

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Tracking Round Trip Time Latency in the MSO Network

A Technical Paper prepared for SCTE by

Michael Overcash
Principal Engineer

Cox Communications
6305 Peachtree-Dunwoody Rd, Atlanta, GA 30328

404-269-6595
michael.overcash@cox.com

Alan Skinner

Principal Engineer
Cox Communications

6305 Peachtree-Dunwoody Rd, Atlanta, GA 30328
404-269-0845

alan.skinner@cox.com

Owen Parsons
Engineer

Cox Communications
6305 Peachtree-Dunwoody Rd, Atlanta, GA 30328

404-269-4998
owen.parsons@cox.com

Daniel Sciscoe

Network Engineer
Cox Communications

6305 Peachtree-Dunwoody Rd, Atlanta, GA 30328
daniel.sciscoe2@cox.com

Elizabeth Vitale

Network Engineer
Cox Communications

6305 Peachtree-Dunwoody Rd, Atlanta, GA 30328
elizabeth.vitale@cox.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 4
2. Lag Overview and Project Motivation ... 4

2.1. LagSpy Goals ... 4
2.2. LagSpy Overview ... 5
2.3. Why IRTT? ... 5

2.3.1. UDP versus ICMP for Latency Testing .. 6
2.4. Why Raspberry Pi? .. 6
2.5. Employee Pilot ... 7

3. LagSpy Technical Deep Dive .. 7
3.1. Software Architecture ... 7

3.1.1. Connectivity Driven by Client ... 8
3.2. Command and Control ... 8

3.2.1. Wireguard Certificate Enrollment ... 9
3.2.2. Network Failsafe Keepalive ... 9
3.2.3. Debugging with Mosquitto .. 9

3.3. IRTT Deep Dive ... 10
3.3.1. Limitations .. 10
3.3.2. IRTT Traffic Profiles ... 10

3.4. Security Considerations ... 14
3.4.1. Lag-Pi (IRTT Client) ... 14
3.4.2. Poller .. 15
3.4.3. IRTT ... 15
3.4.4. SLR .. 15

3.5. Test Policy Configuration ... 15
3.5.1. Server Autodiscovery ... 17

3.6. Data Visualization .. 17
3.7. Resource Usage .. 20

4. Conclusion ... 20

Abbreviations .. 21

Bibliography & References.. 22

List of Figures

Title Page Number
Figure 1 – LagSpy Proof of Concept Architectural Overview ... 5
Figure 2 – LagSpy Software Stack ... 7
Figure 3 – Wireguard VPN Enrollment Process.. 9
Figure 4 – Example video conference data rate. Note that “Bits” is selected on the Y Axis, and the

Interval is set as 1 second. This is an asymmetric stream, with a typical upstream rate of 500 kbps
and a typical downstream rate of 4 Mbps. .. 12

Figure 5 – Example video conference packet rate. Typical upstream rate is 100 pps, and typical
downstream rate is 800 pps. ... 13

Figure 6 – Example video conference packet size. Typical packet size is 933 bytes. Since upstream
and downstream histograms were very similar, only the bidirectional analysis is shown here. 14

Figure 7 – Policy file containing different testing and server groups. ... 16

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

Figure 8 – Grafana Dashboard illustrating: Packet Loss, Max Round Trip Time, Max Jitter, Mean RTT,
and Mean Jitter .. 17

Figure 9 – Mean round trip time over several days of data. Note the periodic increases for some
devices (e.g. the yellow line near the bottom.) .. 18

Figure 10 – Mean jitter over several days of data. Again cyclic behavior is evident for a few Lag-Pis. 18
Figure 11 – Round trip time standard deviation across several days of data. .. 19
Figure 12 – UDP packet lost during test. Over this test interval, at most 3 packets were lost (out of

1500 sent during the test.)... 19
Figure 13 – InfluxDB Fields and Query Generator ... 20

List of Tables
Title Page Number
Table 1 – LagSpy MQTT Topics ... 8
Table 2 – CableLabs Video Confrerencing Bandwidth Summary. Applications were anonymized by

CableLabs. .. 11
Table 3 – Application Resource Usage ... 20

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

1. Introduction
Forget throughput – latency is the new standard of internet quality. Whether it’s a glitchy videoconference
or a “laggy game,” it’s increasingly important to know how latency is impacting customers, and how it
interacts with the network components we control. In this paper we will describe work done with
Raspberry Pi-based test points that measure roundtrip time, jitter and packet loss, using realistic UDP
streams. We will also share some of the early data we’ve collected and discuss what we’ve learned so far.

2. Lag Overview and Project Motivation
Subscribers use “lag” to describe an aggregation of latency, jitter, and packet loss; a poorly performing
service or application is described as “laggy”. Historically, subscriber internet use was dominated by
HTTP web browsing and streaming protocols that download a video segment at a time – neither of which
is particularly sensitive to lag. Today, popular applications like real-time video conference and online
gaming are extremely lag sensitive. In addition, the FCC SamKnows program now tracks latency in
addition to speed.

CableLabs is addressing this need in the Low-Latency DOCSIS (LLD) program, and vendors are
introducing various product features intended to improve lag. But how can operators know if these new
products are effective? Lab testing can help of course, but there is no substitute for field loading and
actual customer traffic patterns. Many new features over the years have shined in a lab and provided less-
than-stellar results once deployed. Likewise, every new product comes with a slew of configuration
parameters … are these parameters tuned correctly? Vendors typically provide recommended starting
values, and often these values persist into perpetuity without being critically examined to ensure that
they’re optimal. We can do better, but only if we can measure the results each time we turn a knob.

Just as operators have monitored node utilization for years, operators need a platform to monitor and track
lag over time throughout the network. Thus, the Cox LagSpy program was born.

2.1. LagSpy Goals

Cox has the following goals for the program:

• Use realistic UDP streams to measure latency, rather than ICMP pings.
• Ability to distribute test points widely throughout the Access Network.
• No special configuration of subscriber CPE equipment (e.g. no need for port forwards.)
• Upgradable with ability to add new features and test protocols over time.
• Low hardware cost.
• Configurable network utilization.
• Portable software

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

2.2. LagSpy Overview

Figure 1 – LagSpy Proof of Concept Architectural Overview

In the proof of concept architecture, Raspberry Pi single board computers were mailed to employee
volunteers. These Raspberry Pi devices are nicknamed “Lag-Pis”. Each Lag-Pi implements a network test
client called IRTT (Isochronous Round-Trip Time). The Lag-Pis are controlled by a virtual machine on
the internet known as the Poller, which also aggregates and stores the test results. The Poller instructs
each Lag-Pi when to perform a test and specifies the IRTT server to test against.

The IRTT test involves a client and a server (similar to IPERF). The Lag-Pis implement the client role,
and the servers are set up at interesting points in the Cox network. For the proof of concept trial, we are
setting up IRTT servers at the Service Layer Router (SLR) connected to the Hub Router. The SLR was
selected since neither the Access Router itself (CCAP or OLT) nor the hub router can act as an IRTT
server. To minimize latency to the Lag-Pi, we wanted something as close to the access network as
possible. We are also setting up IRTT servers at two of our Regional Data Centers (RDCs) for
comparison to the SLR.

While our primary focus in the proof of concept is the DOCSIS Network, the architecture is transport
agnostic and can run on any access network (DOCSIS, PON, Cellular Data, etc.)

2.3. Why IRTT?

IRTT is a widely available open-source package which generates a customizable UDP stream to measure
route trip time and jitter, among other things. Here is an example of an IRTT test and its results:

irtt client -i 20ms -l 172 -d 30s --fill=rand --sfill=rand --hmac=0x<redacted> -q irtt-
telemetry.coxlab.net:22112
[Connecting] connecting to irtt-telemetry.coxlab.net:22112
[184.176.185.20:22112] [Connected] connection established
[184.176.185.20:22112] [WaitForPackets] waiting 352ms for final packets

 Min Mean Median Max Stddev
 --- ---- ------ --- ------
 RTT 78.92ms 84.55ms 83.55ms 117.3ms 3.17ms
 send delay -1.24s -1.23s -1.23s -1.21s 2.25ms
 receive delay 1.31s 1.32s 1.32s 1.35s 2.22ms

 IPDV (jitter) 1.93µs 2.32ms 1.13ms 34.77ms 3.15ms
 send IPDV 110ns 1.89ms 925µs 19.11ms 2.41ms
 receive IPDV 754ns 740µs 274µs 34.42ms 2.31ms

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

 send call time 12.9µs 72µs 932µs 46.5µs
 timer error 100ns 129µs 827µs 107µs
 server proc. time 4.45µs 9.39µs 128µs 4.86µs

 duration: 30.3s (wait 352ms)
 packets sent/received: 1471/1471 (0.00% loss)
 server packets received: 1471/1471 (0.00%/0.00% loss up/down)
 bytes sent/received: 253012/253012
 send/receive rate: 67.5 Kbps / 67.5 Kbps
 packet length: 172 bytes
 timer stats: 28/1499 (1.87%) missed, 0.64% error

In this example, the UDP payload size was set to 172 bytes, the inter-packet interval is 20 ms, and the test
ran for 30 seconds. The total bandwidth was 67.5 Kbps, approximating a UDP audio stream. The round-
trip time was on average 84.55 ms with an average jitter of 2.32 ms. These are the parameters Cox is
currently using in the trial, but we are investigating other streams to model (see Section 3.3.2).

IRTT is launched in either client or server mode. The client generates the test traffic, which is reflected
back by the server. The client compares the original packet to its reflected version to calculate the
performance statistics. In our architecture, the Lag-Pi is acting as the client.

IRTT is extremely easy to deploy. On a Debian/Ubuntu Linux VM, you can install it simply by running
apt-get install irtt.

2.3.1. UDP versus ICMP for Latency Testing

Many tools (e.g. the Ookla Speed Test) use an ICMP-based tool like ping for latency measurements. We
selected a UDP-based tool as we believe this more accurately reports the subscriber experience.

UDP based measurements are more accurate because:

• Different QoS is generally applied to UDP versus ICMP.
• Internally, many devices implement ICMP as a control plane protocol and UDP as a data plane

protocol. So for example, many devices employ hardware acceleration for TCP and UDP, but
hardware acceleration is rare for ICMP.

• Real applications use TCP or UDP to transmit data. No common applications deliver user data
using ICMP.

• Many devices rate limit ICMP handling for DDOS protection. IRTT sends a continuous stream of
UDP data, but this is impossible in ICMP. A high ICMP packet rate is often treated as a ping
flood DoS attack and will be blocked.

2.4. Why Raspberry Pi?

Raspberry Pis were selected for the pilot based on their low cost and small form factor. They can be
cheaply mailed in bubble envelopes. We used the 2GB model of the Raspberry Pi 4B. Note that the
networking is significantly improved from the Raspberry Pi 4 versus the 3. Specifically, the Raspberry Pi
4 can support gigabit ethernet speeds while earlier models were throttled by a slow USB 2.0 bus
connecting the main SoC to the networking chip. This architecture limited the ethernet throughput to
about 300 Mbps.

We will not use Raspberry Pis for large scale deployment. For mass deployment, we will incorporate a
LagSpy client into Cox managed gateway devices.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

2.5. Employee Pilot

We solicited 19 employee volunteers for the pilot from a DOCSIS working group and mailed pre-
configured Lag-Pis to them. The volunteers simply plugged in the power adaptor and connected the Lag-
Pis to an ethernet port on their LAN. The volunteers are distributed across multiple Cox markets.

Note that while the Raspberry Pi 4 supports Wi-Fi, we have disabled it and are relying exclusively on
gigabit ethernet for LAN connectivity. Wi-Fi introduces a significant amount of latency and jitter, and the
focus of this project is on the access network. However in a future project, we could easily measure Wi-Fi
latency and jitter in this architecture simply by enabling the Wi-Fi on the Lag-Pi, and setting up an IRTT
server on the access point.

3. LagSpy Technical Deep Dive

3.1. Software Architecture

Figure 2 – LagSpy Software Stack

The principal components of the Lag-Pi are:

• The LagSpy Test Client, written in Python 3.8.
• Eclipse Mosquitto to implement an MQTT client.
• Wireguard to establish a VPN connection to the Poller for command and control.

The principal components of the Poller are:

• The Lagspy Poller, written in Python 3.8.
• Eclipse Mosquitto to implement an MQTT broker and localhost client.
• Wireguard for a VPN endpoint.
• InfluxDB to import and aggregate data from the Poller for visualization.
• Grafana for visualization of test results.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

• Lighttpd (primarily used to upgrade the Lag-Pi.)

Note that MQTT and Lighttpd are only exposed over the VPN interface over the 10.13.0.0/16 subnet.

The IRTT Servers are implemented in containers, which can be deployed virtually anywhere as IRTT is a
simple protocol that only exposes a single UDP port. Docker (and other container frameworks) can
strictly limit the resources available to an applications, including memory, CPU, and network sockets,
greatly reducing the risk to the platform.

3.1.1. Connectivity Driven by Client

The VPN tunnel is initiated from the subscriber side, meaning that no special configuration is required on
the home gateway. The connection is initiated from the LAN side. The Wireguard
PersistentKeepalive feature prevents the home gateway’s NAT state from timing out due to
inactivity.

Once the VPN tunnel is established, the Poller can initiate MQTT traffic at will to the Lag-Pi. No port
forwarding is required.

Likewise, IRTT traffic is initiated by the Lag-Pi (client) and does not require special forwarding rules.

3.2. Command and Control

MQTT, a popular IOT control protocol, is used to manage the Lag-Pis. MQTT is a Publisher-Subscriber
(Pub/Sub) protocol. Clients publish messages to named channels called “topics”. Clients can subscribe to
any topic of interest. MQTT creates a reliable mechanism to establish both 1:1 communication with
individual Lag-Pis, and also to send messages to multiple Lag-Pis at once.

The MQTT Broker coordinates the message forwarding and is implemented on the Poller.

For LagSpy, all message payloads are in JSON format.

Table 1 – LagSpy MQTT Topics
Topic Arguments Direction Description

connect/hello n/a Lag-Pi  Poller Register with poller
and keepalive

connect/enroll/<mac> MAC address of
Lag-Pi

Poller  Lag-Pi Provide VPN
credentials to Lag-Pi

connect/link_ok/<mac> MAC address of
Lag-Pi

Poller  Lag-Pi Keepalive response

irtt/start/<mac> MAC address of
Lag-Pi

Poller  Lag-Pi Start IRTT test

irtt/results n/a Lag-Pi  Poller Results of IRTT test
iperf/start/<mac> MAC address of

Lag-Pi
Poller  Lag-Pi Start IPERF3 test

iperf/results n/a Lag-Pi  Poller Results of IPERF3
test

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

3.2.1. Wireguard Certificate Enrollment

The Wireguard VPN requires that each peer have a unique Private Key and a statically assigned IP
address in the VPN subnet. As we did not want to manually provision each Lag-Pi with VPN credentials
prior to shipment, we implemented a dynamic VPN credential mechanism over MQTT.

Figure 3 – Wireguard VPN Enrollment Process

A default set of credentials are used to establish the permanent credentials. Wireguard only allows one
endpoint at a time to connect with the default private key. This enrollment process can gracefully handle a
small amount of contention for the default credentials, but this algorithm will need to be revisited as we
increase scale.

3.2.2. Network Failsafe Keepalive

If the Wireguard VPN fails, then the Lag-Pi becomes unmanageable. To mitigate this, each Lag-Pi runs a
cron job that verifies the ability to download a small file from the Poller. If the file download fails, the
script ensures the Wireguard container is running.

3.2.3. Debugging with Mosquitto

MQTT is a pub-sub protocol, meaning that any authenticated party can subscribe to a topic. Therefore a
user on the Poller can subscribe to interesting topics for debugging purposes, and sniff the control
messages sent over the VPN. This is very useful for troubleshooting.

In the example below, we can observe the “connect/hello” messages received from the Lag-Pis.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

lagspy@poller-dt1-phx-0:~$ docker exec -it mosquitto mosquitto_sub -t
“connect/hello”

{“publicIpv6”: “::”, “publicIpv4”: “68.109.32.146”, “ip”: “10.13.0.16”, “mac”:
“e4:5f:01:3b:18:23”, “topic”: “connect/hello”, “message”: “hello”, “seqNum”:
5393, “timestamp”: “2021-07-19 15:27:49.829820”}

{“publicIpv6”: “2600:8800:1a1:1a00::b71a”, “publicIpv4”: “”, “ip”:
“10.13.0.12”, “mac”: “e4:5f:01:21:a0:d4”, “topic”: “connect/hello”, “message”:
“hello”, “seqNum”: 2924, “timestamp”: “2021-07-19 15:27:54.517621”}

3.3. IRTT Deep Dive

3.3.1. Limitations

IRTT attempts to break up the measured Round Trip Time (RTT) into “Send Delay” and “Receive
Delay”. However this decomposition is based on injecting a timestamp into the test packets, which
requires precise time synchronization between the client and server. This doesn’t seem to work in any
practical environment that we’ve tested using Raspberry Pis or even Windows PCs. If the RTT is low
enough, one of the components will be reported as a negative number. As we are fairly confident that the
Cox network does not support time travel, we must conclude that this is due to clock skew between the
client and server.

We have attempted to achieve better time sync by using GPS modules without success. We also tried to
use NTP, where the NTP peer, the NTP server, and the NTP client were all on the same ethernet switch.
This didn’t work either.

We suspect the only way to get this to work is to use IEEE 1588 (Precision Time Protocol) with IRTT
endpoints that use precision real-time clocks. This is out of scope for the LagSpy program, since our long-
term plan is to use consumer grade internet gateways. Integrating LagSpy into a cable modem that
implements DOCSIS Time Protocol could provide a way to get this precision.

IRTT sends symmetrical bidirectional test traffic. For example, if IRTT is configured to send 60 kbps
upstream, then an identical 60 kbps stream is generated in the downstream direction as well. Unlike
iperf3, it is not possible to perform unidirectional testing.

However, due to the nature of the DOCSIS protocol and the use of TDM in the downstream vs. TDMA in
the upstream, the major contribution of latency and jitter is in the upstream. Downstream traffic of this
nature will simply be forwarded along by the CMTS into the plentiful frames available to each modem’s
SFID (assuming the modem is below its QoS limit). This generally happens at or very near real time. In
the upstream, however, the modem must request a timeslot in a contention-based interval first, then wait
for the CMTS scheduler to allocate a timeslot, then wait for the MAP message to arrive, and finally send
the data. This process is more sensitive to network congestion and has more possibility of variation due to
limited contention intervals. Therefore, we make the assumption that the changes in latency and jitter over
time are primarily due to the fluctuating conditions of the upstream.

3.3.2. IRTT Traffic Profiles

IRTT streams are highly customizable, so we can model a number of latency sensitive applications.
Currently we are using a profile that simulates an audio stream, but we plan to add more profiles to our
testing toward the end of 2021.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

CableLabs has studied typical data streams from collaboration apps (see References). Their summary
findings are below.

 Table 2 – CableLabs Video Confrerencing Bandwidth Summary. Applications were
anonymized by CableLabs.

Application Typical Upstream Typical Downstream
Application A < 500 kbps Between 1 and 2 Mbps
Application B 200 kbps typical; one outlier at 2 Mbps Approx. 1 Mbps
Application C Approx. 350 kbps Approx. 2 Mbps
Application D Between 200 kbps and about 1.8 Mbps Cluster at 500 kbps and

cluster at 3 Mbps

While video conference traffic is highly asymmetrical, IRTT can only model symmetric streams. We
recommend modeling the upstream data rate since most latency and jitter should be introduced in the
upstream.

3.3.2.1. Characterizing Application Streams

Characterizing application streams is straightforward with a packet sniffer application such as Wireshark.

• Optional: place an ethernet switch with a mirror port between the device under test (DUT) and the
LAN. These switches are widely available for under $50.

• Launch the app generating the traffic on the DUT.
• Start a Wireshark capture. For apps that run on a computer, you can run Wireshark on the same

machine. For something like a game console, the optional ethernet switch must be used. Or, many
prosumer/commercial home routers have a sniffer capability.

• Collect data for several minutes, then end the capture.
• Identify the traffic of interest and apply a display filter. The filter can be applied in the upstream,

downstream, or bidirectional as desired. In this example:
• Use ip.addr==52.113.16.224 for bidirectional.
• Use ip.src==52.113.16.224 for downstream.
• Use ip.dst==52.113.16.224 for upstream.
• Take care to filter based on the remote application server (public IP address) rather than

the LAN device.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

• Go to StatisticsIO Graphs in Wireshark. Set up Display Filters for upstream, downstream, and
bidirectional. You can inspect both bitrate and packet rate by selecting the appropriate option for
the Y Axis.

Figure 4 – Example video conference data rate. Note that “Bits” is selected on the Y Axis,
and the Interval is set as 1 second. This is an asymmetric stream, with a typical upstream

rate of 500 kbps and a typical downstream rate of 4 Mbps.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

Figure 5 – Example video conference packet rate. Typical upstream rate is 100 pps, and

typical downstream rate is 800 pps.

• Inspect the packet length in Wireshark using StatisticsPacket Lengths. Apply the desired
Display Filter.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

Figure 6 – Example video conference packet size. Typical packet size is 933 bytes. Since
upstream and downstream histograms were very similar, only the bidirectional analysis

is shown here.

From this analysis and focusing on the upstream, this application can be modeled in IRTT using the
following parameters:

• Interval (-i parameter): 1 / 100 pps = 10 ms
• Length (-l parameter): 933 bytes – 28 bytes = 908 bytes. Note that we subtract the IP and UDP

header size to calculate this parameter.

As a sanity check, IRTT reports a throughput of 733.5 Kbps, which is reasonably close to the observed
value of approximately 500 Kbps.

3.4. Security Considerations

3.4.1. Lag-Pi (IRTT Client)

The Raspberry Pi is not a hardened hardware platform (e.g. it does not have secure boot or secure
storage.) We are only using Raspberry Pis for a limited employee trial and will migrate to managed and
secured hardware in the next phase.

The LagSpy application does not listen on any open ports. All command and control traffic is secured
over a Wireguard VPN tunnel.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

3.4.2. Poller

The Poller is listening on a Wireguard server port. All other services (MQTT, HTTP) are restricted to the
VPN interface. In other respects, the same hardening considerations apply to the Poller as any standard
server with an open port.

3.4.3. IRTT

The IRTT application is written in Golang and is not subject to the buffer overflow-based attacks that
plague C/C++ applications.

By default, the IRTT server listens on UDP port 2112 and is discoverable using standard network
scanning techniques (including Shodan.io). At a minimum, this allows an attacker to waste network
resources by sending test traffic to the server, and could be the basis for a reflection attack.

To mitigate this risk, we recommend the following:

• Override the default port number
• If possible, disable IPv4 on the IRTT server and use IPv6 for IRTT testing. The IPv6 address

space is sparse and more difficult to scan.
• Use the IRTT –hmac option to enable the HMAC feature. When enabled, the server will not

establish a connection or otherwise respond to client traffic that doesn’t use the same HMAC
value. This means that the port will appear to be blocked by a firewall (filtered) in a standard
nmap scan.

3.4.4. SLR

Cox utilizes routers at each hub site that are dedicated to hosting ancillary (non-data path) services. These
routers are known as Services Layer Routers (SLR) and are deployed in pairs, directly connected to metro
hub routers. The SLR is an appealing place to host an IRTT server because:

• The Docker implementation on the SLR imposes resource limits to mitigate against DoS and
other resource-based attacks.

• The underlying router platform supports access controls that block traffic arriving on the IRTT
address from impacting the other router functions.

3.5. Test Policy Configuration

Different Lag-Pis operate in different environments and some populations need to execute differents tests.
Thus there is a need to implement a flexible policy framework to control how and when tests are executed
on a given Lag-Pi.

Our current policy file subdivides testing into 5 different groups, as shown in Figure 7. Our two main
group categories are testing groups and server groups. Testing groups specify tests for a member device to
run and the server groups provide addresses of available servers.

For testing groups, each group has a list of devices with defined mac addresses. The devices with those
mac addresses will run specific tests and write those results to a file in accordance with the permissions of
the group. The irtt-testing group sets the mac address as “default”, assigning all devices to the irtt-
testing group automatically; this will require any connected devices to perform irtt tests. In contrast,

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

the iperf3-testing group requires that devices with mac addresses defined in the group, such as
“ef:5f:01:3b:18:23”, execute iperf31 tests in addition to irtt tests.

For server groups, each group contains a list of IP addresses running case-specific servers. These groups
allow devices within the testing groups to obtain a list of Ips to run their tests against. For example, the
irtt-IPv4-server-Ips group contains IP addresses running an IPv4 irtt server. As a result, when a
device using IPv4 in the irtt testing group is looking for a server to run a test against, it would get the
necessary IP from the irtt-IPv4-server-Ips group. Likewise, the iperf3-server-Ips group
contains a list of Ips running an iperf3 server and the irtt-IPv6-server-Ips group contains Ips
running an IPv6 irtt server.

Figure 7 – Policy file containing different testing and server groups.

1 Iperf3 testing is not part of the core LagSpy functionality, but we are leveraging the LagSpy command and control
framework to automate some iperf3 testing we are doing for product acceptance.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

3.5.1. Server Autodiscovery

To avoid the need to manually assign each Lag-Pi to the closest server, we are implementing a simple
autodiscovery algorithm to find the nearest server. Once per boot, the Lag-Pi will perform a traceroute to
each server in the pool and will select the closest (by hops) for IRTT tests.

3.6. Data Visualization

To gather and present the metrics received from MQTT we have a three-part architecture. First, the
metrics sent over the MQTT irtt/results topic activate a Python listener that decodes them,
normalizes the data, then sends each measurement to an InfluxDB instance. Second, InfluxDB collects the
data and applies any active retention policies, then makes the data available for consumers.

Lastly, we assembled a Grafana Dashboard to display a subset of the measurements returned by IRTT.
Thanks to both Grafana and the InfluxDB query language (Flux), we’re able to not only display the
metrics as returned but also partition and display them however we wish. This includes building
composite metrics, windowing, and aggregation across the whole metric population to make trends
clearer or weed out noise that may be present in the data set.

Our current visualization tools plot results for individual Lag-Pi test points. As we increase scale and
deploy more test points, we will need to develop tools to analyze the data in aggregate.

Figure 8 – Grafana Dashboard illustrating: Packet Loss, Max Round Trip Time, Max Jitter,

Mean RTT, and Mean Jitter

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

Figure 9 – Mean round trip time over several days of data. Note the cyclic increases for

some devices (e.g. the yellow line near the bottom.)

Figure 10 – Mean jitter over several days of data. Again cyclic behavior is evident for a

few Lag-Pis.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

Figure 11 – Round trip time standard deviation across several days of data.

Figure 12 – UDP packet lost during test. Over this test interval, at most 3 packets were

lost (out of 1500 sent during the test.)

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 20

Figure 13 – InfluxDB Fields and Query Generator

3.7. Resource Usage

Application CPU and memory usage is minimal on the Lag-Pi. When idle, the CPU is 99.7% idle and
there are 1.372 GB RAM free (on a 2 GB device). During an active IRTT test, 4.3% CPU is consumed by
the IRTT process.

Table 3 – Application Resource Usage
Component % Memory Virtual Memory

Docker overhead
(containerd, dockerd)

6.2% 3.4 MB

Python Test Client 0.6% 52 KB
IRTT Client 0.1% 879 KB

LagSpy is a lightweight application, especially on a platform that already has Docker running. This
supports the long term goal of contributing LagSpy to a Linux-based gateway stack such as RDK-B or
DD-WRT.

Note that Wireguard resource usage is primarily in kernel space and can’t be easily measured.

4. Conclusion
This has been a project of discovery for our team, and we have learned the following lessons thus far:

• Approximately 50% of our Lag-Pi are deployed in an IPv4-only environment. Since Cox has
enabled IPv6 for years, this was surprising to us. Many home routers still disable IPv6 by default.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 21

• The Wireguard VPN implements an effective NAT keepalive using the
PersistentKeepalive keyword. However this keepalive is disabled by default.

• There is a lot of variation in home network configuration, especially among our enthusiastic
engineering volunteers. The sooner this functionality can be integrated into the home gateway,
the better.

• The ability to remotely upgrade the Lag-Pi software has been critical even at this very early
phase.

• Never underestimate the number of hurdles to jump through (e.g. security reviews) when setting
up a server with a public IP address, no matter how trivial the service.

• There are still routers out there with outbound firewall policies.
• There is a software compatibility issue with NOOBS 3.5 and the Raspberry Pi 4B impacting

about 10% of devices. Avoid this issue by installing Raspberry Pi OS directly onto the SD card.

Abbreviations

CCAP Converged Cable Access Platform
CM Cable modem
CMTS Cable modem termination system
CSV Comma Separate Value
DD-WRT DresDeren-Wireless Router
DOCSIS Data-Over-Cable System Interface Specification
DoS Denial of service
DUT Device under test
GB Gigabyte
GPS Global Positioning System
HMAC Hash-based Message Authentication Code
IRTT Isochronous Round-Trip Tester
IP Internet Protocol
IPv6 Internet Protocol Version 6
IRTT Isochronous Round-Trip Tester (open source application)
KB Kilobyte
LAN Local area network
LLD Low Latency DOCSIS
Mbps Megabit per second
MB Megabyte
MQTT Message Queuing Telemetry Transport
NOOBS New out of the box software
NTP Network Time Protocol
OS Operating System
RAM Random Access Memory
RDK Reference Design Kit
RTT Round Trip Time
SD card Secure Digital card
SLR Services Layer Router
SoC System on a chip

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 22

UDP User datagram protocol
USB Universal serial bus
VM Virtual Machine
VPN Virtual Private Network
WAN Wide area network

Bibliography & References
IRTT (Isochronous Round-Trip Tester) README.md, GitHub, https://github.com/heistp/irtt

Expanded Testing of Video Conferencing Bandwidth Usage Over 50/5 Mbps Broadband Service,
CableLabs Inform[ed] blog, February 19, 2021, https://www.cablelabs.com/expanded-testing-of-video-
conferencing-bandwidth-usage-over-50-5-mbps-broadband-service

	1. Introduction
	2. Lag Overview and Project Motivation
	2.1. LagSpy Goals
	2.2. LagSpy Overview
	2.3. Why IRTT?
	2.3.1. UDP versus ICMP for Latency Testing

	2.4. Why Raspberry Pi?
	2.5. Employee Pilot

	3. LagSpy Technical Deep Dive
	3.1. Software Architecture
	3.1.1. Connectivity Driven by Client

	3.2. Command and Control
	3.2.1. Wireguard Certificate Enrollment
	3.2.2. Network Failsafe Keepalive
	3.2.3. Debugging with Mosquitto

	3.3. IRTT Deep Dive
	3.3.1. Limitations
	3.3.2. IRTT Traffic Profiles
	3.3.2.1. Characterizing Application Streams

	3.4. Security Considerations
	3.4.1. Lag-Pi (IRTT Client)
	3.4.2. Poller
	3.4.3. IRTT
	3.4.4. SLR

	3.5. Test Policy Configuration
	3.5.1. Server Autodiscovery

	3.6. Data Visualization
	3.7. Resource Usage

	4. Conclusion
	Abbreviations
	Bibliography & References

