or as legacy service.
Information technology (IT) is no more centralized where one central IT organization sets standards. The
distributed nature of modern IT ensures that applications/systems are always built in a diverse way.

Start by bundling everything we determine as necessary contextual information required for the
application in question and for downstream applications and build a contextual data object (CDO) and
domain contextual data objects (DCDOs). Store and transmit this CDO in a way that it can be easily
queried for changes. Also ensure that DCDOs can be enhanced by multiple application owners starting
from the data producer, all the way to the last data consumer. Our solution proposal resolves around this
third option. This is not necessarily new, since we have various flavors of this solution in usage within
enterprises today, but the semantics of how we implement this might need another look.

A typical set of personnel working on making telemetry data smarter through alerts, analysis, or ML
models, are distributed in various parts of the organization from functional, hierarchical, and geographical
perspectives. Given such a distributed workforce, it would be wise to ensure that we start building the
CDOs in bits and pieces throughout the domain and allow each data producer and consumer to decide the
kind of CI they would like to add into the CDO. And when the CDO needs to be moved between
domains, ensure that domain contextual data objects are used to transmit such information.

We see a way that contextual information can be digitized into an object that gets transformed as it moves
along the enterprise systems and applications. First the data producer might produce a CDO as below:

Figure 5- Contextual Data Object

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 12

Remember the above CDO is entirely up to the data producer to determine what to populate and what to
leave out. In this paper we only define a common set of elements part of the CDO that is available to the
producer to add into the CDO as part of the standardization. We want to ensure that this CDO is used
internally by the data producer to drive changes to their application. This is an especially crucial factor,
since self-use is the best motivator for the data producer to keep the CDO up to date and can help drive
automation.

Now as this CDO makes its way through the organization to say, another engineering team that is in a
different domain (in this case let us assume the elements in CDO and DCDO are same), that adds alerts
atop of the “field name A.” The engineering team enhances the DCDO with alert contextual information.

Observe that each of the DCDO elements connected to one another through a relationship. For example,
the source data in application XYZ is FROM the application ABC. This signifies lineage information.
The application XYZ was developed by team Beta and the engineer A was responsible for its
development. Application XYZ has two exceptions named A and B, while B is related to A. Application
XYZ also has two schemas: A and B. Both these schemas have common filed A.

Below is a representation of how a DCDO might evolve as it makes its way through the enterprise. All
orange nodes and edges are added by a different domain:

Figure 6- Buildup of domain contextual data object

Input source to an extract, transform and load (ETL) job that performs the function of generating the alert
has source XYZ and transforms the data to alert name “AN 1” that has an alert type “critical” with the
thresholds set as five consecutive failures originally. The team decided to change the alerting threshold to
8 at some point, which can just be another node signify the date of change.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 13

We can also observe that application that performs the ETL is linked to the source team name and the
engineer. This is immensely powerful. This is now helping connect elements that were not intended to be
connected in the first place and allows for a lot of questions to be answered. This is the power of having
DCDOs.

Expanding on the topic regarding the representation of DCDO and its evolution through the enterprise, an
observation can be made that the nature of this data has an entity relationship during its formation. Given
this nature of contextual information, two entities (nodes) being linked by a relationship (edge), using a
graph storage mechanism for CDOs and DCDOs might be a good idea. As DCDOs evolve we start to
build a knowledge graph across the organization giving the consumer access to powerful information that
is hidden from many users.

The solution does not stop here. To help data producer teams and the consumer teams to create, interact
with CDOs & DCDOs and build on it, we must provide them easy access ways to interact and modify
them. Or else, we are just moving the breakage in digitization to a later point in time.

This is only the beginning of the solution. CDOs are built to assist the automation of functions within
applications. When this automation controls are needed to be handed over to another domain, we need
DCDOs or domain contextual data objects. These DCDOs can be directly used within ML models to
ensure that recommendations from the ML models powers the application through automation vs.
intervention.

Figure 7- DCDO enabling a full cycle of automation

We should also enforce standardization of CDO/DCDO elements that the enterprise deems necessary and
ensure this is adopted from the start for all new applications being developed. This is the hardest part
since enforcement of a norm is hard within distributed structures unless it is used by the application.

The way to bring domains to onboard and share their CDOs as DCDOs into a common repository like an
open WIKI within the enterprise is to help domains understand the time and cost savings from such an
effort. The questions addressed earlier may seem trivial at first, but add in the mix of employee attrition,
accidental deletion of information, modifications done for an ad-hoc request, and then having to invest
time in discovering all this, the value will speak for itself.

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 14

6. Conclusion
Contextual information is vital and should be treated as an asset that needs to handle within an enterprise.
Changes in CI is even more vital to enterprises and their propagation through DCDOs is essential for
sustainable interaction between domains.

In this paper we first outlined a typical scenario for ingesting, persisting, and acting on telemetry data to
derive alerts, insights, and ML recommendations. We also observed personnel and their motivation when
interacting with telemetry data and its context. We saw how a cascading failure can occur when CI is not
digitized and managed for propagation into downstream systems. Finally, we observed how digitizing CI
in the form CDOs and DCDOs not only enables rapid transfer of knowledge between humans but also
provides a methodology to handle updates programmatically in fully automated systems.

Digitization of CI also builds resiliency in automation against external factors not under direct control of
the organization such as vendor device decommissions and recalls. This is also the case for applications
where CI reside needs to evolve at a fast pace. Without effectively tracking changes to CI, models that
power ML and automated systems built atop these assumptions can be ineffective. Such ineffectiveness in
ML models lead to low return on investment (ROI) and sometimes even negative ROI. Assumptions
underlying ML change rapidly with the evolution of network objects, applications, platforms,
infrastructure, data pipelines, storage mechanisms and application configuration information. Digitizing
CI and storing for easy access, ensures changes can be discovered programmatically by automated
systems without intervention. Although we are not entirely solving for end-to-end digitization of all CI in
an IP network, we provide means to show how it can be done.

Finally, imagine the amount of time required by engineers, analysts, scientists in discovering contextual
information every time a change needs to be made. It is both wasteful and lowers productivity. Digitizing
CI as mentioned in this paper by starting to create CDOs for internal use by application owners and
DCDOs when transmitting to different domains saves money and time.

Abbreviations

API application programming interface
CDO contextual data object
CI contextual information
CI/CD change integration and change deployment
DCDO domain contextual data object
DB database
ETL extract, transform and load
IP internet protocol
IT information technology
ML machine learning
ROI return on investment

	1. Introduction
	2. Personnel & Motivation
	3. Defining Contextual Information
	4. Day 1 vs. Day N Scenario
	5. Proposal/Solution
	6. Conclusion
	Abbreviations

