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1. Introduction  
The proliferation of microservices as a dominant IT architecture has created opportunities as well 
as challenges for operations teams responsible for maintaining software reliability. When 
production systems deviate from service-level objectives, operations teams must detect failures 
and discover their root causes to promptly resolve the issue. These teams are most often focused 
on minimizing mean time to resolution (MTTR) or mean time between failures (MTBF). The 
process of identifying, diagnosing, and resolving issues in cloud microservice architectures 
largely falls into two phases: anomaly detection (AD) and root cause analysis (RCA).  
AD is the process of identifying anomalies that correspond to system failures. RCA is the 
process of determining the reason why an anomaly occurred and identifying the originating 
service or system. Anomalies are typically detected by defining margins of normal operation on 
key performance indicators (KPIs) and setting alerting thresholds that generate notifications. 
RCA is then typically performed by inspecting the system that generated the alert and tracing the 
problem back to its source. Operations teams use log, trace, or metric data sources, often 
displayed in dashboards to diagnose and debug problems. 
However, there are several problems with this and related existing approaches: 

(1) Simplistic AD still dominates: State-of-the-art failure detection is still based on simple 
thresholding, which is prone to drift, and fails to capture low-frequency events such as 
weekends, holidays, or special events. Failure detection based on simple thresholding, 
misses opportunities to preemptively diagnose problems, thereby increasing MTTR. 

(2) Manual RCA still dominates: Root cause analysis is the most time-consuming step of 
issue resolution, largely due to a reliance on a human in the loop. When an alert is 
received, reliability engineers spend significant time identifying the root cause by looking 
at numerous plots, traces, and logs. This work is repetitive, tedious, and ripe for 
automation. 

(3) Excessive alert volume: Operations teams often receive a large volume of alerts, many of 
which are false or redundant. These are generated by rules that often remain unchanged 
for the life of the application. Further, the volume of services in a microservice 
application makes it difficult to know if a service has failed on its own or as part of a 
cascade.  

(4) New deployment challenges: When a new product or service is deployed, the operations 
team keeps a closer eye on the alerts, metrics, and system performance. The decision to 
move forward to 100% general availability (GA) or roll back to a previous version 
usually takes unnecessary lead time, which may create negative customer impact.  

(5) Institutional knowledge monopolies: Often the knowledge needed to quickly debug operational 
problems is held by a small number of individuals on the team. Root cause analysis can be time-
inefficient except for the few individuals who hold a monopoly on that knowledge.  

According to the report by Smartsheet [1], nearly 70% of employees say that automation reduces 
the time wasted on repetitive work, and out of which nearly 60% believe that if repetitive jobs 
were automated, they would save 6 or more hours (almost a full workday) each week. This 
brings huge opportunities for AIOps.  
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1.1. What is AIOps? 
AIOps (AI for IT Operations) uses artificial intelligence and machine learning (AI/ML) and big 
data analytics to identify or predict IT operations issues in a timely manner and help the DevOps 
team quickly identify the root cause of the issues. A machine learning model can learn the 
conditions that lead to an alert and can predict when an alert is about to occur. When an alert 
does happen, ML based RCA is used to generate candidates of sources of failure to be diagnosed 
by a human operator. Thus, it can reduce MTTR by automating repetitive jobs, present failure, 
and provide better decision making.  
AIOps has recently received extensive attention from industries and academia. According to a 
survey by Reportlinker – “AIOps Platform Market Forecast to 2028 - COVID-19 Impact and 
Global Analysis by Component, Deployment, Organization Size, and Vertical” [2] , the AIOps 
platform market size is expected to grow from $ 2.8 billion in 2021 to $ 19.9 billion by 2028. It 
is estimated to grow at a compound annual growth rate (CAGR) of 32.2% from 2021 to 2028. 
Apart from the market growth, its impact can save much more than that by providing the 
predictive abilities which will lead to efficient utilization of resources so that companies are able 
to cut additional costs related to overprovisioning of their cloud and other resources. It will also 
help in better application maintenance resulting in a better overall customer experience, thus 
positively contributing to business revenues.  

1.2. The Difference from MLOps  
The terms “AI” and “ML” are interchangeable in many contexts. In this context, however, the 
meaning of MLOps and AIOps are significantly different. MLOps refers to machine learning 
model operations, from data acquisition to model development, testing, validation, and 
deployment. MLOps seeks to increase automation and improve the quality of production ML 
models, by focusing on the operation of ML models, and leveraging the continuous 
integration/development (CI/CD) practice of DevOps in the software field.  
The AIOps methodology is applicable to any IT operations, including MLOps. AIOps could 
make ML model operations more reliable and cost effective. On the other hand, the MLOps 
pipeline could be leveraged to make the operation of AIOps itself more efficient and reliable.  

1.3. Why AIOps? 
AIOps aggregates data from multiple sources and provides context and insights when problems 
occur. It improves the visibility (observability), reliability, availability, and cost of IT operations. 
In general, AIOps provides the following key business benefits: 

(1) Improved system availability: AIOps improves availability by reducing MTTR in several ways. 
First, predictive AD can intelligently identify issues before they occur, automatically categorizing 
issue criticality, and preventing unnecessary escalation of issues. Second, automated RCA 
significantly narrows the scope of the problem on which a human operator must focus, greatly 
reducing the amount of time needed to reach resolution. Third, capturing institutional knowledge 
to a model means faster issue resolution, even if less experienced operators are on call. 

(2) Reduced operational cost: There are multiple ways AIOps reduces operational cost. First, as 
AIOps sends out fewer alerts and automates RCA, the resulting reduction in workload could 
potentially reduce the headcount of operations teams. Second, as ML models can predict the 
pattern of traffic from historical data, AIOps can help to orchestrate resources more intelligently 
for cost savings. Third, AIOps helps to quickly identify any potential issues within limited 
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deployments and provides better insights and decision making before promotion to GA, reducing 
unnecessary use of valuable human and computing resources. 

(3) Improved employee experience: The reduced number of false alarms creates more efficient 
(noise free) work for reliability engineers while lowering the overall work volume. Online 
learning models eliminate threshold drift and reduce manual effort. The AIOps system can act as 
a partner in a pair-debugging strategy, that enhances the capabilities of the human operator. The 
overall reduction in issue volume results in a happier, more productive operations team by 
eliminating pager fatigue, allowing them to focus on more meaningful tasks. 

Our AIOps team is striving to help address the operational challenges with AIOps. We have 
explored and experimented on several use cases including: 

(1) Intelligent Infrastructure Monitoring (IIM): We built the state-of-the-art anomaly 
detection technology to alert the DevOps team with detected anomalies based on load and 
resource utilization to prevent application failure as early as possible.  
(2) Root Cause Analysis (RCA): When there is an anomaly or a failure in the operation, 
we correlate the system and application log data with the detected anomaly and help the 
team to quickly identify the root cause and recommend the correct actions to the team.  
(3) Release Management (RM): We use ML to help manage the release by quickly 
identifying when a gap occurs with a partial rollout.  

In this paper, we will give an overview of AIOps use cases and summarize our findings from 
several practical case studies from IoT (Internet of Things), content discovery, and RDK 
(Reference Design Kit) applications. 

2. AIOps Platform Architecture 
In this section, we describe the high-level AIOps platform architecture we built, as shown in 
Figure 1.  
 

 
 
 

Figure 1 – AIOps High Level Architecture Diagram 

AIOps architecture address end to end solution right from data ingestion to data transformation, 
data storage, model training, real-time prediction, fine tuning of model and notifications.  
The data layer is composed of the data from different tools (e.g., metrics and log data sources) 
and systems, internal or external. This data may include a large scale of logs, events, traces, and 
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metrics data from applications onboarded onto the AIOps platform. Data transformation layer 
performs required transformation on the data and load to Feature Store. The data is ingested into 
the backend, and further engineered (e.g., transformation, aggregation) to store in the feature 
store (Object Storage or Time Series Database). AI/ML Service is the core of AIOps that enables 
model training, model tuning and real time inference for any selected operational metric from the 
feature store. Model training layer gives the ability to an operator to select, and tune required 
model to trial run and fine tune until the operator satisfies with required precision, recall against 
operational metrics and save the configuration for real time prediction. Model training can be 
supervised, semi-supervised, or unsupervised. The real time prediction layer performs prediction 
on the scheduled frequency against the scheduled time and stores the results. High level use 
cases like Anomaly prediction, Root cause analysis, automatic log mining, release management 
is performed. Notification layer alerts users on the configured channel like messenger , email etc. 
The data can also be visualized via an operational dashboard. The dashboard also provides a 
visualization of the output generated from the AI/ML engine and allows operators to provide 
feedback which can be incorporated in the models for better AI/ML predictions. With some 
business logic or high-level rules, we also allow generation of a report, which will alert the 
operations team via e-mail, SMS, or messenger. The major challenges in building AIOps 
architecture are listed in the following subsections. 

2.1. Real-Time Data Processing 
Real-time data processing is critical for AIOps, as timely prediction of application issues and 
outages brings strong value to the operators. This involves designing suitable architecture that 
can handle complex tasks including data ingestion, model prediction, and alerting in real time. 

2.2. Scalable Architecture 
Scalability is another key aspect in AIOps since the architecture must handle thousands of 
metrics coming from different application services, ingesting real-time metrics every second, and 
inferencing anomalies at seconds’ level. For example, for a scale of one thousand metrics that are 
ingested every minute and inference also made at minute level, we are at looking at more than 1 
million model inferences per day. 

2.3. Data Storage and Retrieval 
As data is the key for any ML tool, access to historical data will help the ML model train over a 
longer duration which can lead to a better model fit and reduced bias. AIOps architecture 
facilitates data storage and retrieval for longer durations with the ability to retrieve data with 
minimum latency.  

2.4. Real-Time model training and model packaging 
With AIOps, operators can experiment with multiple machine learning models, train a model for 
a specific metric with historical data, package the model for inference instantly, and schedule the 
model for real-time inference on that metric. Operators can also provide feedback on the test 
inference and fine tune the model in real time. So, real-time model training and packaging is one 
of the core requirements fulfilled in our AIOps architecture. 
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3. AIOps Use Cases  
Through AIOps, we are aiming to empower DevOps teams to perform their tasks efficiently. The 
following are the major use cases which we plan to incorporate in the AIOps platform for the 
benefit of operators: 

3.1. Proactive Monitoring 
Operation teams have been using monitoring system and observability platforms to configure 
alerts for their applications. The drawback of such an arrangement is that the alert threshold 
remains static, whereas the applications, or their usage, evolve over time due to various reasons 
requiring operations teams to regularly adjust their alert thresholds to avoid noise caused by false 
alarms. Also, there can be cases where certain problems in the system go uncaptured. 
For example, batch jobs happening at a specific time can create a spike in application metrics. 
Spikes during that time would not be an anomaly since it’s an expected behavior but at other 
times it could be an anomaly. Perhaps the batch job is taking a longer time than expected and if 
so, this is an anomaly to notify. In a traditional setup, this could be missed since thresholds are 
static and don’t take into account such changes in data behavior. 
AIOps learns from historical data. Especially in this case, the model would learn from the time-
series data pattern and seasonality trends to capture these abnormal behavior and notify 
accordingly.  

3.2. Smart Alerting 
Alerting in conventional systems is based on static limits. In AIOps, we take advantage of AI to 
have dynamic thresholds depending on the trend of data. Apart from the metric threshold rules, 
we can also have rules based on model confidence. Confidence of model can be described as the 
certainty or strength in prediction done by a model on certain data, whether it is anomalous or 
not. This confidence is developed by the model learning from historical data over a period of 
time. This can even surpass human performance since sometimes it’s not possible for the 
operators to continuously monitor such high loads of data manually, whereas ML models can do 
that easily.  
This feature is useful in predicting potential system latency or downtime which normally 
wouldn’t be captured using metric threshold-based rules. Thus, this feature helps DevOps with 
such cases and in turn, improves the customer experience with our applications. 

3.3. Topology Analytics and Root Cause Analysis (RCA)  
Topology analytics is used to establish a dependency topological graph of application, network, 
and infrastructure for a complex system, and to drill down to the root cause of the issue. Since 
AIOps is ingesting live metric and log data, AI models can predict anomalies in real time. These 
predictions are further used to correlate anomalies between various system metrics using 
statistical techniques such as Pearson Correlation Coefficient [6] , and give a list of most 
probable root causes. It will be a much faster process compared to the operator doing RCA 
manually over thousands of metrics at a time. This feature will immensely help the DevOps team 
in automatic identification of problems and help them reduce MTTR in general.  
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3.4. Log and Trace Analytics 
Each application may also have an immense volume of application-specific log and trace data. 
By leveraging Natural Language Processing (NLP) tools, we can extract the log metrics and their 
context from certain error/warning entities present in such data and perform anomaly detection 
against it. Additionally, we can also do correlation analysis to correlate the log anomaly with 
application metrics anomaly which can help the operations team to quickly identify the root 
cause of the issue. Similar analysis can also be done for trace data.  

3.5. Cohort Analysis 
Building on top of RCA, cohort analysis can provide further insights into system performance. It 
can point the team towards the probable issue in particular parts of their system even though they 
haven’t received any specific alerts on them. 
Multi-variate time-series analysis, i.e., time-series analysis done simultaneously on multiple 
metrics and clustering on anomalies as well as error logs, can correlate and identify such groups 
of metrics or systems that are causing problems, and can notify the team accordingly in advance 
for better maintenance of their application, all leading to better customer experience.  

3.6. Automated Remediation  
Consider a case where an application is deployed in a Kubernetes cluster, a group of nodes used 
in a Kubernetes deployment. Assume there is a ‘garbage collection’ system metric emitted from 
the cluster pods indicating one of these: application might go to a bad state or there’s a problem 
with the pod itself. In general, this metric count is ignored since it’s a normal behavior of the 
application. In some cases, though, it could actually be a problem with the cluster pods. Time-
series models can detect such changes in data trend patterns and provide alerts to the team. 
Going one step further, the system can automatically take some actions (e.g., auto-restart) for 
remediation before it results in any application downtime or customer impact.  

3.7. Smart Orchestration 
Many teams use major cloud providers’ auto-scaling features or their own customized rule-based 
scaling for their application resources. Through AIOps, we provide them with more intelligent 
auto-scaling abilities. Since the model will be able to forecast demands by learning the pattern 
and behavior through historical data, it will recommend the most efficient option available. This 
will ease the load on DevOps in their capacity planning for their cloud and other such resources, 
and provide significant cost-savings for the application team. In this manner, AIOps will be 
useful for an organization to reduce their software operational costs. 

3.8. Release Management 
When new software or firmware is deployed, it is often done in a phased manner. After a small 
portion of deployment occurs, AIOps can be used to analyze the difference between the new 
deployment and the previous version using machine learning models. If there are some 
significant changes, the model will identify which parameter or characteristic has changed. These 
insights would help the operations team to make a decision on whether to continue with the 
deployment or to roll back to a previous version.   
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4. Anomaly Detection 
Anomaly detection is the key for proactive monitoring. It can be used for data quality 
monitoring, and fault detection of IT operations. Anomalies can be observed in tabular data, 
timeseries, or temporal data, as well as in graphical images. However, when it comes to fault 
detection in IT operations, data is typically in the form of time-series and so time-series anomaly 
detection is performed in AIOps. 
Anomaly detection refers to identifying any abnormal behavior or pattern of data from the 
learned normal pattern from historical data. These anomalies may indicate a problem or an 
interesting event. The learned model can be used to detect anomalies with varying degrees of 
probability, and to predict future data with certain confidence. 

4.1. Anomaly Detection Algorithms 
When it comes to detecting anomalies in time-series data, the task can be performed either in a 
supervised, a semi-supervised, or an unsupervised fashion depending upon the dataset. 

(1) Supervised anomaly detection is possible when we have annotated data of anomalies available. 
We can split the data with anomalies into train and test data, and train a machine learning model 
as a binary classification problem, which means, training a model to predict whether a point is an 
anomaly or not using the labels available as feedback to train the model. This method can be 
performed using any machine learning model that can be used for binary classification such as 
Deep Neural Networks (DNN), Support Vector Machines (SVM), Random Forest, Gradient 
Boosted Tree (GBT), eXtreme Gradient Boosting (XGBoost), and others. 

(2) Semi-supervised anomaly detection can be performed when we do not have labelled anomalies, 
but we have a significant amount of data that is normal and do not have many anomalies that we 
can use for training a model. This model is trained supervised using the normal data and it learns 
the normal data behavior. It then detects anomalies when any deviations are observed. A DNN 
model like Autoencoder, which is a kind of neural network that learns a pattern and tries to 
replicate it, can be used for this. We can also use other DNN models like Long short-term 
memory (LSTM) and Deep convolutional neural network (CNN) (e.g., DeepAnT [3]). One-class 
SVM, Gaussian Mixture Model (GMM), Kernel Density Estimation (KDE), and others can also 
be used for performing semi-supervised anomaly detection. 

(3) When we do not have labelled data, as in most practical situations, we use unsupervised anomaly 
detection techniques. In this, the train or test data may or may not have anomalies. The models in 
this class generate an anomaly score for every data point and we can select a suitable threshold 
depending upon the data to classify points as anomalies or not. This can be accomplished using 
statistical methods like simple Moving Average model or complex ones like Prophet Forecasting 
Model [4] (uses Fourier series) or SARIMAX (Seasonal Auto-Regressive Integrated Moving 
Average with eXogenous factors, an extension of the ARIMA model - Auto-Regressive 
Integrated Moving Average). These approaches learn the periodicity or seasonality and the trend 
of the time-series data, and detect when the data deviates from the normal pattern. Density or 
distance-based outlier detection algorithms like k-Nearest Neighbors (kNN), Isolation Forest, or 
Local Outlier Factor can also be used to perform unsupervised anomaly detection. 

With users’ feedback, the detected anomaly can be labelled as true or false detection, and stored 
in the database. The historical annotations of ground-truth labels can be useful to evaluate the 
performance of the anomaly detection model in terms of evaluation metrics like Precision, 
Recall, and F1-Scores [7].   Also, they can be used to train a classification machine learning 
model for performing supervised anomaly detection. By getting feedback from the user (an 
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operator) for false positive detections, we can also adjust the threshold for anomaly detection, 
which is particularly beneficial to improve the accuracy for semi-supervised and unsupervised 
models. 

4.2. Anomaly Detection Platform 
We built an anomaly detection platform for proactive monitoring (Figure 2) with the following 
functionalities.   

(1) Algorithm selection: We allow the user to select among multiple algorithms, which run in real 
time by learning the seasonality and trend from data. We have options to perform either 
unsupervised, semi-supervised, or supervised anomaly detection depending on the use case. 

(2) Special events: There can be cases when irregularity is expected on days like deployments, 
holidays such as Christmas, or special events such as a key NFL game. Anomaly detection 
algorithms, like Prophet or SARIMAX, will consider these as special events. We have the option 
in our AIOps platform to provide such dates in advance to prevent false alarms as the model 
treats such days differently than a normal day. 

(3) User feedback: The tool can also take feedback from operator if they feel that certain prediction 
points are false positives, i.e., false alarms or shouldn’t be anomalies from their subject 
knowledge. 

(4) Intelligent alerting: We provide three rules for the user to configure alerts. They are: 
a. Everytime – To trigger alert notification everytime a model detects an anomaly. 
b. Interval Threshold – To send alert notification only if the percentage of anomalies 

detected by a model out of all the data points present over a certain time period (10 
minutes, 1 hours, daily) specified by a user, exceeds a certain threshold (0% – 100%) 
which is specified by the user as well. 

c. Score Threshold – To send alert notification if a model predicts an anomaly score (based 
on model confidence) greater than a specified score threshold which is greater than or 
equal to the anomaly detection score threshold. 

We allow the user to configure one or more such alerts for a single prediction model depending 
upon their needs. We also let the user choose the severity of the alert (low / medium / high) which 
they can configure accordingly. 

(5) Messenger notification: We send alerts to the operations team via messenger with a snapshot of 
the data (and potentially root cause analysis report) and a link to the data dashboard. We also 
provide ‘Pause Alert’ buttons at different durations for the operator to pause alerting for a specific 
metric prediction. 

(6) Alert history: We store all the historical alerts for all metric predictions for the user to view from 
the dashboard anytime. In addition, we also allow the operations team to collect the alerts as a 
metric data into their metrics endpoint, if required. 
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Figure 2 – Anomaly Detection Platform 

 
 

5. AIOps – Operators’ Perspective 
This section describes AIOps from an operator’s perspective as they will be the primary users of 
our platform, interacting with it in their routine work. This includes things that they need to 
know to onboard their application onto the AIOps platform, to configure anomaly thresholds, to 
provide feedback while evaluating a machine learning model against a specific metric, and to 
configure alerts for notification. 
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5.1. Onboarding a tenant 
To onboard an application or a tenant, the AIOps tool needs read-only access to metrics data and 
log data sources. Log data is required if we are enabling automatic log mining to correlate with 
anomaly metrics. Operators can view the list of available metrics from an end point and start 
experimenting with specific metrics. After enabling the permission for AIOps to fetch data from 
their application tools, they need to provide a config file stating which metrics to pull and the 
endpoint configuration related details. Upon submission of this, the AIOps tool starts the data 
ingestion in real time. 

5.2. Training a metric with model 
The next step for an operator after onboarding an application is to configure an AI model. For 
that, they can choose the metric of interest and preview the metric trend over a selected time 
period. They can then preprocess the data, like aggregations, over a period and experiment with 
the choice of machine learning algorithms available in the AIOps platform.  
The operator can perform model training live on the chosen data and preview the results on the 
fly. They can provide feedback like false positives or negatives to fine tune the model. After this, 
they can also validate the model with some test data on a certain duration of data. This process 
can continue until the operator is confident with the results for the data selected. Finally, if 
satisfied, the model can be packaged and deployed as it is ready for real-time inference. 

5.3. Schedule a metric for real-time inference and prediction 
With the AIOps platform, the operator can schedule one metric or a group of metrics for real-
time inference configuring the frequency in any duration. Once configured, the AIOps platform 
will continue to run the selected model for metric anomaly analysis in real time.  

5.4. Configure Alerts and RCA 
Alerts can also be configured for the detected anomalies along with the severity and the 
considered interval or a model score threshold. The corresponding alerts can be notified to 
clients using messenger via their web APIs.  
Root cause analysis can be performed automatically where the system performs correlation 
calculations on multiple anomalies detected on the metrics around pre-selected specific periods. 
This is performed by correlating the anomalies detected with the errors observed in log data in 
order to identify the most probable source error logs that could have caused the anomalies 
through a scoring mechanism which helps to rank the root cause errors. The AIOps tool 
recommends a possible hypothesis that corresponds to the most probable root cause of the 
problem which an operator can easily pick up for subsequent actions towards resolution. In this 
way, MTTR can be reduced greatly by using our AIOps platform. 
 

6. AIOps Case Study: Connected Living Object Detection Operation 
For our Connected Living business, we have millions of cameras in customers’ homes. Our 
customers would like to get notification when objects (e.g., person, vehicle, and pet) or events 
(e.g., package delivery) of interest are detected from their cameras. The AI for Connected Living 
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team built the state-of-the-art house object detection algorithm which is used to efficiently detect 
person, vehicle, and pet.  
The main challenge for the object detection operation are as follows.  

(1) There are many metrics to keep track of such as load (request per second), latency (upstream, 
downstream, and inference), CPU, and memory for each node.  

(2) The load (request per second) changes dramatically between day and night. There is a greater 
load in the daytime than in the night which is reasonable as generally human life is busier in 
daytime. The previously used static threshold rule-based alerting is not adaptive to address this 
issue.  

(3) The application has lots of log data. It logs the interactions of the object-detection module with 
the input metadata (from camera and the backend platform). Once there is an alert, the operations 
team often needs to dig into this log data to identify the root cause.  

We onboarded this application onto the AIOps platform to help the operations team by 
addressing the above challenges. In that, we deployed time-series anomaly detection algorithm to 
alert the operations team in messenger, and then correlated the detected anomaly with log 
metrics anomaly to report what error messages are the probable root cause.  

6.1. Connected Living Object Detection Operation 
The metric data1 of concern for this case study is the number of object detection model requests 
per minute. This metric captures the information of the load and has a well-defined daily 
seasonality pattern as we can see from the sample metric time-series plot shown below in Figure 
3. 

 
Figure 3 – Metric in Object Detection Operation 

 
In the Figure 3, we can observe the metric time-series data plotted in blue. As we can observe, 
there are situations that lead to some sudden dips or spikes in the metric values that are of 
concern for the operations team to monitor. The points marked in red dots are the annotations 

 
1 We collect, store, and use all data in accordance with our privacy disclosures to users and applicable laws. 
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provided by a user by using a lasso or box selection tool available in the plot in the dashboard. 
By default, the metric data fetched from the metrics data endpoint will be unlabeled. 
Since this metric data is unlabeled and it has a well-defined seasonality, we chose an 
unsupervised anomaly detection algorithm for this case study. Prophet [4] is one algorithm that 
can be used for univariate time-series forecasting as it fits on the historical data and forms an 
additive model of the trend, daily, weekly, and yearly seasonality components, as well as holiday 
effects, and additional regressors that are available and learned from the data. By fitting such a 
model over this data for a training period of at least two weeks, we get an accurate model that 
learns the seasonality and forecasts with anomaly scores that can be derived from the uncertainty 
bounds generated by the model. The anomaly score is controlled by the interval width factor 
(which represents the percentile values) and an additional multiplicative factor controlling the 
width of the model prediction bounds. Since the model generates samples by Maximum A 
Posteriori (MAP) or Markov Chain Monte Carlo (MCMC) sampling techniques, along with the 
expected predicted value, we can also get the percentile values that are used for generating the 
uncertainty bounds and in turn, the anomaly scores. We can observe the predictions made by the 
model in the following time-series plot in Figure 4. 

 
Figure 4 – Anomaly Detection Predictions in Object Detection Operation 

We can see the points that are marked in red, and they represent the anomaly detections made by 
the model. Since the ground-truth labels are annotated in the metric plot, the sections of the time-
series data where labels are provided have been marked with red lines while the other sections 
are in blue. These sections represent a tolerance interval to evaluate the model performance in 
terms of Precision, Recall, and F1 Scores. Having a tolerance is generally followed for time-
series anomaly detection evaluation as forecasting anomaly in advance proactively, or after a 
pre-defined delay, is generally acceptable [5]. So, predictions happening within such contiguous 
tolerance intervals are all considered as precise predictions while evaluating a model’s 
performance. Since this is followed in literature and by popular service providers, we have 
followed a similar approach. 
The model evaluation is subjective to the dataset and what the operator choses to mark as actual 
anomalies. Therefore, we cannot have evaluation metrics for all the models at all data periods. In 
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this section of the data shown in Figure 3 and Figure 4, however, the evaluation metrics are as 
follows: 

• Precision: 1.0 
• Recall: 0.87 
• F1 Score: 0.93 

Just as we can annotate labels in the metric plot shown in Figure 3, we can also annotate false 
positive predictions in the plot shown in Figure 4. That feedback is used to adjust the anomaly 
score thresholds to predict those points as normal. We fitted our model on this dataset and 
adjusted the thresholds to have a good prediction model that can accurately detect anomalies and 
alert the operations team for further investigation by setting an alert after the training and fine-
tuning activities of the model are completed. The alerts are sent to a messenger channel with the 
information of the alert and the metric data and provides a snapshot of the metric and anomaly 
scores. There is also a shortcut link provided to the operator for them to look at the data 
dashboard directly from the message. As we can see from a sample snapshot of the messenger 
alert shown in Figure 2, the operations team was notified of the alerts in real time by the 
application and they were able to check why the object detection requests suddenly shot up. This 
real-time data pulling, model inference, and smart alerting capabilities that are provided by the 
application helped to ease the monitoring task performed by the operators for this case and 
provided timely alerts for them simplifying their operations. 

6.2. Log mining and Correlation Analysis 
Beyond anomaly detection and timely smart alerting, one of the common situations faced by an 
operations team when they encounter such alerts is finding the root cause for an anomaly. This 
operation is not straightforward, and the DevOps team will have to manually look over the log 
messages to identify the errors and warning messages in the logs within the period closer to the 
timestamp when the alert occurred. This manual operation is usually time-consuming and may 
also critically impact the businesses if the resolution or remediation cannot be taken within a 
certain time. A sample of such an operation has been shown in Figure 5. 
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Figure 5 – Manual Log RCA in Object Detection Operation 

In this Figure 5, we can see that an alert has been sent to the operations team of an anomaly 
detected in the object detection requests per minute metric. In order to find the root cause, the log 
messages in the dashboard were scrutinized and the team was able to identify a unique error log 
message that was logged near the timestamp when the anomaly was detected. As we can see that 
the requests had suddenly dipped, we observed that it was due to a deployment that had taken 
place at that time that was causing some errors from the Kubernetes pods running the object 
detection model containers. To reduce this manual effort, for this case study, we worked with the 
operations team to help them solve this problem using intelligent log mining and automatic root 
cause error analysis, in addition to anomaly detection and alerting. 
In our application, we added the feature to pull and store log messages in addition to pulling and 
storing metrics data. We do not store every log message but only error and warning log messages 
through smart keyword searches for such terms in the logs. Apart from pulling and storing the 
logs, we also do intelligent text parsing to identify different kinds of log messages. With this 
method of segregating the error logs and labeling each type uniquely, we create error log count 
metrics for each error log message type, and store them as a separate metric. 
So, the outcome of intelligent log mining provides us the error log metrics that can be used to 
individually train anomaly detection models to predict and alert whenever a pattern changes or 
an appearance of an error log message occurs. In addition to performing anomaly detection on 
them, these metrics can also be used for root cause analysis when anomalies are detected in 
metrics as we have a mechanism to correlate anomalies detected on a metric with other metrics 
over a selected data period and provide a ranked list of correlated metrics as probable root 
causes, as we’ll see in the next case study. 



  

© 2022, SCTE® CableLabs® and NCTA. All rights reserved. 18 

Even though the error log metric creation gives us two potential use cases, the primary objective 
of log mining is to perform intelligent instant root cause analysis directly from the log messages 
when anomalies are detected in metrics, and to notify the operator of the alert along with the 
probable root cause error log messages in the messenger notification. For this, we have some 
scoring mechanism that is used to rank the error log messages that appear in the recent past 
period from the time the alert was identified, by comparing the frequency and distribution of the 
same over a much larger previous historical period. This helps us provide the operations team 
with the limited set of the most probable root cause errors instantly that they can quickly identify 
and perform remediation. The dashboard has the option to let the user select any alert that 
occurred in the past and view a more detailed root cause analysis report by showing the error log 
trends of each of the recently observed error logs as well the raw log messages as shown in 
Figure 6. This implementation reduced the time taken for root cause analysis tremendously and 
helped the operations team to be more productive. 

 
Figure 6 – Automatic Log RCA in Object Detection Operation 
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7. AIOps Case Study: Rex Browse and Search Operation 
We have a large number of customers using an Xfinity box for cable TV and video streaming purposes. 
Here, the Rex platform is providing the video discovery features for X1 boxes. Specifically, Rex offers 
Keyword Search and Menu Browse services to X1 video clients. The platform also provides support for 
Video Recommendations, Personalization services and Video Metadata service.  
 
Rex is deployed in several datacenters across the globe to cater to our business needs. Due to this, the 
DevOps team can handle significant complexity between various system metrics flowing from several 
sources. Their major pain point is performing RCA, especially in critical situations when there’s time-
constraint if the issue has a direct customer impact.  
 
Let’s take a look at an example using the below Figure 7. 

 
Figure 7 – Manual Flow of Issue Root Cause Diagnosis by Rex Operations Team 

 
Figure 7 shows the investigative steps performed by the operations team after a long diagnosis of 
an issue (dip in a system metric) affecting customers using Rex features. We can observe one of 
the regular flows of issue triaging and diagnosis performed by the Rex operations team in case of 
an issue. At each of those steps, the operator has to go through hundreds of metric graphs before 
drilling down to the next level of the problem. This process involves significant delays and 
inefficiencies. Because it is a customer facing application, time is of the utmost importance and 
MTTR converts to business value; the lower the MTTR, the better the customer experience. 
Through the AIOps tool, we provided features which greatly assisted the operations team in their 
routine work as we’ll see in next sections. 

7.1. Dependency Graph 
The dependency graph of a system denotes the hierarchy in which different services inside the 
system are interlinked with each other. The network calls go from the top layered service to 
bottom layers according to the service dependencies. Let’s look at a structure of a graph we had 
generated in a Rex case study. We have masked the names of the actual micro services used in 
Rex and have provided the contextual details alone for confidentiality concerns. 
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Figure 8 – Dependency Graph Created in Rex Case Study 

In Figure 8, we can see the dependencies among different services (MS – Micro Service, used in 
the general sense of software engineering literature) and also the error flow denoted by color 
code (red – error, green – ok). This graph was constructed by our AIOps team using domain 
expertise from Rex technical operations team. We aim to automate the process of generation of 
such graphs in upcoming releases of the AIOps platform.  
The benefits of having such dependency graphs for operations work are: 

• This can be used by operations team to have a bird’s-eye view on the entire system. 
• Using such a hierarchical system topology i.e., hierarchy within system services, and applying 

RCA at each level, will help in swift identification of root cause. Also, the error flow captured 
will help the operator perform faster and detailed resolution. 

• In this way, we are reducing the time and effort required by DevOps in their normal work, 
thereby reducing MTTR. 

• Also, this graph can be used for efficient scheduling of on-call rotations since we know from the 
diagram what the affected systems are, and can estimate the efforts and expertise required to 
address those cases. 

In the next section, we will see how we leverage AI techniques in our platform to help the Rex 
team with RCA. 

7.2. Root Cause Analysis with Dependency Graph 
As we observed in the earlier sections, manual RCA work required a great deal of time and effort 
by the operations team, increasing the time taken for tracing and resolving the issue. We have a 
feature for automating the RCA task in our AIOps platform. We performed anomaly detection on 
all the relevant metrics that we ingested into the platform. These are the metrics used for 
monitoring by the Rex operations team and are mostly custom configured metrics using queries. 
We then correlated the anomalies detected in one metric over a time period with those of other 
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metrics and generated a ranked list of probable root causes. Figure 9 shows the results of 
performing automatic root cause analysis using the AIOps tool for Rex case: 

 
Figure 9 – AIOps Showing Automatic RCA Correlated Ranked List 

As we can see from Figure 9, the tool showed the ranked list of metrics whose detected 
anomalies correlated with the anomalies detected on the selected metric. If we take a metric from 
one microservice, say MS0, when anomalies are detected and alerts are notified, the operations 
team can check for all other metrics from other microservices like MS1, MS6, and others where 
we observe correlated anomalies. 
The AIOps tool shows the Pearson correlation coefficient score in the ranked list for the operator 
to understand how well the metrics correlate. In addition to showing the ranked list, the tool also 
shows the individual metric time-series plots of the correlated metrics in the same ranked order, 
for the operations team to quickly verify the correlations and drill down further. We can see the 
further list of correlated metrics in Figure 10. 
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Figure 10 – AIOps Showing Probable Root Cause Metric Time-series 

As per the manually identified dependency graph, we observed the root cause metrics to 
correlate well with the parent metric. As automatic dependency graph generation from user input 
is something we have in our pipeline, currently the correlations are shown across multiple levels 
of the hierarchical topology. However, we plan to improve the application to perform this root 
cause analysis at each level with only their dependent metrics (immediate child nodes) and after 
identifying the most probable root cause(s) with some threshold, automatically drill down further 
from that level and so on using dependency graph traversal as shown in Figure 8, instead of 
performing a correlation over all the metrics across all levels of hierarchy. This way, the 
operation will be optimized in the application when we have a smaller beam width for searching. 

7.3. Failure Prevention and Auto Remediation  
The Kubernetes pods run on Java Virtual Machine (JVM). They periodically collect garbage 
when requests sent by clients back up and physical memory runs low. Excessive Garbage 
Collection (GC) can also be a sign of the overall service going into a bad state. 
One or two pods collecting garbage at one time is not problematic, however GC running for 
hours unchecked in a self-reinforcing loop can infect other nodes. It is at this stage that drops in a 
metric like availability become noticeable. Any pod doing abnormal GC should be restarted after 
a preset period, but only if the outage is isolated to it. 
To accomplish this goal, we maintained a count of nodes doing GC at any given time. A two-
pronged approach was used to highlight pods that can be restarted: 
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• First, we ruled out a system level outage by looking at the percent of pods doing GC as shown in 
Figure 11 . The normal threshold can vary by the microservice and data center. Some data centers 
which are physical and running older, slower machines can be more failure-prone than others. 
Some microservices may be more memory intensive. Checking every such combination manually 
was not possible.  

 
Figure 11 – Percentage of Pods Having GC activity per 5-min Period 

• Second, assuming that there was no system level outage, we sought to find the pods with 
anomalous GC activity. This is a user input, defaulted to x standard deviation multiples of normal 
GC activity. The on-call messenger channel was alerted with the IP addresses of pods exceeding 
this threshold with the suggestion to reboot. The kill signal was also sent automatically as part of 
an auto remediation AIOps use case.  

 
 
 
 
 
 

 

 

 

Figure 12  – Instances Showing Abnormal GC Count Over Time 

 
 
Figure 12 shows some of the malfunctioning pods. We had significantly narrowed down the list 
of potentially malfunctioning pods to around 2% of all pods, saving precious time during 
monitoring.  
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8.  AIOps Case Study: Release Management for RDK Firmware 
When a new RDK firmware version is released for Camera (RDK-C), Broadband (RDK-B) or 
video (RDK-V), we usually adopt a phased rollout. Usually, a small portion of customers with 
random selection (1%, or 5%) will be first deployed with the new firmware, and the operations 
team will closely monitor potential performance issues.  
The challenges lie in several aspects: 

(1) There are often increasing device-specific issues, such as performance or stability, and at the 
same time there are hundreds of telemetries and parameters for the operations team to track. 
Some key parameters to monitor for each firmware version include VOD (Video on Demand), 
Linear, WHIX (Wi-Fi Happiness Index) [8] , SpeedTest, CPU (Central Processing Unit), and 
Load among others.  

(2) Identification of new release issues are heavily dependent on Call-In-Rate (CIR) and high-level 
call movers/truck rolls, i.e., no-signal and no-block-sync. This results in long lead time for 
another iteration.  

(3) RCA and triaging need manual review of multiple boxes/examples. This is time consuming.  
 
The RDK team deployed our release management AI component to drive release decisions in an 
automated manner. We can evaluate the impact on sub-populations (e.g., targeted/control for the 
specified segment such as region, CMTS (Cable Modem Termination System) version, HDCP 
(High-bandwidth Digital Content Protection) version, or accounts with pods) and firmware 
segments. Thus, the operations team can identify the anomalies with limited deployment, 
identify the root cause, and respond to the events quickly.  

8.1. Machine Learning Model  
We built a non-linear classification model to classify gateways with two firmware versions using 
one day’s data where a new firmware version was deployed into the field. We focused on 
gateways with the same model to minimize hardware specific difference, and we additionally 
balanced the dataset such that the quantity of gateways with old version was roughly the same as 
those with new version.   
The labels to the classifiers were the firmware versions. There are two major types of model 
features: counts of RDK-B telemetry key occurrence and certain measures on gateway usages 
(e.g., CPU usage, memory usage, Wi-Fi signal strength). Features were engineered from 
telemetry aggregated within a time window of 24 hours. Specifically, for a gateway with new 
version, features were collected within the 24 hours when the new version was deployed, and 
during the same 24-hour period, features were also collected for gateways with the old version.  
Our hypothesis was that if the version changes caused unexpected errors or performance change, 
then the classifier using RDK telemetry would be able to accurately differentiate the two 
firmware versions and indicate what telemetries were significantly impacted by the version 
change, and possibly point to the root cause.  

8.2. Model Results  
We built the model on a sample of approximately 200K gateways of a specific type. Our model 
was able to differentiate the two firmware versions with a high accuracy (Figure 13 Left). Based 
on feature importance score from the model, we were able to rank the features based on their 
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impact on the model performance. One of the top ranked features was the Wi-Fi signal strength 
on 5G band (5GRSSI_split). We further investigated that feature and found that there was a 
significant shift between overall signal strength distribution before and after the version change 
(Figure 13 Right). Here the old firmware version is 3.3p19s1, and the new one is 3.4p3s1. 

 
Figure 13 – Precision Recall Curve for the model (Left Figure); 5G WiFi Signal 

Distribution for Old Firmware Version and New Version (Right Figure) 

 
We confirmed the change with RDK-B team and learned that the shift in distribution was due to a bug fix 
on the reporting of Wi-Fi signal strength, i.e., old version tended to artificially report better signals with a 
10 dB difference. The machine learning model we developed here not only helped us to gauge whether a 
new firmware release might cause significant difference in gateway performance, but also helped RCA 
for further investigations.  
 

9. Conclusions 
We presented an introduction to AIOps, and discussed our AIOps platform, which includes 
anomaly detection, root cause analysis, and release management, among many other use cases. 
We onboarded three applications using the AIOps platform and demonstrated the effectiveness 
of the platform regarding improvement in the experience and productivity of operation teams, 
and potential reduction in operational cost. As next steps, we would like to further evaluate the 
impact of AIOps quantitively.  
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Abbreviations 
 

5G 5th Generation 
AD Anomaly Detection 
API Application Programming Interface 
ARIMA Auto-Regressive Integrated Moving Average 
AI Artificial Intelligence 
AIOps Artificial Intelligence for Information Technology Operations 
CAGR Compound Annual Growth Rate 
CD Continuous Delivery 
CI Continuous Integration 
CIR Call-In-Rate 
CMTS Cable Modem Termination System 
CNN Convolutional Neural Network 
COVID-19 Coronavirus Disease 2019 
CPU Central Processing Unit 
DeepAnT Deep Learning-based Anomaly Detection for Time-series 
DevOps Software Development and Information Technology Operations 
DNN Deep Neural Network 
e-mail Electronic Mail 
GMM Gaussian Mixture Model 
GA General Availability 
GBT Gradient Boosted Tree 
GC Garbage Collection 
HDCP High-bandwidth Digital Content Protection 
IIM Intelligent Infrastructure Monitoring 
IoT Internet of Things 
IP Internet Protocol 
IT Information Technology 
JVM Java Virtual Machine 
KDE Kernel Density Estimation 
kNN k-Nearest Neighbors 
KPI Key Performance Indicators 
LSTM Long Short-Term Memory 
MAP Maximum A Posteriori 
MCMC Markov Chain Monte Carlo 
ML Machine Learning 
MLOps Machine Learning Operations 
MS Micro Service 
MTBF Mean Time Before Failures 
MTTR Mean Time To Resolution 
NFL National Football League 
NLP Natural Language Processing 
RCA Root Cause Analysis 
RDK Reference Design Kit 
RDK-B Reference Design Kit for Broadband 
RDK-C Reference Design Kit for Camera 
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RDK-V Reference Design Kit for Voice 
RM Release Management 
RSSI Received Signal Strength Indicator 
SARIMAX Seasonal Auto-Regressive Integrated Moving Average with eXogeneus factors 
SCTE Society of Cable Telecommunications Engineers 
SMS Short Messaging Service 
SVM Support Vector Machine 
TSDB Time Series Database 
VOD Video On Demand 
WHIX Wi-Fi Happiness Index 
Wi-Fi Wireless Fidelity 
XGBoost eXtreme Gradient Boosting 
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