

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Using AI in Network Planning and Operations
Forecasting

Petar Djukic

Director AI & Analytics
Ciena Canada

Ottawa ON, Canada
pdjukic@ciena.com

Maryam Amiri

Lead AI Engineer
Ciena Canada

Ottawa ON, Canada
maamiri@ciena.com

mailto:pdjukic@ciena.com
mailto:maamiri@ciena.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 4
2. Foundations of AI technologies .. 6

2.1. How DNNs make predictions ... 6
2.2. How DNNs learn... 8
2.3. Tunning DNN Models ... 9

3. Operationalizing DNNs with AI Software.. 11
3.1. Microservices ... 11
3.2. DNN models as microservices ... 12
3.3. AI architecture .. 12
3.4. Architectural Layers.. 13
3.5. AI Pipelines are DNN model factories .. 14
3.6. The MLOps Cycle... 16
3.7. Automatic Machine Learning (AutoML) .. 17

4. Forecasting the Network Demands with Artificial Intelligence .. 18
4.1. Forecasting network traffic ... 18
4.2. Traditional forecasting approaches .. 18
4.3. Forecasting with DNNs... 20

5. Summary .. 24

Abbreviations .. 25

Bibliography .. 26

List of Figures

Title Page Number
FIGURE 1 A VISION FOR A SELF-PLANNING NETWORK ... 5
FIGURE 2 AN EXAMPLE 2-LAYER DNN USED FOR FORECASTING ... 7
FIGURE 3 EXAMPLE AI SOFTWARE STACK ... 12
FIGURE 4 AN EXAMPLE AI PIPELINE .. 14
FIGURE 5 AI PIPELINES AND OTHER DISTRIBUTE NETWORK APPLICATIONS ... 15
FIGURE 6 DEVOPS VS. MLOPS .. 16
FIGURE 7 FORECASTING TIME-SERIES DECOMPOSITION ... 19
FIGURE 8 RECURSIVE NEURAL NETWORK .. 20
FIGURE 9 TIME-SERIES DECOMPOSITION .. 21
FIGURE 10 PERFORMANCE COMPARISON OF DNN APPROACHES (PUBLIC DATASET) ... 22
FIGURE 11 PERFORMANCE COMPARISON OF DNN APPROACHES (NETWORK DATASET) .. 23

List of Tables

Title Page Number
TABLE 1 EXAMPLE TRAINING DATASET FOR 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝒙𝒙 .. 8

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

1. Introduction
There are two main sets of costs in network planning that can be reduced through automation and
artificial intelligence (AI):

• First, the process today is highly manual. It takes up the time of personnel who could be
better utilized if the process was highly automated. Think of network planners with
intrinsic knowledge of their network who spend most of their time updating Excel
spreadsheets by hand. Their valuable experience could be used much better to maintain
the network and to ensure that the customers are happy. Automation is a tool that can
help reduce this set of inefficiencies.

• Second, network planning depends on the ability to forecast network traffic demands.

Today this is typically done in an ad hoc fashion where an initial guess of the future
network traffic demands is adjusted by essentially a gut feeling from multiple
stakeholders. The problem with this approach is that it may result in many inaccuracies in
the forecast. Overestimates in the forecast result in too much bought or deployed
equipment and then underutilization of network resources. Underestimates in the forecast
result in too little deployed equipment, lowered quality of service (QoS) observed by the
customer and delayed service deployments, which must wait for equipment to be
installed. Artificial intelligence (AI) is a tool that can reduce this set of inefficiencies.

We note that the two problems feed on each other and prevent either from being solved
effectively. The first problem, which is one of automation is more obvious to network operators.
As a network equipment vendor, we often hear of the customer woes caused by complicated
planning spreadsheets. Through planning network deployments, we also observe first-hand the
impact of inaccurate traffic forecasts. The two problems feed on each other as follows: the logic
in one direction is “since we have to manually forecast network traffic there is no point
automating the rest of the process as there will always be manual steps anyway” and in the other
direction “since we manually do planning, there is no point automating the forecasting”. It is also
quite possible that network operators are not fully aware of the latest forecasting tools, some of
which we talk about in this paper and which can break this cycle of circular logic.

Our hypothesis is that increased automation and the use of artificial intelligence can reduce
planning costs, while increasing service provider’s velocity and agility. The focus of this paper is
on artificial intelligence and its automation, which should be a medium-term target for the
industry. Network planning automation is a near-term topic which many vendors are addressing
with their software solutions. There are many vendors advertising their ability to import
spreadsheets and incorporate them into automation software, so we will not talk about this topic
anymore.

Our main focus is on how AI can be used to automate the process. The goal of using AI
technologies is automate as much of the network planning process as possible. Figure 1 shows
how this could be done.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

Figure 1 A Vision for a self-planning network

In Figure 1, the network connects the users to the cloud, where most of today’s services reside.
The traffic monitoring module collects network measurements, such as packet counters and
network conditions (e.g., on fibers, or with IPFIX) and uses AI to create traffic forecasts (1). The
traffic forecasts are passed to the network inventory module, which uses AI to create equipment
forecasts – how much equipment to buy (2). The equipment forecast is passed on to another AI
module, which optimizes costs and delivery times for equipment and creates bills of materials,
which are sent to manufacturers (3). The manufacturer delivers network equipment to a staging
area (4). Meanwhile, the network planning module uses AI to plan network deployments and
dispatches technicians to install equipment from the staging area. Ideally, the only manual
process is to install equipment and other parts of the process are fully automated with software
and AI.

The rest of the paper is organized as follows. We start with a short description of how AI is
implemented using deep neural networks (DNNs), following a description of a software
architecture which is required to incorporate DNNs into network planning processes. Then we
talk about forecasting techniques for network measurements, and we show some performance
results using DNNs to forecast network traffic.

Throughout the paper we cite Wikipedia and AI blogs for various AI concepts. While this may
appear to not be the most scientifically sound, we found these articles easy to follow and they
always link to the more complete computer science papers for the keen reader. There is much
DNN jargon used in the paper. We introduce DNN-specific terms in quotes “” to emphasize their
jargon origins.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

2. Foundations of AI technologies
AI technologies are based on the use of deep neural networks (DNN) for machine learning (ML).
Machine learning is a computer science concept in which functional blocks are created by
showing the computer examples of correct outputs from inputs, instead of explicitly writing
functions that instruct the computer on how to produce outputs from inputs in structured
programming (Wikipedia, n.d.). Instead of coding the algorithm, a generic machine learning
algorithm is “trained” with examples of what the correct outputs are for given inputs. In recent
years, DNN technology has elevated machine learning cognition to the level of human
capability. For example, it is now possible to train a DNN-based machine learning algorithm to
read a paragraph of text and answer questions about it more accurately than humans, or to
categorize x-ray images better than radiologists (Zhang, et al.).

DNN technology is based on basic linear algebra components – matrix multiplication and
addition and basic calculus –derivatives. Most of the knowledge required for DNNs has been
around for hundreds of years since the time of Carl Friedrich Gauss (Wikipedia, n.d.) and Issac
Newton (Wikipedia, n.d.). What is new at this time is that the advances in parallel computing
have made it possible to deal effectively with large matrices and train very large DNNs. The
most common computing platform are the Graphic Processing Units (GPUs) (Wikipedia, n.d.),
which can be used even beyond DNNs, and they are now being complemented with Tensor
Processing Units (TPUs) (Wikipedia, n.d.), which are specialized computing units for DNNs. AI
accelerators such as TPUs are now found almost anywhere from being embedded in laptops,
cellphones, and dedicated data center servers.

DNN-based AI technologies are bringing two main advantages to machine learning. First, as we
mentioned DNN-based techniques are starting to perform tasks better than humans. Even though
these tasks are limited in nature, it is still impressive to see this, and it opens the question of what
other tasks DNN-based ML do better than humans. This is one of the questions we want to
answer in this paper. Second, unlike other ML techniques DNN-based ML algorithms are highly
automatable. This means that the role of humans in ML is now transferring from traditional
manually intensive tasks such as feature engineering, feature selection and tuning of algorithms
performed by data scientist, to more traditional software building, which automates these tasks.
We explain these concepts shortly. An astute reader will notice that automation of ML is as
important as the automation of the network operations to produce a self-planning network. The
difference is that in ML this problem is well on its way to being completely solved.

For completeness and interest of the reader we now give a simplified overview of how DNNs
make predictions and how they are trained. This is followed by an overview of the different
aspects of DNN ML automation.

2.1. How DNNs make predictions
A DNN is a set of algebraic equations that describe how outputs are determined from inputs
using matrix operations. A graphical version of the DNN representation is shown Figure 2a,
which shows the most basic type of building block for DNNs, known as “dense blocks”. The 2-
layer DNN shown in the figure is shallow. A typical may have dozens of layers.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

a) Graphical Description of a 2-layer neural network

𝑦𝑦 = max(0,𝑊𝑊2 × max(0,𝑊𝑊1 × 𝑥𝑥 + 𝑏𝑏1) + 𝑏𝑏2)

b) Mathematical Description of the 2-layer neural network
Figure 2 An example 2-layer DNN used for forecasting

The network in shown Figure 2a evaluates an equation involving linear algebra shown in Figure
2b. In this example equation, 𝑊𝑊1 × 𝑥𝑥 is a matrix multiplication (Wikipedia, n.d.) and the max
function ensures that the result of all operations is positive. Terms 𝑏𝑏1 and 𝑏𝑏2 are called bias for
the layer. The input to the network is 𝑥𝑥, while the output is 𝑦𝑦, so the equation describes the
functional block performed by the DNN. The output 𝑦𝑦 is also called a prediction and in the case
of forecasting, 𝑥𝑥 is the historical time-series we are trying to predict while 𝑦𝑦 is the future value
we need to know for planning purposes. The input 𝑥𝑥 is a mathematical vector whose components
are called “features”. Each feature is a separate input variable contributing to the output of the
DNN. In the case of forecasting, “features” are past samples of the observed network
measurements.

The simple set of algebraic transformations in this example is very powerful as it can be shown
mathematically that a neural network with enough layers – depth – can approximate any
function. For this reason, DNNs are known as “universal approximators” (Hanin & Sellke,
2018).

A pictorial description of a DNN shown in Figure 2a can be translated into the above equation in
Figure 2b by an AI engineer and then made into a software program that performs the set of
algebraic equations. In practice, the software piece is simple to write using libraries such as
TensorFlow (Abadi, et al., 2015) and PyTorch (Paszke, et al., 2019). The DNN can also be
exported into the Open Neural Network Exchange (ONNX) (Open Neural Network Exchange,
n.d.), which describes the equations and can be loaded into many DNN software frameworks.

Going even further than the simple daisy chain we used, more complex structures could be built
by using feedback – Long short-term memory (LSTM) networks and sparse matrices –
convolutional neural networks (CNNs). LSTM networks are thought to be good for forecasting
as they can model sequential nature of time-series where past values are related to future values.
As it turns out, LSTM is not particularly good for network time-series as we show later in the
paper. A more promising area for network time-series forecasting is the recent development of
matrices that perform inverse fast Fourier transform – IFFT, matrices that perform the inverse

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

discrete wavelet transform – IDWT and matrices that perform polynomial functions. We talk
about these later in the paper.

2.2. How DNNs learn
So far, we described the prediction or inference part of the DNN use. If we know the weights of
the DNN (e.g., matrices 𝑊𝑊1 and 𝑊𝑊2 in Figure 2) then upon receiving the inputs, the set of matrix
calculations described by the DNN is performed to determine the outputs. The outputs of the
DNN are called the “predictions”. This process of making prediction is sometimes called
“inference”. Weights are determined during a process of training.

For example, if we have the function

𝑦𝑦 = 2𝑥𝑥2 + 3𝑥𝑥,

we can generate a dataset of training samples shown in Table 1 in the two left-most columns.
With the dataset we can use a training function provided in open-source software such as
TensorFlow (Abadi, et al., 2015) to determine a set of matrices 𝑊𝑊1 and 𝑊𝑊2 that result in the best
approximation of the function. This function is called “fit” as it fits the weights of the DNN to
the dataset during the training. The fit function minimizes the error of the predictions 𝑦𝑦� for the
dataset compared to actual values in the dataset 𝑦𝑦. The error can be measured with the Mean
Absolute Percentage Error (MAPE) shown in the right-most column of Table 1.

Table 1 Example training dataset for 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝒙𝒙

Input 𝑥𝑥 Actual output 𝑦𝑦 Predicted output 𝑦𝑦� MAPE ‖𝑦𝑦�−𝑦𝑦‖
𝑦𝑦

1 5 4.5 10 %
2 14 15.6 11.5 %
3 27 25.4 5.9 %

This simple example may make it seem odd. Why is a DNN learning a known function when we
could just be using the function itself? The true power of DNNs comes in when the function is
not known but has been observed. In this case, the dataset is a set of observed values coming
from the network and the underlying process that models it is not known. For example, the
observed values could be packet counters or SNR measurements. In the forecasting case, the
training procedure will determine a relationship between the past and future observed values.
Once the DNN is trained it can be used for forecasting, by taking in past values and then giving
out future values.

The great DNN research achievement in recent years has been to devise a training procedure that
uses a set of inputs and outputs of a function to find the set of internal weights 𝑊𝑊 to approximate
the function. The training procedure uses “stochastic optimization” whose understanding
essentially requires a PhD in mathematics or computer sciences. However, this understanding is
not necessary to use DNNs as almost anyone who understands software development can write
approximately 10 lines of code to create the DNN and train the function.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

The training procedure is iterative and takes in a set of examples of inputs and outputs in batches.
For each batch, the training procedure takes in the inputs and generates predictions using the
current matrices. The predictions from the DNN are compared with the known outputs to find the
error in the predictions (the “loss” function) and this error is used to adjust the weights. The
adjustment is usually done using a gradient descent that takes a learning rate as an input and
calculates the error of the predictions from the weights and number of predictions. The learning
rate determines how quickly the descent happens and how closely to the best fit the training gets.
The gradient of the whole DNN is calculated using “backpropagation” (Wikipedia, n.d.), which
is an algorithm applied backwards through the DNN to differentiate it. Backpropagation is one
example of automatic differentiation using the chain rule (Wikipedia, n.d.).

2.3. Tunning DNN Models
A DNN model is a trained DNN. A single DNN may have multiple models for different versions
of the dataset, or different versions of the training algorithms. Each version may have the same
structure (number of matrices, size of matrices, and flow through the matrices), but the weights
may be different. In a parallel to software development, DNN models have different versions,
which presumably improve with higher version numbers. Unlike software, a DNN model is not
guaranteed to work well over time, as the inputs may have significant changes in their statistical
properties. An example would be traffic demands changing if a new data center peering point is
added to the network.

Tuning DNN models has historically been the task of data scientists. The tuning process involves
four parts: feature engineering, feature selection, optimization of training hyper-parameters and
selection of the DNN architecture. The reliance on data scientists for tuning of DNNs is now
waning due to the introduction of automation, as we show in the next section.

Feature Engineering
Feature engineering is the process of modifying input variables to make them better during
training and prediction. Historically, this was a very important part of machine learning and data
scientists spent a lot of time on it. With the improvements in DNN technology, which during
training learns the best representation of input variables, this process has become almost
irrelevant. However, it is still important to scale the input and output variables to small range
(typically between 0 and 1) to avoid numerical issues.

Feature Selection
Feature selection removes unimportant features. As the number of features increase so does the
size of the DNN as each of the weight matrices needs to have the width of the vector it is
multiplied with. A larger DNN size results in a longer time to make a prediction (and therefore to
train the network). Most importantly, larger size means that the DNN training requires a larger
dataset due to the “curse of dimensionality” (Wikipedia, n.d.). For example, if a DNN requires
300 samples per feature to be trained, adding 10 new features means that we need to have
available another 3000 new training examples to get the equivalent performance. As the training
data used for forecasting accrues historically, adding 10 new features to the inputs means that
more measurements are required to train the DNN. Getting an extra 3000 new 15-minute

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

network samples for training may take as long as 4 weeks, so reducing training dataset size is a
very important problem.

Feature selection is based on the premise that not all DNN inputs contribute equally to the output
of a DNN. The basis of this premise is that during training, DNNs use the statistical correlation
between input and output variables to deduce the best weights. Input variables uncorrelated to
the outputs are not needed at the input to make predictions. Over the years, many feature
selection approaches have been developed and this process can be automated through a search of
required features (SciKit Learn, n.d.).

Selection of training hyper-parameters
Recall that during training input examples are grouped into batches, and that for each batch a
gradient of the DNN is calculated using backpropagation and applied to the weights with a
learning rate. The weights of the DNN are called “parameters” as they are determined during
training, while the batch size and the learning rate are “hyper-parameters” as they are inputs to
the training procedure.

Selecting the right batch size and learning rate are the easiest way to improve the performance of
DNN during training. The process used for this is called hyper-parameter optimization or hyper-
parameter tuning (Brownlee, n.d.) and is highly automatable and easily parallelized.

In the rest of the paper, we do not distinguish between training and hyper-parameter tuning. In
practice, they are often combined into a single procedure.

Selection of a DNN architecture
The simple DNN example in Figure 2 uses two matrices of matrix weights 𝑊𝑊1 and 𝑊𝑊2, which are
determined during the training process and tuned during the hyper-parameter search. However,
the choice of the number and size of matrices may not be obvious for each data set.

At least two architectural parameters are unknown for even the simple example in Figure 2: the
number of matrices and the size of each matrix. We used 2 matrices, which was easier to explain
in this paper, but a typical DNN may have many more layers than that. The height of each matrix
is also not readily known as only the width of each matrix is known (the height of the previous
matrix). For more complex internal structures it gets complicated in terms of how the
architecture is selected, and there is even an area of DNN techniques dealing with measuring the
difference between architectures, called ablation (Wikipedia, n.d.).

To find the best architecture, in parallel to the hyper-parameter a network architecture search
(NAS) (Wikipedia, n.d.) is also needed. The NAS space is much larger than the space of hyper-
parameters, so this is much bigger problem to automate effectively. Typically, the search is done
in unique directions, for example one direction could be a daisy chain of dense layers (shown in
Figure 2a), while another direction may be a network with daisy chains of LTSM layers. In each
direction the NAS is restricted to the number of layers and the height of each layer. Recently,
this has been generalized in open-source software (OSS) by Google’s Model Search (Google,
n.d.).

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

3. Operationalizing DNNs with AI Software
We now pivot to perhaps a more interesting set of topics for network operators – how DNNs are
operationalized with software. The main set of software available is free OSS. The AI software
stack has evolved over the last 3 years in conjunction with the developments at the Cloud Native
Computing Foundation (CNCF) (Cloud Native Computing Foundation: Building sustainable
ecosystems for cloud native software, n.d.). The two main drivers are TensorFlow (Abadi, et al.,
2015), which implements DNNs, and KubeFlow (Kubeflow: The Machine Learning Toolkit for
Kubernetes, n.d.), which is a set of Kubernetes services used to create AI-specific distributed
applications. Both OSS projects were initiated and are still strongly supported by large cloud
providers (e.g., Google).

3.1. Microservices
The AI software stack is based on the concept of “microservices” (Wikipedia, n.d.), which are
meshed with networking into distributed AI applications. This follows today’s architectural
patterns, where distributed applications based on microservices underpin today Software-as-a-
Service (SaaS) software delivery model (Wikipedia, n.d.).

Microservices are implemented with Linux containers, which group Linux processes to have
common permissions and resource limits. Communications with microservices are implemented
with networking and commonly with a higher layer protocol such as the Hyper-text Transfer
Protocol (HTTP) implementing a Representational State Transfer (REST) architectural style
(Wikipedia, n.d.). The microservices are also called RESTful as they are assumed to not hold
state between subsequent REST application programming interface (API) calls. Each micro-
service exposes its API through Uniform Resource Locators (URLs) corresponding to each of its
available functions. Microservices in the same distributed application communicate through
networking, so they are not guaranteed to run on the same server, or even in the same datacenter.

Microservices can be combined into distributed applications, where there may be layers
implementing different functionalities (e.g., the web interface layer and the database layer). To
improve security inside the distributed applications, microservices-based distributed application
use a “service mesh” (Wikipedia, n.d.) – an overlay topology interconnecting the microservices
in a security conscientious way. As the RESTful communication approach does not provide
stateful transfer of data, a messaging bus (service) may be employed to simplify communications
between microservices in the same distributed application.

The distributed microservices application architecture is very common in cloud applications, and
it has been driven by OSS delivered through the CNCF (Cloud Native Computing Foundation:
Building sustainable ecosystems for cloud native software, n.d.). The key contribution to CNCF
came from Google in the form of Kubernetes (Kubernetes: Production-Grade Container
Orchestration, n.d.), which is container resource orchestrator. Most of the work of the CNCF
revolves around building software required to make distributed applications managed by
Kubernetes easy to make.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

3.2. DNN models as microservices
A trained model is described with an ONNX file, which contains the description of the DNN
layers and the weights of each layer. ONNX files can be read by all major DNN software
libraries and the used to make predictions. An ONNX file does not make predictions, it only
describes a network and its weights. When loaded into ONNX hosting software, the software
provides a way to make predictions with the stored DNN model. Inside software, a DNN model
is used with a function “predict”, which takes as an input features 𝑥𝑥 and outputs an estimate 𝑦𝑦�.

The functional DNN model fits with the RESTful approach of stateless services. The DNN
model does not hold state between subsequent prediction calls. The model can be served on a
unique URL with an HTTP post request carrying 𝑥𝑥 and the serving microservice returning the
prediction 𝑦𝑦�. This serving functionality is available in all major DNN software distributions. For
example, TensorFlow Serving (Tensorflow: Serving Models, n.d.) and TorchServe (PyTorch:
TORCHSERVE, n.d.), provide generic serving containers, which can load a DNN model from an
ONNX file and then provide a service access point for the model’s predict function. In a
distributed application, a serving container becomes is a microservice serving multiple models,
each with a unique URLs.

3.3. AI architecture

Figure 3 Example AI software stack

The AI software stack is shown in Figure 3 and contains several microservices-based distributed
applications running over a distributed hardware architecture. All architectural components in the
figure are OSS and are taken from CNCF and TensorFlow family of software. The main AI OSS
component, KubeFlow, is spearheaded by major cloud companies, who use it in their cloud and
are the basis of their automatic ML (AutoML) offerings. Only the knowledge of Kubernetes is
required to setup and maintain the software. It does not take very long to install and set up the
stack, or to apply software upgrades. In our opinion, building AI software without using the

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

Kubernetes and KubeFlow OSS ecosystem would be a strategic mistake, which may result in
much unneeded development efforts and may likely result in a complete overhaul of AI software
architecture a few years later.

3.4. Architectural Layers
The “hardware resources” are shown at the bottom of Figure 3. They may reside in a private
cloud, on the premise close to networking equipment (the edge cloud), or in the public cloud.
Hardware resources are made available through the Kubernetes API. We note that the hardware
resources are not homogeneous or equally distributed. For example, there would be many more
compute and storage resources in the cloud then on the premise (“infinitely” so). The
Kubernetes resource manager uses the resources according to their cost and latency requirements
of the distributed application. Specifically, one would expect to use edge or network resources
first if they are available, to achieve best latency, and spill over other less latency constrained
workloads into the cloud.

The “resource management” layer in Figure 3 is a federation of Kubernetes container
orchestrators, which manages the hardware resources across multiple clouds. There is a
Kubernetes instance associated with each separate set of hardware resources (e.g., cloud or
edge). The Kubernetes orchestrator keeps track of available hardware resources and allocates the
resources requested for each microservice and spins up the microservice on those resources.
Separate instances of Kubernetes can be federated to allow for a seamless use of resources
regardless of their location. Kubernetes also provides services useful for a microservices-based
architecture: a domain name service (DNS) which maps service URLs to IP addresses, load
balancing, automatic scaling based on measurements of service latency, monitoring of
microservices health, and restarting them when necessary, and a global registry implemented as
distributed key-value store. In terms of resource separation and security, Kubernetes provides
namespaces which are logically separated groups of microservices.

The “SaaS apps” layer in Figure 3 is a set of distributed applications installed on top of the
Kubernetes resource manager, which are required to build distributed AI. For illustration
purposes, we show some of the more useful services for AI: MinIO (MinIO: Object Storage for
the Era of the Hybrid Cloud, n.d.) can used to store datasets, by providing an S3 (Amazon S3:
Object storage built to store and retrieve any amount of data from anywhere, n.d.) compatible
object storage, with the ability to store objects (files) transparently on the local servers or in the
private or public cloud; Spark (Apache Spark: Lightning-fast unified analytics engine, n.d.) is a
distributed in-memory analytics engine capable of processing vast amounts of data, so it can use
to process datasets; Jenkins (Jenkins: build great things at any scale, n.d.) is an integration and
delivery automation software; and KubeFlow is an AI pipeline orchestrator and DNN model
tracker. A Kubernetes cluster may have many other services co-existing with these, depending
on how it is used.

The “AI apps” layer is at the top level of the AI software stack in Figure 3. AI apps are built
using the KubeFlow SaaS layer. KubeFlow provides facilities for launching of AI specific
containers hosting Jupyter Labs Notebooks (Jupyter: Project Jupyter exists to develop open-
source software, open-standards, and services for interactive computing across dozens of

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

programming languages, n.d.) and for creation of AI pipelines, which are distributed applications
used for training and validation DNN models. KubeFlow also contains services for tracking and
delivery of DNN models.

3.5. AI Pipelines are DNN model factories
AI pipelines are dynamic distributed applications that train DNN models. Each model has its
own pipeline, which includes data processing, training with NAS and hyper-parameter selection,
and validation steps. Figure 4 shows an example AI pipeline. A pipeline is specified using
KubeFlow’s domain-specific language (DSL), which describes the containers to be used at each
stage of the pipeline. In the example, there is a container for processing data, container to train a
model and a container to test a model. When the pipeline is started, Kubeflow spins up the
containers in the order specified and ensures that each part of the pipeline finishes before
containers for the next part of the pipeline are spun up.

Figure 4 An Example AI pipeline

In the example, data is input to the “process data” step, which requires KubeFlow to provide the
data to the process data container, which it also spun up for the pipeline. In practice, data may be
in an S3 bucket stored locally or in the cloud. This data processing step may use SaaS services of
Spark to process a large volume of data. Note that the data is split into a training and testing
dataset to follow common machine learning methodology. The test dataset is provided to the
training step, which uses NAS and hyper-parameter search to train many DNN models. This part
of the pipeline uses Katib (Kubeflow, n.d.) to create many instances of the same training
container with different inputs and runs them in parallel on the Kubernetes cluster. Potential
models are evaluated using the validation step. The models are ranked based on the performance
of the loss function (error) as shown in Table 1. The DNN model with the lowest error
corresponds to the best architecture and hyper-parameters for the training dataset. These are
passed to an instance of the training container, which trains the best model with all available

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

data. The model is validated using hold out data from the dataset. The final step is to distribute
and serve the best model.

Figure 5 shows the relationship between AI pipelines and the regular network applications. On
the left side of the figure, AI pipelines are a special type of distributed application, used
specifically for DNN model search with NAS and hyper-parameter tunning. In our software
stack, AI pipelines exist in their own Kubernetes namespace. Each pipeline implements a
specific AI use case. For example, network traffic forecasting, which is the topic of this paper, is
one use case, which is quite different from other use cases. We show two other use cases in
Figure 5: an AI use case that trains a DNN for optical signal-to-noise SNR calculations; and an
AI use case that trains a DNN model for network design and planning. The latter may be a DNN
model implementing a reinforcement learning approach for path selection in the network. The
output of an AI use case is a DNN model. As the DNN models are trained in a namespace
different from where they run, then stored in a DNN model registry, which is accessible from all
namespaces.

Figure 5 AI pipelines and other distribute network applications

The right side of Figure 5 shows the network applications using the DNN models trained by the
pipelines on the left side. The dashed arrows indicate where pipelines deliver models. Note that
the network forecasting is many applications, as forecasting could be done at different scales for
planning, or management. The model is delivered to the DNN model store and then it is
deployed in the corresponding network application.

In the example, we assume that the network applications are hosted on the same Kubernetes
cluster. This could be done in separate namespaces as shown in the figure to assure that the
network applications are secure and have guaranteed resources. The figure shows several
pipelines, the “network planning pipeline”, the “optical SNR pipeline” and the “network forecast
pipeline”. Each pipeline produces a DNN model for a specific purpose and with a separate

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

dataset. To produce the model, pipelines may use the same pipeline template (e.g., template in
Figure 4), or they may have different pipeline templates. For example, one of the pipelines may
use transfer learning (Wikipedia, n.d.), while other pipelines may use reinforcement learning
(Wikipedia, n.d.) to produce their DNN models.

3.6. The MLOps Cycle
The architectural relationships in Figure 5 create an opportunity for MLOps. MLOps (Google)
are the equivalent of DevOps (Wikipedia, n.d.) for AI. DevOps is generally accepted way of
creating cloud-based software application with a tighter integration of software development and
delivery, than what has been done historically. Integral to DevOps is the concept of combined
Continuous Integration (CI) and Continuous Delivery (CD). The process is typically done with
an automation tool like Jenkins. The CI/CD process is shown in Figure 6a. As the code is being
developed, it is automatically tested and integrated and then validated. Testing and integration
are done in the development environment, while the validation is done in the testing
environment. If the new software is compliant with validation tests it is transferred to the
production environment. Even in the production environment the software can be tried out before
full deployment. This can be done with Kubernetes, which is instructed to only deploy some
portion of the newly created containers into production and load-share application between the
new and old containers. Only if the new containers perform satisfactorily, the new containers
replace all the containers.

a) DevOps Cycle with CI/CD b) The MLOps Cycle

Figure 6 DevOps vs. MLOps

DevOps are enabled by the ability to automate testing, integration and validation and then
automatically deliver containers to the cloud. This ability is right now coming directly from the
use of microservices and Kubernetes, combined with CI/CD automation. Microservices
architecture allows incremental upgrades (one micro-service at a time). Kubernetes provides a
platform to test microservices through namespaces. For example, with Kubernetes it is possible
to easily create namespace where different versions of the same microservices are logically
separated on the shared hardware and incremental testing of new features and bug fixes can be

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

done. Kubernetes also provides facilities to gradually upgrade a microservice in production by
gradually replacing copies of old versions with new upgraded ones and to monitor the new
versions and to roll them back if problems are noticed.

The MLOps cycle is shown in Figure 6a. This is the equivalent to CI/CD for DNN models, with
some fundamental differences. The first difference is that the DevOps cycle is triggered by bugs
in the code or new features, while the MLOps cycle is triggered by new data, which degrades the
performance of the existing DNN model. The second difference is that the DevOps cycle starts
by development of the code, while the MLOps cycle starts with a network architecture search
and model training, which includes hyper-parameter optimization. Instead of coding a new DNN
model, the new model is found automatically using new data. Validation and deployment parts of
the cycle are essentially the same. The new model is packaged as a microservice and is updated
in the service mesh just like any other microservice.

3.7. Automatic Machine Learning (AutoML)
The combination of AI pipelines with NAS and hyper-parameter search is known as automatic
machine learning (AutoML). The search for the best combination of data processing, network
architecture and hyper-parameters is completely automated and the DNN model factory in Figure
5 can produce DNN models without human input.

While this may sound magical as the data scientist expertise and experience is greatly reduced
and removed from the ML process, we note that there are several points to AutoML that require
some human input:

• First, the NAS and hype-parameter space may be quite large. This means that the search
space could be so large that the time to create a new model may exceed operational
needs. A data scientist or an AI Engineer would be involved to decide on the reasonable
search space that may generate good DNN models.

• Second, model performance in production must be monitored and evaluated as data
coming from the network changes over time. A sufficient change in the network data will
trigger the MLOps cycle. However, a data scientist still needs to monitor the performance
and its trends and make judgment calls when to trigger the MLOps cycle or debug DNN
model performance for causes of degradation.

• Third, the role of AI models in the distributed network applications needs to be well
understood. This requires a human contribution in understanding the domain of
application and to design the system that automates downstream actions of network
operators.

So, while data scientists will still be needed in the world of AutoML, their role in the process
will change. Instead of each data scientists training a single model over a period of weeks or
months, that data scientist will be able to train hundreds of models in a day and debug the select
few for performance issues. Data scientists may also take on the role of a translator (Analytics
translator: The new must-have role, n.d.) to bridge the gap between business needs and AI
technological capabilities.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

4. Forecasting the Network Demands with Artificial Intelligence
So far, we have talked about existing and soon-to-be-available AI architectures and components.
This section talks specifically about how DNNs can be used for forecasting in the network.

Forecasting is the process of taking in historical values for a network measurement and
producing estimates of future values. Network measurements are stored in databases as time-
series, “series” is used because measurements are collected uniformly, so only a sequence of
measurements is required and time can be calculated by a position in the series.

Several kinds of forecast are possible, depending on what the inputs and outputs are:

• Single-variate forecasts are for time-series containing a single measurement, for example
packet counts from a single router link.

• Multi-variate forecasts are for time-series containing multiple measurements, for example
packet counts from multiple links on the same router.

• Single-step forecasts produce the next value in time, so if packet counters are collected
every 15 minutes, a forecast at 8:00AM will be for the packet counter at 8:15AM.

• Multi-step forecasts produce a sequence of future values, so if packet counters are
collected every 15 minutes, a forecast at 8:00AM can be for the next day and produce 96
values (for every 15 minutes in a 24-hour period).

There are only 4 valid forecast types, given the two kinds of inputs and outputs.

The content of this section is best suited for single-variate forecast of single-step or multi-step
kind. However, we also show results for multi-step forecasts.

4.1. Forecasting network traffic
Forecasting approaches are based on behavioural models of underlying processes that reflect in
the data. For example, some generalities about human generated data are almost always true:
human activity almost always increases, and human activity is seasonal. The growth in human
activity is especially reflected in the growth of Internet traffic, which seems to only go up (Cisco,
n.d.). There is also seasonality in the Internet traffic (Hen & Karlesson, 2019) reflected both in
which direction the network traffic flows and in the volume of traffic. For example, the
difference is pronounced during a single day with high business traffic during work hours and
low business traffic during the evening and high entertainment traffic during the evenings, which
are also temporarily different across the world. Generally, seasonality is also noticeable during
different days of the week with weekends and holidays showing high consumption of
entertainment and low business traffic.

4.2. Traditional forecasting approaches
A generally accepted forecasting approach is to decompose the time-series and extract the trend
and seasonality components (Hyndman & Athanasopoulos). The reminder of the time-series
includes noise, which needs to be smoothed out. Figure 7 shows the decomposition process. The
input is historical time-series. The trend is extracted first, followed by the seasonality. The
remainder of the time-series is smoothed. The trend can be used to make long-term forecast (in
the order of months, quarters, and years), while the seasonality can be used to make forecasts for

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

repeating patterns in the time-series (daily, weekly). The smoothed remainder can be used to
make short-term forecasts.

Figure 7 Forecasting time-series decomposition

Traditionally, time-series decomposition has been a highly manual process. The time-series
structure is not known before analysis done by someone with a lot of forecasting expertise. The
decomposition can be done automatically using one of the newer tools (Prophet: Forecasting at
Scale), however a forecasting expert should still ensure that the automation has gone smoothly as
the forecasting model in (Prophet: Forecasting at Scale) makes very specific assumptions about
the time-series. The forecaster makes an informed decision for each of the time-series
components trend, seasonal and smoothing. A typical forecasting expert works with a small
dataset and uses judgment in deciding which forecast makes the most sense. For example,
forecasting quarterly GDP over the last 50 years only has 200 points and a forecasting expert
may use their knowledge of economics and information available outside of the time-series to
decide if GDP will go up or down in the next quarter. Compared to network data, this is very
small dataset – there are close to 200 data points in two days of 15-minute bins. So, some of the
analysis done by traditional forecasting technique doesn’t translate well into the networking
domain.

In terms of time-series feature, an expert forecaster may use some of the following approaches:

• Seasonality can be estimated in many ways including taking averages at repeating time,
e.g., by find an average traffic on Monday 9:00AM-9:15AM, by isolating data in this
repeating period of time and then averaging, or with more complex approaches such as
estimating the periodicity in the frequency domain.

• Trend is typically chosen as the best line that fits through the data. To make things simple
to understand, a forecaster usually picks linear or exponential trend (Wikipedia, n.d.), but
more complex methods such as piece-wise linear trends (Hyndman R. J.) are also
possible.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 20

• Smoothing is used to remove the noise from the time-series. A familiar from of
smoothing may be the moving average (MA) smoother available on stock tracking
platforms (Ermey, 2019). The moving average is also statistically the most likely estimate
of the next value in the time-series. More sophisticated smoothers also exist, namely the
auto-regressive moving average (ARIMA) family of estimators (Wikipedia, n.d.), which
model temporal relationships between samples of a time-series. Some forecasters feel
confident in using
ARIMA forecasters for multi-step forecasts, however assumptions on the underlying data
should be checked before getting overconfident with this method.

It is important to take stock of the state-of-art in existing forecasting approaches: they are highly
dependent on matching the model in the forecasting algorithm to the time-series, because
historically there wasn’t that much data available for forecasting. Both reasons are why human
intervention is required for traditional forecasting approaches.

As we have shown earlier, one of the advantages of using DNNs is that they can learn the best
model for a time-series, given enough data. In the networking use cases, there is enough data.
We now go over some of the approaches that can be used to automate forecasting with DNNs.

4.3. Forecasting with DNNs
Probably the most accepted DNN forecasting approach is to use recurrent neural networks
(RNNs) (Wikipedia, n.d.). RNNs use recursion to pass data from the previous step to the current
step as shown in Figure 8. In the figure the DNN block is identical throughout the network,
meaning that recursion happens, and the last output is the function of all inputs. The RNN
structure models time dependencies in the time-series. The block could be made from anything,
but a popular structure long-term short memory (LSTM), which is numerically stable.

Figure 8 Recursive Neural Network

The assumption of the recursive relationships of time sample is reminiscent of that ARIMA
forecasting models. As we already mentioned, this approach is valid for short term forecasts
(smoothing) after trend and seasonality have been removed. The assumption of the recurring

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 21

relationships in the time-series isn’t always true, or important for time-series forecasting. The
more important assumptions are around trend and seasonality, which should be accounted for.

Recently, a residual network structure (Wikipedia, n.d.) was used to model this behaviour. In a
residual network, it is possible to have skip connections, that allow addition or subtraction of
various output blocks. The N-BEATS doubly residual network architecture (G, n.d.) for time-
series forecasting is shown in Figure 9. Following from left to right, on the bottom, it can be seen
that what is happening in the network is a trend estimate being determined first and then being
subtracted from the input. Then the seasonality estimate is determined and subtracted from the
“residual” of the input (input with trend subtracted). Finally, the residual of both of those is
smoothed out. On the top of the network, the outputs of the three estimates are combined for the
forecast.

Figure 9 Time-series decomposition

As an example, we used the NBEATS (G, n.d.) network and compared it to the winner of the M4
forecasting competition (The M4 Competition Team, n.d.) dataset. The winner of the
competition was a modified LSTM, which was used to win the competition and it required
human intervention to perform well. The M4 forecasting competition dataset has over 100,000
financial and manufacturing time-series. Algorithms are compared against a simple baseline,
which is used to ensure that there is something to learn in the dataset. The baseline algorithm
uses the last seen value as the forecast of future values. It may be hard to believe, but this simple
baseline is very hard to beat on real-life datasets.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 22

Figure 10 Performance comparison of DNN approaches (public dataset)

In the Figure 10, NBEATS is labeled as ResNet. The relative gain is measured on the error of
one method over the other method. So, 22 % gain of the M4 Winner over the baseline means that
the error (MAPE) of the winner is 22 % less than the winner. It should be observed that
NBEATS improves upon the M4 Winner, but not by a lot. Based on our observations of the
NBEATS performance, we developed a new ResNet based algorithm and it shows an
improvement of 60% over the baseline (labeled Enhanced ResNet). As far as we can tell, the
Enhanced ResNet is the world’s best forecaster as it works better than the M4 competition
winner and the next best forecaster.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 23

Figure 11 Performance comparison of DNN approaches (network dataset)

Real-world network datasets are quite different from the financial series in the M4 dataset. For
the most part, financial time-series are smooth and without sudden changes. On the other hand,
network time-series often have unexpected steps and spikes. We tested the LSTM and Enhanced
ResNet algorithms on a network time-series in our possession. The data was collected from a
large service provider. The results are shown in Figure 11. Note that LSTM does not work well
on this dataset. It performs much worse than the baseline. We are confident this is because
LSTM assumes too many dependencies on time, so it doesn’t work when the time-series have
abrupt changes.

On the other hand, the Enhanced ResNet algorithm (shown as “Enhanced ResNet (SV)”) works
much better than the baseline. Furthermore, the Enhanced ResNet algorithm can be extended to
forecast from multi-variate inputs (shown as “Enhanced ResNet (MV)”). Network time-series
have dependencies on other time-series, so it is advantageous to combine them during the
forecasting process.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 24

5. Summary

This paper has talked about forecasting in the context of network operations. We have made the
argument that network operations, especially its planning functions, need to automate all parts of
their processes and that this cannot be done without automated forecasting. We have shown how
automated forecasting can be done with DNNs and AutoML. We have also used network time-
series from an actual network to show the power of forecasting with DNNs.

We believe that DNNs and AutoML have the potential to revolutionize the network planning
process and make it more accurate and less costly than today.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 25

Abbreviations

AI Artificial Intelligence
API Application Programming Interface
CI/CD Continuous Integration (CI) and Continuous Delivery (CD)
CLI Command-line interface
CNN Convolutional Neural Network
CNCF Cloud Native Computing Foundation
CPU Central Processing Unit
DNN Deep neural network
DNS Domain Name Service
DSL Domain-specific language
GPU Graphic Processing Units
IDWT Inverse Discrete Wavelet Transform
IFFT Inverse Fast Fourier Transform
IGP Interior gateway protocols
IP Internet Protocol
HTTP Hyper-text Transfer Protocol
IPFIX IP Flow Information Export
LSTM Long short-term memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
NAS Network Architecture Search
ONNX Open Neural Network Exchange
OSS Open-source software
PoP Point of Presence
RCA Root Cause Analysis
RNN Recurrent Neural Network
SaaS Software-as-a-Service
S3 Simple Storage Service
SP Service Providers
TPU Tensor Processing Unit
URL Uniform Resource Locators

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 26

Bibliography
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Jozefowicz, R. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
Software available from tensorflow.org: https://www.tensorflow.org/

Amazon S3: Object storage built to store and retrieve any amount of data from anywhere. (n.d.).
Retrieved June 5, 2021, from https://aws.amazon.com/s3/

Analytics translator: The new must-have role. (n.d.). (Harvard Business Review) Retrieved June 9,
2021, from https://www.mckinsey.com/business-functions/mckinsey-analytics/our-
insights/analytics-translator

Apache Spark: Lightning-fast unified analytics engine. (n.d.). Retrieved June 5, 2021, from
https://spark.apache.org/

AWS. (n.d.). Amazon S3: Object storage built to retrieve any amount of data from anywhere.
Retrieved 07 21, 2021, from https://aws.amazon.com/s3/

AWS. (n.d.). AWS Simple Monthly Calculator. Retrieved from
https://calculator.s3.amazonaws.com/index.html

Brownlee, J. (n.d.). Hyperparameter Optimization With Random Search and Grid Search.
Retrieved June 2, 2021, from https://machinelearningmastery.com/hyperparameter-
optimization-with-random-search-and-grid-search/

Cisco. (n.d.). Cisco Annual Internet Report (2018–2023) White Paper. Retrieved June 9, 2021, from
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.html

Cloud Native Computing Foundation: Building sustainable ecosystems for cloud native software.
(n.d.). Retrieved June 5, 2021, from https://www.cncf.io/

Ermey, R. (2019, January 31). The Magic Of Moving Averages. Retrieved June 10, 2021, from
https://finance.yahoo.com/news/magic-moving-averages-173300478.html

G, K. (n.d.). N-BEATS: NEURAL BASIS EXPANSION ANALYSIS FOR INTERPRETABLE TIME SERIES
FORECASTING. Retrieved June 11, 2021, from https://kshavg.medium.com/n-beats-
neural-basis-expansion-analysis-for-interpretable-time-series-forecasting-91e94c830393

Google. (n.d.). Google Model Search. Retrieved June 2, 2021, from
https://github.com/google/model_search

Google. (n.d.). MLOps: Continuous delivery and automation pipelines in machine learning.
Retrieved June 6, 2021, from https://cloud.google.com/architecture/mlops-continuous-
delivery-and-automation-pipelines-in-machine-learning

Hanin, B., & Sellke, M. (2018). Approximating Continuous Functions by ReLU Nets of Minimal
Width. Retrieved from https://arxiv.org/abs/1710.11278

Hen, H., & Karlesson, N. (2019, July 10). Identification of Seasonality in Internet Traffic to Support
Control of Online Advertising. Retrieved June 10, 2021, from
https://research.yahoo.com/publications/9113/identification-seasonality-internet-
traffic-support-control-online-advertising

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 27

Hyndman, R. J. (n.d.). Piecewise linear trends. Retrieved June 10, 2021, from
https://robjhyndman.com/hyndsight/piecewise-linear-trends/

Hyndman, R. J., & Athanasopoulos, G. (n.d.). Forecasting: Principles and Practice . Retrieved June
10, 2021, from https://otexts.com/fpp2/

IETF. (n.d.). Operations and Management Area Working Group (opsawg). Retrieved 07 13, 2021,
from https://datatracker.ietf.org/wg/opsawg/documents/

Jenkins: build great things at any scale. (n.d.). Retrieved from https://www.jenkins.io/
Jupyter: Project Jupyter exists to develop open-source software, open-standards, and services for

interactive computing across dozens of programming languages. (n.d.). Retrieved June 6,
2021, from https://jupyter.org/

Kubeflow. (n.d.). Introduction to Katib. Retrieved from
https://www.kubeflow.org/docs/components/katib/overview/

Kubeflow: The Machine Learning Toolkit for Kubernetes. (n.d.). Retrieved June 5, 2021, from
https://www.kubeflow.org/

Kubernetes: Production-Grade Container Orchestration. (n.d.). Retrieved 06 05, 2021, from
https://kubernetes.io/

MinIO: Object Storage for the Era of the Hybrid Cloud. (n.d.). Retrieved June 5, 2021, from
https://min.io/

Network monitoring. (n.d.). Retrieved 07 06, 2021, from
https://en.wikipedia.org/wiki/Network_monitoring

Open Neural Network Exchange. (n.d.). Retrieved from https://onnx.ai/
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . DeVito, Z. (2019). PyTorch:

An Imperative Style, High-Performance Deep Learning Library. Advances in Neural
Information Processing Systems 32, (pp. 8024--8035).

Prophet: Forecasting at Scale. (n.d.). Retrieved from https://facebook.github.io/prophet/
PyTorch: TORCHSERVE. (n.d.). Retrieved June 6, 2021, from https://pytorch.org/serve/
Quittek, J., Zseby, T., Claise, B., & Zander, S. (2004). Requirements for IP Flow Information Export

(IPFIX). Retrieved from https://www.rfc-editor.org/info/rfc3917
Roughan, M. (n.d.). Internet Traffic Matrices. Retrieved 07 16, 2021, from

https://roughan.info/project/traffic_matrix/
Santos, O. (2016). Network Security with NetFlow and IPFIX: Big Data Analytics for Information

Security. Cisco Press.
SciKit Learn. (n.d.). Feature Selection. Retrieved from https://scikit-

learn.org/stable/modules/feature_selection.html
Tensorflow: Serving Models. (n.d.). Retrieved June 6, 2021, from

https://www.tensorflow.org/tfx/guide/serving
The M4 Competition Team. (n.d.). M4 Competition: Updates. Retrieved from

https://forecasters.org/blog/2018/01/19/m4-competition/
Time-series compression algorithms, explained. (n.d.). Retrieved 07 22, 2021, from

https://blog.timescale.com/blog/time-series-compression-algorithms-explained/
Wikipedia. (n.d.). Ablation (artificial intelligence). Retrieved June 6, 2021, from

https://en.wikipedia.org/wiki/Ablation_(artificial_intelligence)
Wikipedia. (n.d.). Autoencoder. Retrieved from https://en.wikipedia.org/wiki/Autoencoder

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 28

Wikipedia. (n.d.). Automatic Differentiation. Retrieved June 5, 2021, from
https://en.wikipedia.org/wiki/Automatic_differentiation

Wikipedia. (n.d.). Autoregressive integrated moving average. Retrieved June 10, 2021, from
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

Wikipedia. (n.d.). Backpropagation. Retrieved June 2, 2021, from
https://en.wikipedia.org/wiki/Backpropagation

Wikipedia. (n.d.). Benchmarking Methodology for Network Interconnect Devices. Retrieved 07 09,
2021, from https://datatracker.ietf.org/doc/html/rfc2544

Wikipedia. (n.d.). Carl Friedrich Gauss. Retrieved June 2, 2021, from
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Wikipedia. (n.d.). Command-line interface. Retrieved 07 06, 2021, from
https://en.wikipedia.org/wiki/Command-line_interface

Wikipedia. (n.d.). Curse of Dimensionality. Retrieved June 2, 2021, from
https://en.wikipedia.org/wiki/Curse_of_dimensionality

Wikipedia. (n.d.). Data compression ratio. Retrieved 07 21, 2021, from
https://en.wikipedia.org/wiki/Data_compression_ratio

Wikipedia. (n.d.). DevOps. Retrieved from https://en.wikipedia.org/wiki/DevOps
Wikipedia. (n.d.). Exponential Growth. Retrieved from

https://en.wikipedia.org/wiki/Exponential_growth
Wikipedia. (n.d.). Graphics processing unit. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Graphics_processing_unit
Wikipedia. (n.d.). Internet Control Message Protocol. Retrieved 08 09, 2021, from

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
Wikipedia. (n.d.). IP Flow Information Export. Retrieved 07 13, 2021, from

https://en.wikipedia.org/wiki/IP_Flow_Information_Export
Wikipedia. (n.d.). Iperf. Retrieved 07 09, 2021, from https://en.wikipedia.org/wiki/Iperf
Wikipedia. (n.d.). Isaac Newton. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Isaac_Newton
Wikipedia. (n.d.). IS-IS. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/IS-IS
Wikipedia. (n.d.). Matrix Multiplication. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Matrix_multiplication
Wikipedia. (n.d.). Microservices. Retrieved from https://en.wikipedia.org/wiki/Microservices
Wikipedia. (n.d.). MTR (software). Retrieved 07 09, 2021 , from

https://en.wikipedia.org/wiki/MTR_(software)
Wikipedia. (n.d.). NETCONF. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/NETCONF
Wikipedia. (n.d.). Network Architecture Search. Retrieved from

https://en.wikipedia.org/wiki/Neural_architecture_search
Wikipedia. (n.d.). Nyquist frequency. Retrieved 07 16, 2021, from

https://en.wikipedia.org/wiki/Nyquist_frequency
Wikipedia. (n.d.). Open Shortest Path First. Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Open_Shortest_Path_First
Wikipedia. (n.d.). Recurrent Neural Network. Retrieved June 11, 2021, from

https://en.wikipedia.org/wiki/Recurrent_neural_network

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 29

Wikipedia. (n.d.). Reinforcement Learning. Retrieved from
https://en.wikipedia.org/wiki/Transfer_learning

Wikipedia. (n.d.). Representational state transfer. Retrieved from
https://en.wikipedia.org/wiki/Representational_state_transfer

Wikipedia. (n.d.). Residual Neural Network. Retrieved June 11, 2021, from
https://en.wikipedia.org/wiki/Residual_neural_network

Wikipedia. (n.d.). Service Mesh. Retrieved from https://en.wikipedia.org/wiki/Service_mesh
Wikipedia. (n.d.). Simple Network Management Protocol. Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
Wikipedia. (n.d.). Software as a service. Retrieved from

https://en.wikipedia.org/wiki/Software_as_a_service
Wikipedia. (n.d.). Structured programming. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Structured_programming
Wikipedia. (n.d.). Tensor Processing Unit. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Tensor_Processing_Unit
Wikipedia. (n.d.). Transfer Learning. Retrieved from

https://en.wikipedia.org/wiki/Transfer_learning
Wikipedia. (n.d.). YANG. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/YANG
Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., . . . Perrault, R. (n.d.).

The AI Index 2021 Annual Report. Retrieved from arXiv: https://arxiv.org/abs/2103.06312

	1. Introduction
	2. Foundations of AI technologies
	2.1. How DNNs make predictions
	2.2. How DNNs learn
	2.3. Tunning DNN Models

	3. Operationalizing DNNs with AI Software
	3.1. Microservices
	3.2. DNN models as microservices
	3.3. AI architecture
	3.4. Architectural Layers
	3.5. AI Pipelines are DNN model factories
	3.6. The MLOps Cycle
	3.7. Automatic Machine Learning (AutoML)

	4. Forecasting the Network Demands with Artificial Intelligence
	4.1. Forecasting network traffic
	4.2. Traditional forecasting approaches
	4.3. Forecasting with DNNs

	5. Summary
	Abbreviations
	Bibliography

