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1. Introduction 
In proactive network maintenance (PNM), a goal of downstream spectrum analysis is to identify customer 
devices with impairments in RF (Radio Frequency) spectrum. Identifying the type of impairment is useful 
in determining the general causation, which is leveraged to infer the geolocation of the impairment’s 
origin in the network. This paper describes the implementation of an automated, end-to-end solution that 
analyzes millions of sets of spectra and delivers PNM opportunities for the organization.  
 
Utilizing wideband RF frequency response data from full-band captures (FBC), spectral impairments in 
the downstream are detected using a signature matching algorithm implemented as a 1-D convolutional 
neural network (CNN). The signature matching algorithm evaluates the set of spectrum data for customer 
devices on the cable plant. Certain impairments that originate in the cable plant, such as resonant peaks 
that can occur at an amplifier, impact the RF signal for multiple customers further downstream of the 
impacted component. One of the goals is to identify when multiple customers are experiencing the same 
signature, pointing to an issue in the network that can be resolved without individual visits to affected 
customers. 
 
The impacted modems feed into a root cause analysis (RCA) algorithm that overlays the impaired devices 
onto a graph representation of the network topology. Through methods rooted in graph theory, the RCA 
algorithm narrows down the geolocation and system component(s) for the probable network device(s) 
where the issue originates. The impact of this workflow is an automated capability to identify not only 
customer-impacting issues, but also opportunities to proactively resolve issues before they become 
impacting across the entire network.  

2. Background 

2.1. Proactive Network Maintenance (PNM) 

Utilizing full band capture data for the purpose of PNM initiatives to detect impairments in the 
downstream frequency response has been discussed in significant detail in multiple preceding works. 
Those contributions have directly influenced this automated system, by serving as a general roadmap for 
the planning, design, and implementation. The scope of this document starts with these works as the base 
knowledge and describes an automated system to enrich PNM opportunities [1-10]. 

2.2. FBC Data Characteristics 

The basic unit of data for this system is the FBC of RF spectrum for customer devices where each 
spectrum sample consists of 8,704 values spanning 6 MHz to 1026 MHz. Spectrum features important to 
this work include downstream SC-QAM channels, guard bands, vacant spectrum, and pilots. Figure 1 
illustrates a sample of a normal frequency response from a modem that maintains consistent power for 
occupied spectrum at the appropriate levels (approx. -17.1 dBmv). 
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Figure 1 – An Example of a Normal Frequency Response 

Downstream SC-QAM channels are defined as 6 MHz wide spans separated by guard bands. Along with 
pilots, guard band power values are not particularly useful in detecting impairments in many cases. 
Vacant spectrum represents a span where no services occupy one or more channels and can be identified 
programmatically by the power values and channelizing the spectrum. By reducing the spectrum only to 
occupied channel signal power, the signatures become more amenable to machine learning techniques 
that detect anomalous spectra.  

2.3. Downstream Wave Impairments 

Certain impairments in downstream SC-QAM channels can be identified in the FBC. For the scope of this 
implementation, the focus is on four impairments – standing waves (amplitude ripples), water in the 
cable, resonant peaks, and suck-outs. These patterns will be referred to as the ‘wave’ patterns. Figure 2 
shows examples of each type of wave impairment. Within each plot, the solid green line at -17.1 dBmv 
and solid red line (bottom line) at -33 dBmv represent an appropriate range for frequency response values 
of occupied spectrum. 

Standing waves, caused by impedance mismatches, are periodic in nature and generally extend across the 
entire downstream spectrum (Fox, et al., 2021). When water is introduced to the cable, an aperiodic wave 
is produced due to random attenuation and may also be associated with a negative tilt (Fox, et al., 2021). 
Resonant peaks are significant, narrow spikes in the spectrum caused by any number of reasons (i.e., cold 
solder joints or loose modules) on network devices (Cable Television Laboratories, Inc., 2016). A suck-
out is represented as “a concave notch with sinusoidal boundaries with attenuation in amplitude/power 
caused by impedance mismatches evenly distributed through the network” (Cable Television 
Laboratories, Inc., 2016). 
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Figure 2 – Examples of Wave Impairment Frequency Responses 

2.4. Network Topology as a Graph 

A convenient way to analyze network topology is through graph theory. Comcast has mapped the “access 
network from the CMTS to the customer premise equipment (CPE)” into a graph structure “while 
incorporating all of the physical and logical elements that form part of the network” (Harb, Subramanya, 
Narayanaswamy, Walavalkar, & Rice, 2021). The graph facilitates the application of algorithms, such as 
lowest common ancestor (LCA), to network elements and their attributes. For example, clustering RF 
impairments on the graph gives the organization comprehensive knowledge about the network elements 
involved and a view of the common experiences amongst multiple customers. In turn, this knowledge is 
leveraged to deploy the correct resources to a specific physical location for resolution. In combination 
with network monitoring tools, an opportunity arises to automate the workflow from the current manual 
process. 

3. Model Architecture 
The adopted neural network for classifying RF impairments is a four-layer CNN that makes binary 
classifications for each of the wave patterns. Figure 3 represents the architecture diagram for building the 
pattern detection data model. Each of the 1-D convolutional layers uses a kernel size of five and a 
rectified linear unit (ReLU) activation. The convolutional layers are followed by a down sampling 
operation via max pooling. The max pooling operation calculates the maximum value in each section of 
the feature maps, pointing to the most present features. The increasing number of filters, as the CNN 
grows in depth, is attributed to the larger number of pattern combinations in each subsequent layer and 
using an increased number of filters allows the capture of more abstractions from the signal data.  
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Figure 3 – The Neural Network Architecture 

Multiple impairments may manifest on a single capture of spectrum. For example, for water to get into 
the cable, it needs an access point, such as a nick/chew in the cable, which would commonly cause 
standing waves (Fox, et al., 2021). Therefore, in certain cases it is difficult to differentiate among them, 
and their classification may impact the type of maintenance that would be referred to resolve the issue. It 
is more common to observe water in the drop cable or tap near the home; however, it may be observed in 
components for a larger group of customers and thus may be an issue that requires a network technician 
(Fox, et al., 2021). Being able to differentiate the impairments guides downstream decision-making 
processes. 

Instead of structuring the model to calculate a single classification per spectra, the model predicts a 
probability for each type of wave. Taking this approach gives additional opportunities for analyzing the 
signatures of wave types within any given group and gives insights that improve the root cause analysis. 
Table 1 demonstrates possible classifications of multiple impairments. 

Table 1 - Example Binary Classification 
Sample  

Identifier 
Water Standing  

Wave 
Resonant  

Peak 
Suck-out 

A T F F F 
B T T F F 
C F F F T 
D F F T T 

 

4. Model Training 
The training dataset consists of 3,170 samples of labeled spectra from a population of 10,000 sets of 
spectra. The validation dataset consists of 500 hold-out samples. The labels were manually entered by a 
group of subject matter experts over the course of four weeks. The full collection of impaired and non-
impaired spectra was acquired from an existing threshold-based detection algorithm that served as the 
basis for addressing this problem with machine learning methods.  
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Due partly to the limited training dataset and available resources, applying transformations on the data to 
reduce the noisy data points allows the CNN to learn appropriate classifications under the constraints. A 
downside of the transformations is the extended processing time for the feature extraction portion of the 
pipeline, processing millions of spectra for each iteration in production. As part of the model re-training 
cycle and growing the training dataset from validated classifications, we are optimistic that the 
preprocessing steps will be reduced in the future. 

4.1. Labeling 

To derive accurately labeled data, SMEs were presented with a random selection of both impaired and 
non-impaired sets of spectra via a user-interface (UI) adapted from a CableLabs initiative. Each spectra 
sample could be assigned any number of 13 labels. Figure 4 is a screenshot of the UI with a sample 
containing a standing wave. The two horizontal lines at -17.1 dBmv and -33 dBmv serve as visual 
indicators of the tolerable range in DOCSIS protocol to facilitate user interpretation. 

At least two different users would be presented the same frequency response, with the usable training data 
samples meeting the criteria that more than one user assigned the same label. While this approach 
expedites much of the label validation effort, the overall number of samples is reduced because of 
requiring multiple labels from different users. Based on initial modeling experimentation, it was 
discovered that high-quality labels would be more useful than a few thousand additional labels whose 
quality was not checked as stringently. A follow-on experiment determined that by adding samples with a 
single label degraded the model’s classification capability. 

 

 
Figure 4 – The Labeling User Interface for Assigning Impairments 

4.2. Transformations 

The transformations applied to the raw data fall into one of two categories – data reductions and signal 
smoothing. Reduction logic reduces the number of data points per spectrum, while signal smoothing 
methods reduce the noisy parts of the spectrum’s signal including guard bands, pilot signals, and vacant 
spectrum.  
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4.2.1. Full Spectrum Smoothing 

An initial smoothing algorithm is applied to the spectrum based on the channelization of power values. 
The static nature of downstream SC-QAM channel characteristics enables a smoothing algorithm that 
considers the signal between guard bands but leaves the guard bands intact. Since the data source for the 
smoothed channel data is from a visual tool, it maintained spectral characteristics for presentation in a UI. 

 
Figure 5 – Full Spectrum Smoothing 

4.2.2. Truncate 

The impairments under investigation all primarily reside in the downstream portion of spectrum. As a 
standardized transformation for all spectra, the usable spectrum for model training is defined as the span 
from 113 MHz to 748 MHz and may include OFDM spectrum values. As this applies to all spectra 
straightforwardly, any downstream services above 748 MHz are not considered for the wider bandwidth 
devices. Each sample in the transformed dataset now contains 5,420 values of smoothed spectrum. 

 
Figure 6 – Spectrum Truncated to Downstream 

4.2.3. Binning 

As a further reduction of data volume, the samples of 5,420 values each are placed into 2,000 evenly 
spaced bins. For each bin, the mean of the values inside becomes the updated spectrum values. This not 
only reduces volume, but also irons out excess data points that ultimately can be supplanted without 
degradation to the primary patterns in the spectrum. 
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Figure 7 – Preprocessed Spectrum Binned to 2,000 Values 

4.2.4. Guard Band and Pilot Removal 

In early modeling experiments with labeled data, the data model would misinterpret guard band and pilot 
artifacts as characteristics of impairment types in many cases. Since this created a significant number of 
false positive results, it became necessary to smooth the values at these locations along the spectrum.  

To remove the artifacts, the values are replaced with averaged values of the power immediately around 
the artifact – essentially creating a short linear regression line. A second approach to this for guard bands 
specifically would be using the channelized characteristics to replace the spectrum values. Both have 
proven to work well, and both achieve the desired transformational outcomes. 

 
Figure 8 – Preprocessed Spectrum with Guard Bands and Pilots Removed 

4.2.5. Vacancy Removal 

The final transformation removes the spans within spectrum considered to be vacant – meaning there are 
no services in that span for any number of reasons. Vacancies are programmatically detected using 
thresholding techniques with the spectrum values being updated similarly to guard band and pilot 
artifacts. A linear regression is calculated between where the vacancy starts and ends; this matches the 
general trend of the spectrum at that location.  
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Figure 9 – Preprocessed Spectrum with Vacancies Removed 

For very wide vacant spectrum, this approach may introduce a signature that resembles characteristics of 
one or more impairments. While the false positive rate is very low for these situations, discovering 
improved vacancy removal algorithms remains an important task. Again, the channelized spectrum data 
provides another strategy to identify vacant spectrum with high confidence and is the next step in this 
evolution. 

4.2.6. Final Data Form 

The final data form consists of 2,000 values, with noise removed for the model while retaining the 
signature’s primary characteristics. From a scaling perspective, the transformations facilitate faster model 
training and inference operations, but at the expense of requiring more processing resources prior to 
involving the model.  

The training data was lastly augmented by simply reversing the order of each sample, doubling the 
number of samples that retain the same pattern signatures but in different locations. Prior to training on 
the CNN, the data were passed through a normalization operation to improve consistency. 

5. Model Performance 
With a limited set of data to train the model, a 5-fold cross-validation architecture is implemented for 
estimating its generalization capabilities. The top performing cross-validation model is selected based on 
validation and training loss results, and then re-trained on the complete set of training data. 

The model’s ROC-AUC curve is 90% or greater for both the test data and for the hold-out validation 
dataset. The most confident classifications are the resonant peak and water signatures. Standing waves are 
the most difficult impairments to classify as certain signatures are similar to water or resonant peak 
signatures in some cases. Suck-out misclassification occurs primarily when artifacts remain from the 
vacancy removal process in which the leading or trailing edge was not properly cleared.  
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Figure 10 – Confusion Matrix for Resonant Peaks and Standing Waves 

To calculate model lift, a dummy model (all samples labeled as no impairment) was evaluated in which 
the accuracy ranged from 81% for standing waves to 93% for resonant peaks. The impairment detection 
model outperformed the dummy model and created significant lift for each impairment in consideration.  

Table 2 – Model Performance Metrics 

5.1. Model Predictions 

Figure 11 highlights an example from each impairment with a correct prediction (TP), a false positive 
prediction (FP), and a missed prediction (FN) – reading column-wise. The red text in the middle row 
indicates the label applied to the sample during the labeling process described above. 

The model performs exceptionally when the impairment type is straight-forward and mostly follows the 
definitions of the impairment. The model is less-confident when a frequency response indicates the 
presence of complex waves – that is, when multiple impairments or other conditions show characteristics 
of multiple anomalies. An example is the FP sample for standing waves shown in Figure 11. The 
frequency response has strong characteristics of a standing wave and weaker characteristics of a water 
wave, giving rise to a complex wave type. Since water waves are akin to standing waves, an assessment 
of this spectra is that there is moisture present in a standing wave, but not enough to induce drastic 
random attenuation. This determination impacts the root cause analysis algorithm, explained later in this 
document. 

Another factor influencing model behavior is the volume of data and the quality of labels. The limited 
dataset lacks signature diversity, making it difficult for the model to interpret frequency responses that are 
considered complex. The labeled data also contains contradictory labels for similar-looking samples, 
demonstrating that interpretations of spectra can differ among individuals. 

Impairment Training / 
Test AUC 

F1 Score Dummy 
Model 

Acc 

Lift Validation 
AUC 

Resonant Peak 98% 0.78 93% 12.1 98% 
Standing Wave 90% 0.60 81% 4.1 91% 
Water 97% 0.74 89% 7.6 97% 
Suck-out 94% 0.70 87% 6.7 91% 
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Figure 11 – Classification Examples (True Positives, False Positive, False Negatives) 

5.2. Model Improvement 

To obtain a larger training dataset for model recalibration moving forward, a system was established that 
collects random samples of predictions from each pipeline iteration, feeds them into a UI where a user 
validates the prediction, and the sample gets added to the training data. Figure 12 represents the workflow 
for retraining the model with additional samples.  

The diversity in the initial training dataset was limited due to the low volume of available samples. To 
correct the model for any shortcomings related to this, obtaining validated predictions is critical for 
growing the training data. Additionally, the validation system can be filtered to a particular impairment so 
that any imbalances in the training data may be addressed by validating more quality samples of specific 
impairments.  

 

 
Figure 12 – Model Recalibration Cycle 
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In the validation process, a user can observe the original frequency response in addition to the data passed 
through the model. This has been helpful in catching edge cases with the preprocessing in which 
unwanted artifacts remained under certain conditions. In the vast preponderance of cases with an 
unexpected prediction, the artifact had a direct impact on the visual representation of the sample as it 
passed through the model.  

6. Root Cause Analysis 
An RCA algorithm was developed that leverages the graph representation of the network topology. 
Conceptually, the RCA examines a group of impaired modems within the context of seeking common 
network elements in the topology and calculates probabilities that each common network element may be 
the origin of the impairment. The algorithm surfaces results of the RCA to network monitoring tools, so 
that as PNM opportunities arise, the appropriate action can be taken to improve network conditions and 
reliability. 

6.1. Methodology 

The inputs into the algorithm consist of the following primary elements: 

1. Type of impairment; 
2. Impaired device list; and 
3. Total device list in the grouping that reported frequency responses (a fiber node, for these 

purposes). 

The graph of the topology for the node is extracted and a lowest common ancestor (LCA) search is 
performed for the impacted devices. The LCA makes different determinations on network elements 
depending on the type of impairment. Only amplifiers are considered when evaluating resonant peaks. For 
water in the cable, only customer drops are aggregated – meaning each LCA will point to a specific 
customer location and not a network element. Standing waves and suck-outs do not restrict which 
network elements are considered.  

Standard F1 scores are calculated for each of the network components available in the topology as shown 
in Figure 13. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
# 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑖𝑖𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑛𝑛 𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛

# 𝑖𝑖𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑟𝑟 𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑖𝑖
 

𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑒𝑒𝑒𝑒 =  
# 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑖𝑖𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑃𝑃𝑃𝑃𝑛𝑛 𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑛𝑛

𝑛𝑛𝑃𝑃𝑛𝑛𝑖𝑖𝑒𝑒 # 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑖𝑖𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 

𝐹𝐹1 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
(2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑒𝑒𝑒𝑒)

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑒𝑒𝑒𝑒
 

Figure 13 – Standard F1 Score Calculation for Network Elements 

The LCA scores are ranked in descending order, with the possibility that multiple vertices (network 
elements) have the same score. This occurs in situations in which a sequence of vertices has the same 
number of impaired devices and the same population of devices that reported spectra – i.e., when multiple 
networks elements are connected with no additional modems in between them. To break the tie, the 
element with the longest path back to the CMTS is selected, as that element is the one closest to the 
impacted devices. 
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6.2. Annotating the Plot 

When plotting the data for visual inspection, both physical and logical network elements are represented 
using the color scheme shown in Figure 14 (left). The figure also describes the highlighting scheme that 
represents the status of individual customer devices.   

 
Figure 14 – Color Scheme Legend for RCA Graph Plots 

The device highlighting provides visual clarification for where the impairments exist within the larger 
collection of devices available in the topology. Not all devices report spectrum, and since the LCA scores 
consider only the reporting devices, identifying them on the plot assists in validating the RCA results. 
High scoring vertices will contain few instances of normal spectrum and have more devices that are 
impaired or did not report spectra. The lowest common ancestor (highest scoring vertex) is highlighted in 
a unique color and has an annotation attached that describe the type of network element and the unique 
identifier.  

6.3. RCA Results per Impairment 

The initial problem statement for developing the RCA algorithm using the network topology was an issue 
commonly seen in amplifiers that causes resonant peaks to present in FBC data. For this reason, the RCA 
algorithm only calculates the score for each of the amplifiers found in the node’s topology. In Figure 15, 
the modems impacted by resonant peaks are clustered on the left side of the graph (highlighted in pink), 
with no modem in the cluster reporting having normal spectrum. Therefore, the amplifier highlighted in 
the figure has an RCA score equal to the maximum possible. 
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Figure 15 – Resonant Peak RCA Graph Plot 

Standing waves are a result of impedance mismatches caused by damaged cables, breached cable jackets, 
improper connections, and animal chews, to name a few. Standing waves may be manifested either in the 
plant or in a customer’s home. The RCA algorithm considered only the standing wave events that likely 
originate in the plant or at a multiple dwelling unit (MDU) by considering a minimum number of 
impacted devices. In Figure 16, the highest scoring vertex was a passive network device under which the 
preponderance of modems showed impairments alongside only a few with normal frequency responses. 

The topology edge data includes properties about cable lengths between vertices. While not yet 
implemented in this system, the capability exists to calculate the length to the voltage reflection in the 
cable from a starting point. With the known length, it is then possible to further refine the LCA 
calculation by considering only common network elements with a minimum cable length of the known 
distance to the reflection in the line.   
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Figure 16 – Standing Wave RCA Graph Plot 

Suck-outs are commonly caused by “mechanical or grounding issues in active or passive network 
elements such as seizures, connectors, lids, or fittings” (Cable Television Laboratories, Inc., 2022). 
Similar to the diagnosis of standing waves and resonant peaks, a minimum number of impacted modems 
were required to pass through the RCA. The identified vertex in Figure 17 was a tap under which some 
modems had normal frequency responses, and some showed the suck-out impairment. 

 

Figure 17 – Suck-out RCA Graph Plot 
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Water waves are most identified in customer drop cables and taps (Fox, et al., 2021). The RCA algorithm 
here only considers the drop locations to group the devices in the home/MDU into a single event. This 
was an intentional implementation decision while the clustering algorithms for water waves remained 
under development and will be used in future iterations. 

7. Conclusion 
Frequency responses from FBC data have been used extensively to identify certain impairments that 
impact network reliability. Additionally, multiple initiatives have surfaced deep learning models designed 
to automate detection of signal impairments in different types of signals. This implementation takes an 
additional step by automating the triangulation amongst network elements to narrow down the origin of 
the impairment through a network topology graph representation.  

The deep learning model described here is but one form the model can take. In the development of this 
system, multiple models that produced quality results were evaluated. This detection model is an 
improvement over currently known threshold-based algorithms, often finding anomalous frequency 
responses where threshold-based algorithms miss them. The advantage to the previous algorithm is that it 
reliably finds moderate to severe cases; however, it is unable to differentiate among some wave types so 
they are categorized under one label. This impairment detection model not only differentiates the waves, 
but also has demonstrated the capability to detect both obvious and subtle impairment signatures.  

By leveraging network topology as a graph, more advanced analytics are possible to understand the scope 
and impact of impairments on collections of modems. The lowest common ancestor algorithm is one of 
several forms of analysis that can be done. Through an understanding of RF impairments and their causes, 
a root cause analysis performed on network topology generates confident assessments of where within the 
plant the issue originates. The impact is better visibility into network conditions and improved support for 
the technicians that deploy to resolve issues in the network and at customer’s homes.  

Abbreviations 
CNN convolutional neural network 
CPE customer premise equipment 
dBmv decibels relative to one millivolt 
FBC full-band capture 
FN false negative 
FP false positive 
LCA lowest common ancestor 
MDU multiple dwelling unit 
OFDM orthogonal frequency-division multiplexing 
PNM proactive network maintenance 
RCA root cause analysis 
ReLU rectified linear unit 
ROC-AUC receiver operator characteristic – area under curve 
RF radio frequency 
SC-QAM single-carrier quadrature amplitude modulation 
SME subject matter expert 
TP true positive 
UI user interface 
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Appendix 
Network Topology 

Network topology can be accurately described as a directed acyclic graph or DAG. This allows for easier 
and more efficient algorithms to be used without the need to cycle check. A DAG is a special type of 
graph that allows traversal in one direction without the chance for a connection to “backtrack” to a 
previous vertex. The reason for this is plant topology does not loop back on itself and upstream edges will 
always direct to the devices closer to the CMTS in the plant. 

The two primary plant topologies revolve around having an analogue CMTS doing all the work vs having 
a distributed access architecture where the load is balanced across the node. These two topologies do pose 
a challenge when creating the topology map as different devices have similar functionality yet different 
naming schemes. Nodes with vCMTS (virtual Cable Modem Termination Stations) have no amplifiers 
and scale incredibly well leading to easier changes in the plant. 

Creating the graph that this work depends on took many teams a lot of effort in order to overcome the 
challenges required. In order to flesh out the graph, multiple data sources needed to be pulled from and 
synced. To achieve this the team used a property-graph architecture as well as Apache Tinker pop to 
perform the aggregation queries, look-ups ext. The graph database ROCI is still not fully mature but has 
proven extremely valuable in many projects including our own. 
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