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1. Introduction 
The goal of this project is to utilize artificial intelligence (AI) and machine learning (ML) techniques to 
gain insights into the drivers of support calls. These insights are used to determine areas of improvements 
to both processes and products to enhance our customer experience. 

In this paper, we discuss the end-to-end automated pipeline to go from call center data to actionable 
insights utilizing machine learning techniques such as Automatic Speech Recognition (ASR) and Natural 
Language Processing (NLP).  Discussion of the pipeline architecture, use cases of automated call 
disposition, and call topic trend analysis are also included.  Broadly, the pipeline converts recorded call 
audio conversations to text transcripts using automatic speech recognition, then uses those transcripts to 
train classification models to predict call disposition. Unsupervised topic modeling extracts new trends 
and topics from the call-volume data over time to identify new or emerging call drivers. These call drivers 
subsequently drive new feature development and product roadmaps. 
 
Please note: Charter has a longstanding commitment to protecting the privacy and security of its 
customers. To provide our customers with technical support and high quality customer service as well as 
to determine areas of improvement, customers are informed that communications between customer 
service agents and customers may be recorded when authorized by the customer for quality and training 
purposes. 

2. Technical Approach 

2.1. Call disposition Flow Overview 

Current call dispositions are collected through a manual process in a call tracking tool, where call center 
agents select a call disposition and enter notes into the system. If a call is transferred to another agent, it is 
split into call segments where each agent selects a disposition for their corresponding segment.   
Dispositions are predefined, and selected via drop-down menu.   

While this approach enables quick selection and consistent responses, there are some limitations.  
Selection of disposition is subjective and can vary from agent to agent.  Only one disposition can be 
selected per call, even when multiple issues are discussed.  Changes to the disposition response list 
requires both a software update and agent training, and cannot be applied retroactively. Furthermore, due 
to the nature of a manual dispositioning process, some call segments are missing a recorded disposition in 
the tracking tool.   

These limitations can be addressed through a machine learning approach.  Using an automated machine 
learning approach enables scalable, consistent, and reliable call disposition labeling.  Nuances in how an 
individual agent labels a given call segment are removed, as all call segments are systematically 
evaluated.  Furthermore, assignment of multiple labels to a single call can bring to light underlying factors 
affecting multiple call reasons.  

2.2. Machine Learning Pipeline Overall Architecture Review 

We have developed a pipeline for data processing and modeling, in combination with cloud AI services 
such as cloud transcribe and cloud NLP services for an end-to-end call disposition architecture. 
Additional call insights are gained through the implementation of our topic modeling framework. The 
pipeline is implemented in Python 3 through boto3 (Amazon Web Services 2015). See Figure 1. 
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Figure 1 – ML Pipeline Architecture Overview 

2.3. Data Ingestion 

Every morning, call audio recordings and associated metadata from the previous day are ingested into the 
data science cloud storage.  

2.4. Audio Preprocessing 

To prepare the audio data for the cloud transcribe service for the best transcript output, we preprocess 
audio recordings after the audio files are ingested. In this step, we downsample the audio to a sampling 
rate of 8,000 Hz, and convert the audio files into .wav format through a parallel batch process. The 
downsampling and conversion are implemented through the open-source library librosa (McFee, et al. 
2022).  This pipeline is also batch parallelized and implemented through joblib (Joblib developers 2020).  

2.5. Convert audio into text transcripts 
There are multiple automatic speech recognition services available on the market to convert audio to text 
transcripts. In our pipeline, we utilize a cloud transcribe service to convert downsampled audio files into 
text transcripts. We harness built-in features such as custom vocabulary to improve the transcript quality, 
channel identification to add data dimensionality for analysis, and transcript redaction for data privacy 
and compliance. We experimented with different settings and decided on the configuration for production 
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based on the best word error rate (WER) evaluation metric. We describe these features and the WER 
evaluation in the next sections.  

2.5.1. Custom vocabulary 

Using custom vocabulary can help to improve transcribe accuracy for domain specific words and phrases. 
We worked with subject matter experts (SME) to identify technical vocabulary words and phrases 
commonly used in call center conversations for our use case. With sound-alike and phonetic annotations, 
we created a custom vocabulary for the cloud transcribe process to ensure Spectrum specific terms are 
represented correctly in the final transcripts. 

2.5.2.  Channel identification 

Since the audio recordings contain two audio channels, we are able to generate transcripts for the full 
conversation, as well as separated transcripts by each audio channel. The transcripts by channel could be 
used in further analysis, such as associating topics in different channels to call issues and resolutions  
(Pratik K. Biswas 2021).  

2.5.3. Redacting transcripts 

We enabled redaction in the cloud transcribe service, where Personally Identifiable Information (PII) such 
as name and address are removed from the transcript output. 

2.5.4. Word Error Rate (WER) 

Speech-to-text is quite challenging for call center audio recordings. The audio quality is usually low, and 
there could be background noise such as a TV playing, dogs barking, or the customer asking questions. 
There are at least two people on the call, sometimes talking at the same time, and the speaking style is 
conversational and usually loosely structured.  Thus, it is crucial that we measure the quality of the 
speech-to-text translations. 

The most common metric for speech recognition accuracy is called word error rate (WER) (Seyfarth and 
Zhao 2020). WER counts the number of incorrect words identified during recognition, and divides the 
sum by the total number of words provided in the human-labeled transcript (N). WER = (I + D + S)/N, 
where I stands for Insertion Error: words incorrectly added in the transcript; D stands for Deletion Error: 
words undetected (deleted) in the transcript; S stands for Substitution Error: words substituted between 
reference and hypothesis. The lower the WER, the more accurate the system. 

We randomly selected 15 transcripts and labeled them to evaluate WER. The WER ranged between 5% 
and 43%, with an average WER of 19%. By comparison, a benchmark analysis of nearly 3,000 call center 
conversations across five domains transcribed with automatic speech recognition (ASR) tools versus 
transcribed by two professional annotators found WER for call center conversations within the 
telecommunications domain to be between 17.62% and 23.31% (Szymański, et al. 2020). 

2.6. Classification 

2.6.1. Identify call dispostion categories 

The data science team worked with SMEs to identify eight high-level categories to train a classification 
model to predict call dispositions.  
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2.6.2. Multi-label classification approach  

In the multi-label classification, individual classes represent different categories, but these categories are 
somewhat related and not mutually exclusive. As a result, each document has at least one class assigned 
to it, but can have more. In call center calls, a conversation can discuss multiple topics, justifying the use 
of multi-label classification.  

We implemented the multi-label classification model through a cloud NLP service. For each input 
transcript, the model returns three labels with the highest predicted scores. Note, in some cases, even the 
highest predicted score is low if the model is not confident in the classification of any of the eight 
categories. Therefore, we applied category-specific score thresholds to the predicted labels, and only keep 
labels where the score is higher than the threshold as the final predicted label(s). 

2.6.3. Create labels through LabelStudio 
To train a classification model,  it requires us to provide the cloud NLP service with examples of call 
transcripts with their appropriate classification labels.  In order to do this, the data science team worked 
with SMEs to understand what to look for in calls in order to provide example labels.  This team listened 
to approximately 1,000 calls in order to provide examples of about 100 calls for each category.   

To support labeling the call data, we set up a cloud instance to run Label Studio (Tkachenko, et al. 2020), 
an open source annotation tool. Label Studio allowed us to create a custom interface that includes both 
audio and text media for annotation. The annotator was required to label each document with at least one 
label and optionally up to three labels. Each document was labeled at least twice, and, if there was no 
conesenus, a third time. An example of the annotation layout can be seen in Figure 2. We consider the call 
categories labeled in Label Studio through this process as the “ground truth” data.   

 

 

Figure 2 – Label Studio call labeling interface 
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2.6.4. Train Comprehend classification model and model evaluation 

Once we obtained approximately 100 example calls for each category, we split our transcripts into 675 
files for training and 191 files for validation.  We experimented with various transcribe and comprehend 
configurations in the pipeline to determine precision and recall scores, and combined them into a single 
representative micro F1 score.  A micro F1 score balances precision and recall across individual 
categories and provides a single quality metric for multi-label binary problems.  The best performing 
comprehend model has a micro F1 score of 60% on both the training and validation set. Finally, we 
evaluated the fit of our model based on a random selection of 90 transcripts of previously unseen data, 
and examined the model’s eight categorical predictions compared to the manually-curated call 
dispositions supplied by our call center agents. 

We found the classification model trained with the cloud NLP service obtained a micro F1 score of about 
59% on the evaluation set across the categories, with some categories performing better or worse than 
others.  For example, one category obtained an F1 score of about 84%, while another category obtained 
an F1 score of about 25%.  We also found the classification model performed very similarly to agent-
based dispositions (58%) against labeled ground truth data, with similar performance across categories.  
See Figure 3.  Future work will focus on improving the comprehend model with additional labeled data 
and refining the classification categories. 

 
Figure 3 – Agent vs. ML classification F1 score performance 

2.6.5. Inference 

After training the classification model, we ran the model on a month of call transcripts from one month to 
understand which of these eight categories are driving the majority of calls.  Recall that calls can be 
classified in multiple categories.  We found the majority of calls for our use case, 40%, came from 
requiring support in one specific area.  We also see a large portion of these calls, 27%, fall into the 
“Other” category.  In the next section, we show how utilizing topic modeling can give us more granular 
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insights into the call drivers in the Other category, and will break down the top category into actionable 
subcategories. 

2.7. Topic Modeling 

When we shared the ML disposition results with stakeholders, they immediately wanted to know if we 
could find out more granular call reasons and if we could identify improvements to features and 
workflows to provide improved product experience. To answer these questions, we applied topic 
modeling to further analyze the call transcripts.  

Topic modeling is an unsupervised method for discovering topics in a large collection of documents. 
Topics can then be used to find high-level summaries of these documents, search for documents of 
interest, and group similar documents together. In practice, we implemented the open-source library 
Top2Vec (Angelov 2020) for our analysis. Some benefits of the Top2Vec algorithm include automatic 
identification of the number of topic clusters and the ability to identify topic hierarchies. 

The topic modeling process includes the following steps: text preprocessing such as normalization, 
training the topic model, interpreting topics, and visualizing and analyzing trends.   

2.7.1. Text normalization 

Text normalization is the process of transforming text into a single canonical form, so it is “cleaner” or 
less random. We found this step necessary to obtain more interpretable topics. As mentioned earlier, the 
audio-to-text task is challenging for call center audio files. Even after significant efforts to optimize AWS 
Transcribe, there are still consistent words or phrases incorrectly represented in the transcripts. 
Additionally, there are text formats in the transcripts that interfere with the topic model’s tokenization 
process. For example, “DVR” is often displayed as “D. V. R.” in the transcript. Since we also use “.” as a 
text delimiter, it would have been split into three separate letters “D”, “V”, “R”, and the individual letters 
lose the meaning compared to “DVR” as a whole. Through normalization, we are able to fix consistent 
transcribe errors, and normalize words and phrases so they will be represented correctly for topic 
modeling.   

In order to handle the text normalization task on a large volume of call transcripts, we needed a process 
that is optimized and parallelizable. We chose HuggingFace’s tokenization pipeline (Wolf, et al. 2019) to 
normalize the data, and trained a Byte-Pair Encoding (BPE) Tokenizer on call transcripts to generate 
cleaned input documents for the Top2Vec model. We chose this tokenization pipeline because it is an 
efficient and optimized implementation, allowing us to use all cores on the data science cluster and 
process the text in parallel, which significantly reduced the processing time.   

2.7.2. Training the Topic Model 
The Top2Vec algorithm includes the following steps: the first step is to create a joint embedding of 
document and word vectors. Once documents and words are embedded in a vector space, the goal of the 
algorithm is to find dense clusters of documents, then identify which words attracted those documents 
together. Each dense area is a topic and the words that attracted the documents to the dense area are the 
topic words (Angelov 2020).  

For experiments, we tested multiple embedding models, including Doc2Vec (Rehurek 2022), and 
pretrained embedding models such as universal-sentence-encoder (Cer, et al. 2018) and all-MiniLM-L6-
v2 (Reimers and Gurevych 2019). We have found using Doc2Vec to generate the document and word 
embedding vectors produced the most interpretable topics.  This is because call transcripts contain many 
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Spectrum-specific terms, and the Doc2Vec embedding is trained from scratch using all the transcripts as 
part of the topic modeling process. Therefore, the Doc2Vec embedding is able to represent Spectrum-
specific terms well. While pretrained embedding models, even though they are trained on massive 
language datasets using complex neural networks, since they have never “seen” Spectrum call data 
before, they require additional fine tuning to perform well with our call data.  

2.7.3. Topic interpretation 
We trained the Top2Vec model on a month of call data.  Because topic modeling produces unlabeled 
clusters of call transcripts, we supplemented the model by labeling each topic cluster with the most 
frequent keywords and bigrams.  This provided some contextual meaning to each of the clusters.   
 

2.8. Productionalization and Monitoring  

Given the number of moving parts in our pipeline, we have established a monitoring framework to 
automatically measure data availability, reliability, and operational performance against our baseline. This 
enables us to identify and correct any arising issues early. Our monitoring framework has been integrated 
into the pipeline so every execution produces an associated monitoring report. 

2.8.1. Data Ingestion 

Each day, we receive call audio recordings in a cloud storage repository. Additionally, we receive a daily 
manifest file listing each audio file expected and its associated metadata, such as unique call identifier, 
agent information, and source of call. As an initial step to our pipeline, we validate the files received 
match the files listed in the manifest. Independently, we validate the manifest file contains the calls we 
expect to receive based on a separate internal call data source. By utilizing automated data validation, we 
are able to quickly identify and address discrepancies when these numbers deviate from one another. As a 
result of this monitoring, we are able to quickly identify and resolve this issues that come up during 
normal course of business. 

2.8.2. Audio Preprocessing 

We downsample and convert audio files to WAV format for ingestion into a cloud transcribe service. We 
monitor the number of audio files that failed to convert, the total count of files successfully converted, 
and the minimum, maximum, average, standard deviation, and percent quartiles for both call lengths and 
file sizes following downsampling. This enables us to capture any issues in file transfer or conversion in 
our hybrid environment, and to provide insights into the size and length of the audio files received.   

Monitoring became crucial in identifying an underlying issue in our downsampling process.  We were 
finding roughly 100 files were being produced with a zero-length audio file.  Interestingly, the files 
producing the zero length audios were different from run to run.  Through troubleshooting, we identified 
that the pydub python library (Robert, Webbie and others 2018) would intermittently fail to downsample 
a given file when run as a parallel process.  In the end, this was overcome by our transition to the librosa 
python library. 

2.8.3.  Convert audio into text transcripts 

As files are transcribed, we capture the total number of audio files that fail as well as the individual errors 
and corresponding number of files per failure reason. Capturing the reasons associated with the failures 
enables us to see if there are underlying errors requiring remediation. The most common error observed 
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stems from the file being less than .5 milliseconds, the minimum audio duration required for transcribe. 
Because we cannot process these files, they are logged and removed, and the pipeline continues 
execution. 

After transcription, we parse the individual files based on their audio channels, join to their associated 
metadata, and combine into a single dictionary in preparation for classification. In addition to monitoring 
the total number of processed transcripts, we further monitor the individual word count statistics 
produced.  For example, we monitor the mean word count across the transcribed files; when the word 
count drops substantially, we are able to identify if the current run has failed to appropriately transcribe 
the calls.   

2.8.4. Classification 

At the completion of classification, we validate the output file has been created and its location 
documented. Summary results are logged indicating the distribution of audio files across our defined 
classification labels. Insights are delivered to our stakeholders for actionable business intelligence. 

2.8.5. Configuration Details 

Finally, to ensure we have repeatable results, we log the configuration metrics, including run time, file 
locations, custom vocabulary file, and any process-specific parameters utilized in the run. 

2.9. How AI/ML Insights Drive Product Roadmaps  

With quantitative metrics in hand, our stakeholders are empowered with empirical evidence to better 
guide and prioritize their roadmaps.  Broadly, we were able to utilize topic modeling to identify call 
drivers and use those call drivers to identify areas where improvements would increase efficiency.  As 
such, these topic modeling results are driving current and future product roadmaps and supporting 
continual product improvement.  

3. Future work 
Future work is focused on improving the accuracy and efficiency of our pipeline.  Using audio transcripts 
for call disposition is just the beginning.  We want to enrich our call disposition data with additional data 
sources which can open up our analysis to understanding patterns, and will enable us to better understand 
the broader picture. Improvements to our visualization dashboard will better highlight topic insights 
derived from the model.  

We also plan to experiment using the same tokenization pipeline on call transcripts to train a transformer-
based model, such as BERT (Devlin, et al. 2018). As a result of the training process, BERT learns 
contextual embeddings for words. We can then use the custom trained model to produce embeddings for 
topic modeling. These BERT embeddings should contain more contextual information and might be able 
to improve the topic model. 

As an unsupervised learning method, topic modeling is great in clustering semantically-similar documents 
together to show trends; however, it still requires human input for topic interpretation and requires effort 
to measure output accuracy. Conversely, supervised classification modeling, is easy to set up, but requires 
high-quality labels for meaningful training and evaluation. As such, we plan to augment our topic 
modeling process with a human-in-the-loop to create new training labels for the classification model.     
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4. Conclusion 
We have discussed an automated end-to-end pipeline from call center data to actionable insights.  In our 
pipeline, we developed a flow to ingest audio data, performed audio downsampling, converted audio to 
text, ran a classification model on high-level dispositions, and performed topic modeling for more 
granular insights. This pipeline is monitored at each step with measurable metrics for quality control.   

While the manual call tracking tool collects high-level call dispositions, the machine learning and natural 
language processing approach is fast, reliable, and scalable.  Machine learning elevates us from statistical 
metrics to deriving deep analytical insights and identifying new trends.  These insights help shape product 
roadmaps and drive new feature development.  
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