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As the benefits of a distributed access architecture (DAA) continue to be seen from real world 
applications, Comcast is continuing to convert its analog cable modem termination systems (CMTSs) to 
virtualized CMTSs (vCMTS). The new technology of DAA not only allows for increased performance of 
the network with the switch to all-digital components, but also increased visibility with more 
sophisticated real-time telemetry. The DAA framework emits high fidelity telemetry data from many 
components, from the primary headend to the customer premises equipment (CPE). The scale of our 
DAA footprint is growing rapidly, and it is no longer feasible for humans to monitor all of the raw 
telemetry data and identify patterns of interest and issues. This paper introduces a computational 
framework and analysis methodology for automated monitoring and alerting for events of interest. 

With analog CMTSs, telemetry data is acquired via polling MIBs from the CMTS OS, typically hourly 
and even down to five-minute intervals in some cases. Our vCMTS implementation has a dedicated 
telemetry core that constantly emits and writes all telemetry data at 15 second intervals to a time series 
database, so the real-time data can easily be acquired and analyzed by the DAA team.  Each vCMTS 
captures thousands of telemetry streams, comprising over 1 billion samples per day from a single physical 
server, which houses many vCMTS cores. With this volume of data, we needed a telemetry analysis tool 
that could make sense of the data in its current form and continue scale up with DAA in the coming years. 
Comcast is currently developing a tool for this purpose, internally named “Sherlock.”  

The name isn’t entirely coincidental. As the title of this paper implies, the very act of distributing an 
access architecture tends to uncover many infrastructural mysteries that could benefit from a sleuth. Some 
relate to the huge amount of data that flows in every 15 seconds from the thousands of broadband-
foundational components within our physical infrastructure. The upstream signal path in particular is a 
trove of noise-related anomalies, as one example referenced within this paper illustrates. It represents an 
excellent network segment to expose to machine learning (ML) – which thrives on large amounts of data.  

While the DAA telemetry covers most of the active components in the network, there are external tools 
and data that can significantly enhance the capabilities of Sherlock. As such, Sherlock interfaces with 
other systems such as: customer contact, automated support tickets, existing performance metric tools, 
etc. The core component of Sherlock is its ability to interface with a wide variety of data sources and 
create a single, time-aligned view of the entire system for analysis. 

Once the single, time-aligned view of DAA is created, event identification and alerting can be 
implemented. Initially, logic-based event tagging is implemented based on common thresholds for events 
like partial service, plant-based noise as well as system statuses such as DAA cores offline, remote PHY 
device (RPD) reboots, and CPE connectivity. Once these events are determined, analytics can be 
performed to evaluate the frequency and severity of events. Using the event statistics, rankings are created 
to support the DAA team in prioritizing issues to address as well as keep track of persistent issues. The 
analysis and rankings are performed at different levels of aggregation: RPD, physical server, site and even 
division and national.  

Future research utilizing the core functionality of the tool includes advanced ML techniques to find 
patterns/events outside of the standard events identified from traditional logic-based checks. This paper 
introduces several active research areas in ML in the DAA space. An overview of the architecture is 
introduced, and an example is discussed.  
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The development of this tool has had a large impact on the successful deployment of DAA in Comcast’s 
footprint. A sample of example findings from Sherlock is discussed as well.  

1. Overview of DAA Telemetry 
Remote PHY (R-PHY) has taken hold as the technology of choice for deployment of DAA solutions. The 
concept of a distributed architecture decreases the amount of equipment that traditionally sits in a cable 
headend and then connects via hybrid fiber/coax (HFC) to neighborhoods and eventually to customer 
homes. DAA moves the PHY, or physical RF layer, closer to the user by deploying RPD-equipped R-
PHY nodes that sit on the access edge of the network. DAA allows for higher speeds to the end-user 
because it uses digital fiber optics in place of legacy analog optics. Digital fiber links improve signal 
quality and support higher modulation orders. DAA also offers operational savings related to the cost of 
headend equipment, power and more, as small hub sites or curbside equipment act as the PHY layer of the 
network. 

vCMTS technology enables us to shift to a DAA by disaggregating the CMTS. It also allows us to move 
to IP-based connectivity and converge voice and data services with video and other legacy services, with 
an added benefit of no longer needing to manage and maintain traditional, bulky CMTS gear. 

The transition from legacy hardware to a distributed server-based architecture that can run external 
software applications allows Comcast extreme visibility into the DAA platform. The scalability and 
openness of DAA means the platform can now support applications such as real time telemetry streaming 
that would have been too demanding to run on legacy CMTSs. The DAA system is rich in telemetry, 
where individual components within the network transmit data as frequently as every 15 seconds to 
indicate the health of system/network. Mining DAA telemetry data to identify and detect issues in the 
network that could potentially lead to bad customer service is not only challenging but also involves 
combing through a lot of existing tools and data sets to build a smart access network.  

1.1. Problem Statement 

As we scale our DAA deployment to thousands of digital nodes and hundreds of vCMTSs and sites in the 
next few years, we anticipate operational challenges. Among them, monitoring and going through all 
telemetry data points to determine system health, and correlating the impact of one component in the 
architecture to the other key components, while identifying impairments proactively, before customers are 
affected. 

Sherlock is a tool designed to address those challenges by looking at all the relevant metrics, creating a 
time-aligned view at the most granular level, scoring the health of the system, and identifying root cause 
of issues. It also proactively identifies anomalous patterns that lead to poor system performance. The goal 
of Sherlock is to analyze and identify patterns of impairments and rank them based on several criteria, 
that are outlined in Section 4. 

1.2. DAA Topology and Telemetry 

As mentioned previously, the DAA architecture offers rich telemetry, from the headend all the way to the 
CPE. A simplified representation of the telemetry coverage across the DAA topology is show in Figure 1. 
A variety of telemetry metrics are reported across the topology, ranging from system statuses to traffic 
and even HW/SW versions of the RPDs.  

In our topology, the primary headend houses the core servers and provides statuses of the principal and 
auxiliary cores for global system health. The primary headend comprises multiple PPODs, or physical 
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point of deployments. A PPOD is a cluster of servers running the necessary services to operate the 
connected RPDs. The PPOD the connects to a set of DAAS (distributed access architecture switches) that 
transfer data to and from the RPDs.  The primary core or GCPP, for Generic Control Protocol Principal, 
provides containerized services for automating deployments, managing applications, the initial 
authentication of the RPDs, and configuring RPD features and video services. The principal core does not 
provide any services (video or data).  

The GCPP core performs the following three primary functions:  

• Initial authentication of the RPD.  

• Initial configuration of the RPD, including the list of cores to which it connects and the 
resources that those other cores will configure.  

• Configuration of the multicast sources that the RPD uses to populate QAM video (broadcast and 
narrowcast) channels. The GCPP allows integrating videos on a standardized, single video 
platform.  

 
Figure 1 - DAA Topology Metrics Overview 

The auxiliary core or GCP (generic control plane) is the second of the two main control planes within 
DAA architecture: The GCP, which sets up a control plane tunnel over a generic transport protocol such 
as TCP or UDP. GCP is used to program the R-PHY system upstream and downstream parameters from 
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the CMTS. It is also used to control the R-PHY system, thus if the AUX core is offline, no data can flow 
to/from the RPDs.  

The secondary headend houses a variety of switches that prepare and breakout the signals prior to 
sending/receiving data from the RPDs. The main switch type of interest is the DAAS (distributed access 
architecture switch), which aggregates 10 Gbps connections to remote nodes. The DAAS switches report 
connection statuses which show the heath of the connection from the fiber port on the switch to the RPD. 

In the plant region of the DAA topology, RPD metrics include RPD meta information, interface traffic 
and even CPE-level information. Having telemetry in different regions of the network topology allows for 
easier identification of where in the topology an issue may have originated. Table 1 includes more detail 
of the main metrics that are collected from the DAA network. These metrics were chosen through 
discussions with DAA experts as well as iterative exploratory data analyses during the initial development 
phases. These metrics, while not exhaustive, cover the key aspects of system/network health as well as 
customer experience. The list of metrics is continuing to grow as Sherlock is used in the development and 
deployment of DAA. 

Table 1 - List of Metrics 

Metric Type Metric Description 

Platform Status 

GCPP Status 
GCPP Status captures the state of the Global Control 
Primary Plane and indicates if it is operational, offline 
or initializing 

Aux/GCP Core Status The Aux Core Provides HSD services and the status 
indicates if it is online, offline or being configured 

Network Status Keep Alives 
Keep Alives track the status of the TCP network 
connection between the principal cores and the switch 
interfaces 

Hardware 
RPD Reboots Details about RPD reboots such as a reason for 

reboot, type and recovery time 

DAAS Port Status DAAS port status captures the status of the DAAS 
switches located in the secondary headend 

Traffic Device, RPD, Routers-
US and DS Traffic 

Upstream and Downstream traffic is collected from 
various components from PPOD to CPE 

Device Status 
CPE Registration 

Registration status captures the CPE devices attempts 
to pair with the vCMTS that must happened every 30s 
as dictated by the DOCSIS specifications 

US/DS Bonding Status Bonding Status for each US/DS interface per CPE 
device is captured 

FEC Corrected and 
Uncorrected Codewords 

CCW and UCCW are collected at device and interface 
levels. These can be an indicator of impairments 
within the plant/faulty modems that need to be 
proactively identified and addressed 

Customer Contact Truck Rolls, IVR Calls 
Truck Rolls and IVR Calls capture customer contacts 
and are key metrics used within Comcast to measure 
operational efficiency 

Originally, we were focused on finding metrics that correlated with trouble calls/truck rolls, since 
customer-facing technician appointments were thought to be a good indicator of system health issues. 
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However, it was found that trouble calls were highly sporadic, because of inherent human aspects, e.g., 
different tolerances to service interruptions and when calls happen relative to an issue. After exploring the 
customer-facing aspects, it was determined that Sherlock should focus on the engineering side of the 
DAA data and let the data drive the insights. Customer contact and technician visits are still evaluated, 
since those are valid indicators of issues, albeit not as straightforward to identify as data that comes 
directly from the system data itself.  

1.3. Need for Data Aggregation 

DAA telemetry has several dimensions, such as frequency of data, type of data (event-based and 
telemetry-based), the level at which telemetry is captured (device, RPD, PPOD, etc.), and traffic direction 
(downstream and upstream). This makes it challenging for a tool to thoroughly mine, to provide views at 
different levels in the network that help identify the health of the system, or identify areas of problem 
spots in the network. 

In addition to the multi-dimensionality, data is transmitted and stored at different locations, which creates 
the need for a central data repository. As well, standardization of the data elements across different time 
intervals is needed, so as to have the data accessible for analysis and modeling while minimizing data 
transfer and storage costs. 

To solve the problems stated in Section 2.1 as efficiently as possible, identification of the common 
components across DAA and outside data logs would enable the aggregation of information in either 
signal direction and still get the desired visibility of network health and customer experience. Considering 
the current DAA architecture, aggregating telemetry data points at the RPD level would enable us to 
focus on a specific RPD and its associated cable modems, or aggregate it to PPOD/site/vendor level. 
Aggregating at a device level, by contrast, would create millions of rows of data per metric, which would 
be computationally intensive and would not provide a view that would help operations or the DAA 
engineering team in understanding network/platform health. Aggregating data at a PPOD level would 
mask the issues encountered at an RPD level, given the mix of device types, software versions running on 
the RPD or vendor type.    

2. Implementing Sherlock: a Big Data Analysis Architecture for DAA 
As discussed, our DAA data is generated from many different components and are stored in a variety of 
different specialty database systems. The individual systems are customized specifically for the 
applications. While having compartmentalized data storage solutions for each type of data is simpler from 
a development and maintenance standpoint, it can make analysis tasks that require several data sources 
quite cumbersome.  

To allow for efficient analysis of all relevant DAA data with minimal manual operations to join, clean and 
analyze the data, Sherlock was built using a big data analysis architecture. Sherlock has the ability to 
interface with a variety of existing cloud and on-premise data storage solutions (APIs, SQL databases, 
Prometheus, AWS), and combine all the relevant data for efficient analysis.  

Building a centralized framework to combine all the different data sources, however, is only half the 
battle. This task is even more challenging considering the growing scale of the DAA data streams. 
Consider: A typical RPD has thousands of metrics that are stored at 15 second intervals, and each PPOD 
can link hundreds of RPDs, so, in total, a single PPOD will generate billions of data points a day. Given 
that we are continuously deploying new vCMTSs, Sherlock needs to be able to scale with the growing 
DAA footprint and require minimal maintenance. It is easy to see why this operation must be automated, 
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since it is not feasible to expect a team to manually process data at this scale and frequency. This section 
discusses the requirements, implementation, and core features of Sherlock.  

2.1. Requirements 

Sherlock is meant to be used by the DAA deployment and operations teams to actively monitor and 
address any DAA deployment and operational issues. Thus, the tool must meet the following 
requirements:  

• Full footprint coverage  
• Scheduled analysis reports 
• Ad hoc analysis abilities 
• Fast computation 

Those requirements ultimately allow for ML to discover hidden trends and patterns in the data. An 
overview of the requirements is presented below. 

Since the vCMTS deployments are occurring nationwide, Sherlock must be able to analyze data at 
different levels of aggregation, from a single RPD to a headend and all the way up to the national level. 
The varying levels of analysis allow experts to not only understand issues with a single RPD but 
understand if that same issue exists elsewhere and to what extent. 

Sherlock should be able to perform automated analyses and generate reports on a schedule so the 
deployment team can consistently monitor performance. The scheduled runs can be weekly or even daily 
if needed. The automated runs should produce a concise and consistent output to enable efficient tracking 
of performance metrics. 

Even though scheduled analysis runs are great for consistent summaries of deployment statuses over a 
known time window, there will inevitably be ad hoc analysis tasks that require a specialized analysis and 
output. Therefore, Sherlock should also have a manual interface to easily interact with the core data 
structures and perform a specialized analysis if needed.  

Finally, Sherlock must be computationally efficient when performing operations. There is no specific 
metric for this requirement, but the general motivation is that the computational framework should 
support the frequency of the scheduled runs in the above requirement. In addition, ad hoc analyses should 
be able to be completed in a reasonable time frame. That is, if it takes 10 hours to compile the data and 
prepare an analysis, the tool would not be useful. To allow for efficient interactions and analyses, 
computational operations should take only a few minutes in general, such that the analyst can stay 
engaged while working with the data.  

2.2. Implementation 

Given the requirements listed in Section 3.1, significant effort went into developing Sherlock’s 
implementation, such that all requirements would be met, while still allowing future scaling as DAA 
continues to grow. The initial stage of development was to become familiar with the data sources, and in 
this stage, it became very apparent that an advanced solution would be required.  

The first implementation attempt was to load the DAA telemetry data with basic Python packages directly 
via API requests to the DAA time series database. While this was quickest way to start accessing the data 
and start developing a plan for how the data should be compiled, cleaned, represented, and analyzed, it 
was not performant enough to meet the design requirements. Using this approach along with standard 
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Python parallel processing packages, it was taking hours to load a week’s worth of data from just a 
handful of RPDs (representing a very small fraction of Comcast’s RPD footprint). It became evident that 
a more computationally-efficient and robust solution would be required. At this stage, the first 
implementation was deliberately done at very small scale for exploratory analysis (for determining useful 
telemetry metrics and experimenting with different processing/visualization methodologies). 

Once it was clear what data was important and how it was going to be analyzed, the team designed a 
production system to meet all the requirements.  The diagram of the implementation is shown in Figure 2. 
The chosen implementation solution utilizes Amazon EC2 (Elastic Compute Cloud) computing resources, 
which can scale to the meet the needs of a specific task. The source code is written in Apache Spark, 
which is an open source distributed processing framework specifically for big data. Databricks is used as 
the resource management system that manages Spark sessions and coordinates the EC2 instances to 
complete the computation tasks. The raw data is processed and stored in Delta Lakes1 that are optimized 
for efficient reading and writing of big data on the distributed Spark framework.  

 

 
Figure 2 - Sherlock Implementation Diagram 

Once the computing and storage frameworks were stood up for use, the data engineering team built the 
Sherlock backend. It consists of a pipeline of scheduled jobs that consistently read in the raw DAA data 
from the variety of sources previously discussed, to process them into efficient formats. The resulting data 
structures are saved to Delta Lakes for efficient access from the main Sherlock application. With the 
backend responsible for acquiring the data and pre-processing it, the main Sherlock application can then 
just reference these extremely efficient tables at analysis run time. The main application then uses this 
centralized data structure to perform a variety of analyses, which are discussed in later sections, as well as 
to provide the base data set for ML applications. An in-depth discussion about the main features/modules 
of the Sherlock application can be found in Section 3.3. 

Once the end-to-end architecture was developed, the performance against two of the main requirements 
(full footprint coverage and fast computation) were evaluated. An analysis pipeline, including data 
loading, processing, event detection and plotting, was run for the entire DAA footprint (representing 
thousands of RPDs) for a one-week duration. This pipeline finished in less than one hour – the same 
amount of time it took to merely load 20 RPDs worth with standard Python processes. Similar analyses 
on subsets of the footprint take less than 20 minutes, and in the future the aim would be to build 
specialized pseudo-real-time operations that can be performed much quicker (such as real-time event 
detection with ML). These performance metrics surpass the design requirements discussed earlier. 
Scalability with the DAA framework also doesn’t seem to be a concern at this point, either, due to the 
scalable and distributed computing framework provided by Databricks and Spark. 

 
1 Delta Lake “…is an open-source project that enables building what is called a Lakehouse architecture on top of 
existing storage systems such as S3, ADLS, GCS, and HDFS.” For more information, see https://delta.io/ 
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2.3. Features 

Sherlock has five modules that handle different aspects of the analysis functionality: core, visualization, 
event classification, ranking and ML. The breakdown of module responsibilities is shown in Figure 3.  

  
Figure 3 - Diagram of Sherlock Modules 

The core module handles most of the data integration, such as loading the data from all the supported 
sources and converting to a time aligned view for each RPD. The core data structure in Sherlock is a 
Spark DataFrame with rows for each five-minute timestamp, for every RPD of interest, and columns for 
all the available metrics. Having the lowest level of aggregation at the RPD level was chosen since this 
allows for easy aggregation up in higher levels like sites, divisions, vendors, etc., while still being able to 
meaningfully aggregate CPE-level metrics (for example, upstream transmit and receive power). This core 
data structure is the foundation for the other modules.  

Once the single time aligned view is created, the event classification module identifies events of interest. 
This module has a fully configurable pipeline that runs through a variety of event detection algorithms 
and combines the results into a summary table with the event type, start/end times and any other useful 
metadata about the event. The specifics of the event classification pipeline and logic are discussed in 
detail in Section 4.1. At this stage, any events identified for individual RPDs are available for use by other 
modules to support in-depth analyses. 

The ranking module uses the events identified from the event classification module to rank the 
RPDs/sites, from worst to best, and prioritize any issues on the network. The ranking is performed at the 
RPD level and can thus be aggregated up to other levels as desired. Weights are assigned to each event 
based on several factors, and the final RPD ranking is the weighted sum over the events for each RPD. 
The ranking algorithm is discussed in further detail in Section 4.2. 

The RPD/site-level rankings are then used to filter down the raw data to regions where there are a lot of 
interesting characteristics requiring investigation. The visualization module is then used to create charts 
that highlight the specific areas where the issues occurred. Currently, Sherlock generates plot files on 
request, given that the project is still in development at this writing (summer 2021). However, once the 
concept views are finalized, a dashboarding solution with all the views will be stood up to allow for easier 
access to plots.  The two main plot types are RPD timeline and site timeline. An example RPD timeline 
plot is shown in Figure 6.  

The RPD timeline views combine a wide variety of data. Although these plots are currently stand-alone 
files, they are fully interactive HTML plots. Even though Sherlock is in the development stage and 
production dashboards are not implemented yet, users of the output significantly benefit from the ability 
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to zoom/pan on events of interest. Having this ability allows for more productive interactions with the 
visualizations and serves as a proof of concept (PoC) for production visualization, to gather feedback for 
the production views. Figure 6a contains the AUX and GCPP core statuses. Figure 6b shows the battery 
level for the backup power supplies feeding the RPD. Figure 6c displays the CPE status information 
including counts of devices online/offline, and in different partial service states across the RPD. Figure 6d 
shows US/DS traffic in the form of total octets transferred, as well as US forward error correction (FEC) 
percentages (including unerrored codewords [UECWs], corrected codewords [CCWs] and uncorrected 
codewords [UCCWs]) across all interfaces on the RPD. Figure 6e contains all event-based information, 
including customer calls, automated alerts, technician repair tickets, and RPD SW/HW updates. Figure 6f 
contains the DAAS switch status between the RPD and vCMTS core.  

Sherlock is the first tool in Comcast to make all this data readily available and digestible in a concise 
visualization. It is easy to see how powerful this timeline view is, as it allows clear visibility into events 
across the entire architecture, from vCMTS statuses in the headend all the way to customer experience 
and contact. 

While the RPD view is very useful for deep-diving into specific events affecting areas of the DAA 
network, it doesn’t easily allow for accessing the scale of the event. For example, power outages would 
likely affect multiple RPDs at time, whereas other issues, like noise ingress, are likely to be very 
localized. To help visualize and assess the scale of the events across the footprint for a given time 
window, Sherlock produces event heatmap plots, as shown in Figure 4. This view aggregates the 
individual RPD levels to the site level. The time dimension is hourly and the heatmap shows the count of 
RPDs that experienced a specific event in each hour. This type of view allows for a very quick review and 
determination of how widespread specific issues are across a given aggregation level.  

The final module in Sherlock is the ML module, which can utilize the results of the other modules. The 
ML portion of Sherlock is talked about in detail in Section 6. The main goal of this module is to use all 
the core data generated through Sherlock’s operations as training data for ML algorithms. Given the 
obvious richness in the DAA data set, there is a clear benefit to applying novel ML applications to mine 
the dataset and uncover complex patterns. The immediate use cases are:  

1. Finding similar events via clustering. 
2. Using pattern recognition to discover complex patterns and relationships across the vast 

dimensions of the data set. 
3. Prediction of future issues based on current data.  

These applications, if successful, have the potential to completely transform the DAA space. More 
discussion on the ML aspect of Sherlock is presented in Section 6. 

3. DAA Event Classification and Rankings 
As part of building a reliable and robust access network to deliver fast speeds to customers, we need to 
ensure our plant, network and platform health are constantly monitored to proactively detect and mitigate 
issues and reduce impact to customers. 

There are cable industry standards and specifications which are widely used within Comcast to 
characterize the health of the HFC plant, CMTS and the connection to cable modems. Some of the more 
common metrics that are tracked are signal-to-noise ratio (SNR), modulation error ratio (MER), transmit 
power, receive power, and FEC, to and from CMTS. Each of these metrics has acceptable ranges. When 
telemetry data point goes above or below those ranges, the variance and the duration could indicate 
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different issues within the network. Comcast tooling currently classifies and captures those anomalies and 
alerts are sent out. Sherlock leverages those existing alerts to measure DAA plant health. 

As stated previously, it becomes an operational challenge to mine through all the data using Grafana or 
existing dashboards, to pinpoint where and when things go wrong. Thus, Sherlock implements a scalable 
event detection pipeline to automatically detect events of interest. Sherlock can then leverage the 
detection of events to rank sites, PPODs and RPDs, based on the occurrence of said events, and help 
prioritize teams to address issues. 

3.1. Event Classification 

Sherlock makes use of the centralized core data structure with the telemetry metrics discussed in Section 
2.2 to implement an automated event detection pipeline at several levels of aggregation. The lowest level 
of aggregation is currently the RPD level, while events can also be detected at PPOD level and above.  
The individual event criteria are specified as objects in the pipeline, and then the pipeline executes each 
object on the raw data to detect events.  

Currently, the events are logical/threshold-based, because that is a great starting point to easily identify 
any known types of events.  The types of events include offline status, anomalous trends in each metric, 
RPD reboots, SW/HW upgrades and even customer contact. While a single event only looks at specific 
metrics, the pipeline groups multiple events into a single event to infer when a more complex event is 
happening. This is especially useful in cases of known maintenance, such has RPD SW/HW upgrades, 
since these events will undoubtably cause outages and anomalous traffic patterns. This ability allows us to 
connect any maintenance/upgrade events to corresponding outages so they can be scored differently than 
unplanned outages. 

The event pipeline is typically run on a weekly basis, which allows for analytics and tracking to be 
performed to document the type and frequency of events across the footprint. The event findings are 
summarized and automatically distributed to the DAA team to evaluate.  

A brief description of the currently implemented events for the RPD level are presented in Table 2. As we 
continue to add new telemetry metrics and develop the existing list of events, this area will be constantly 
fine-tuned.  

Once these events are identified in the RPD data, they can be aggregated up to higher levels to determine 
whether events are local, or more widespread. As previously mentioned, Figure 4 displays a visualization 
known as an event heatmap, which shows the number of RPDs in each site exhibiting a given event at a 
given time throughout a week. In this example, most events are a spread across a few RPDs, however, 
there are pockets of “no event found” flags that occur daily at the same time. These specific events were 
determined to be nominal nightly CPE reboots where the DAA system is healthy, but most CPE devices 
are offline performing scheduled updates. These types of dense views provide an extremely useful view 
of the network at a glance and easily display any major issues on the network that would require further 
investigation.  
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Table 2 - Description of event classifications 

Event Name Event Description 

auxOfflineEvent Aux core is offline 
DAASOfflineEvent DAAS port is offline 
datagapEvent Telemetry drop outs 
gcppOfflineEvent GCPP core is offline 
keepAlivesEvent RPD keep alive counter is non zero 
noEventFound No other event is flagged 
rpdBatteryDrainEvent RPD is on backup battery power 
rpdHealthyEvent RPD is online with expected CPE connectivity 
rpdIopEvent Automated ticket assigned to RPD 
rpdIvrEvent Customer support call 
rpdMacUpdateEvent RPD hardware was changed 
rpdRebootEvent RPD rebooted 
rpdSWUpdateEvent RPD software was changed 
rpdTcEvent Technician dispatched 
usFecEvent US FEC UCCW exceeded threshold 
usOctetsEvent US RPD traffic out of family 

usPartialServiceEvent 
Number of CPEs in US partial service above 
threshold 

usPerfEvent OpTek US System Alert 

 

 
Figure 4 - Event Heatmap for a Single Site Over a Week 
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3.2. Ranking Methodology 

Based on the events mentioned in the previous section, Sherlock ranks sites, PPODs or RPDs with events 
that are impacting customers for any given duration the most, and assigns them the highest rank. Ranking 
is aimed to identify sites, PPODs or RPDs with widespread events or events that occur frequently, 
causing service disruption to customers.  

Individual events are assigned weights based on severity, duration, and customer impact. The final 
ranking is thus the weighted sum of the event coefficients to determine the most impaired 
sites/PPODs/RPDs.  There are some nuances that go into ranking, where events that occur during a 
nightly maintenance window are ranked lower than events during non-maintenance windows for the same 
duration and frequency. Additionally, most of the events that occur immediately after RPD HW/SW 
changes are assigned a lower rank or aren’t counted, as the entire system resets to clear current 
configurations and make the assigned changes. While customer contact events are not directly used in the 
weighted sum, because of the reasons discussed in Section 2.2, they can be used to break ties when two 
items have the same score.  

Figure 5 shows the workflow that takes the telemetry data through event classification and ultimately to 
the final rankings. Once the rankings are complete, they are sent to the DAA team for evaluation. Section 
4.3 discusses how the rankings are used.  

 
Figure 5 - Sherlock Workflow for Event Classification and Ranking 

 

3.3. Ranking Usage 

Once Sherlock generates weekly rankings for the entire footprint, or ad hoc rankings based on business 
needs, reports and views are stored within AWS. Reports capture highest ranked sites and RPDs based on 
events listed in Section 4.1, and list all the different events that were captured for that time period. This 
report serves as a starting point for engineering and operations teams to pinpoint any potential issues 
within the vCMTS architecture.  
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Using the ranking report, the heat map views at the site and PPOD are used to quickly see if the issue is 
widespread or isolated, and if there are specific events that occurred more frequently than the other 
events. The next layer analyzes the time series view at the RPD level and compares all the metrics that 
feed into Sherlock to ascertain end-to-end system health. RPD-level views also provide an events 
summary, with event duration and type, with the functionality to zoom into those events. Each event is 
assigned a unique ID, which helps in further analysis. This way we can quickly identify events at various 
levels in the network, and interdependencies between events as well as impact on customers. Ranking and 
views generated by Sherlock also help in flagging changes made to the system, such as hardware or 
software upgrades that caused a specific set of events and customer impairments. 

Sherlock reports provide week-over-week trending, which helps in highlighting chronic vs. transient 
issues. Since homes-passed-per-RPD are relatively small in DAA, compared to analog nodes, some of our 
existing tools can prioritize the number of customers affected by events that would otherwise under-rank 
DAA issues. As such, Sherlock reports are specifically designed to better understand the DAA network 
and highlight problem spots in digital nodes, regardless of the number of homes passed. 

Sherlock has an integration point with our internal messaging service where reports and visualizations are 
posted. Plans are underway to migrated to a web-based UI to provide enhanced analysis functionalities to 
DAA teams.  

4. Practical Use Cases and Example Findings 
In this section we illustrate the power of Sherlock with examples of specific events and views that 
highlight the health of the system.  

4.1. Noise/Ingress 

Table 3 and Figure 6 indicate an upstream noise event which is seen in the form of elevated UCCW. 
During the upstream noise event, plant and hardware elements (Figure 6a, b, c, e and f)  appear to be 
functioning normally, whereas Figure 6d shows a drop in CCW and a corresponding increase in UCCW. 
In a DOCSIS plant, transient noise is a normal upstream event and the impact to customer service is 
minimal. Several tools already exist to sends alert on such events. Table 3 shows a sample of events 
determined by Sherlock during a portion of this noise ingress example. Most notably, Sherlock identifies 
usFecEvents as well as usPerfEvents (OpTek) events, indicating that our existing upstream performance 
monitoring tools are catching these events as well. The exact details of the OpTek events could be 
overlayed to determine more specific information, such as number of interfaces affected, etc.  

Table 3 - Sample Event List for a Single RPD During US Noise Event 

Event Type Event Start Time (UTC) Event End Time (UTC) 

usFecEvent 6/25/21 9:35 6/25/21 9:35 
usPerfEvent 6/25/21 16:35 6/25/21 22:35 
usPerfEvent 6/25/21 22:50 6/26/21 2:15 
usFecEvent 6/25/21 23:50 6/25/21 23:50 
usFecEvent 6/26/21 1:05 6/26/21 2:00 
usPerfEvent 6/26/21 2:35 6/26/21 3:10 
usPerfEvent 6/26/21 4:40 6/27/21 0:35 
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Figure 6 - Time Series View of RPD Noise/Ingress Event: a.) vCMTS/GCPP Statuses, b.) 

RPD Power Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer 
Calls, Automated Alerts, RPD SW/HW Changes and f.) RPD Switch Status 

 

4.2. SW/HW Upgrades 

Table 4 and Figure 7 show a planned software update. This event is marked in Figure 7e with the 
initiation of the event as the RPD reboot/reset. Then corresponding dynamics across the other telemetry 
metrics are shown in Figure 7a, c, d and f. When the RPD software is updated, the AUX core goes offline, 
the CMs go offline (with some partial service along the way), traffic dips below nominal levels and the 
DAAS port also goes offline. Having the context of a software upgrade is key, since under other 
circumstances these types of system responses would be not ideal. However, software upgrades are 
performed during maintenance windows to minimize customer impact.  

A sample of the event list is given in Table 4 showing a subset of the events identified in this time frame. 
It is worth noting that since the RPD reports its SW version at any given time, software upgrades like 
these can be determined directly from the data without relying on a ticketing system or external 
dependencies.  
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Table 4 - Sample Event List for a Single RPD During SW Update 

Event Type Event Start Time (UTC) Event End Time (UTC) 

auxOfflineEvent 6/17/21 14:50 6/17/21 14:50 
usOctetsEvent 6/17/21 14:50 6/17/21 14:50 
rpdRebootEvent 6/17/21 14:50 6/17/21 15:45 
rpdIopEvent 6/17/21 14:50 6/17/21 14:50 
keepAlivesEvent 6/17/21 14:50 6/17/21 14:50 
DAASOfflineEvent 6/17/21 14:50 6/17/21 14:50 
datagapEvent 6/17/21 14:50 6/17/21 14:50 
rpdSWUpdateEvent 6/17/21 14:55 6/17/21 14:55 

 

 
Figure 7 - Time Series View of RPD HW/SW Event: a.) vCMTS/GCPP Statuses, b.) RPD 
Power Supply, c.) CPE Counts, d.) Traffic and US FEC e.) System Events (Customer 

Calls, Automated Alerts, RPD SW/HW Changes and f.) RPD Switch Status 

5. Machine Learning Applications 
As discussed earlier, the data aggregations and processing done by Sherlock represent an ideal setup for 
ML applications. The DAA data spans many dimensions, and ML/data mining techniques should be used 
to extract as much useful information as possible to optimize deployments and, ultimately, customer 
experiences. While the Sherlock ML module is nascent, three immediate use cases are currently being 
explored.  
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Clustering: The first application of ML is clustering. Clustering attempts to find smaller groups of similar 
samples in the raw data. This is especially useful when trying to determine if certain populations of data 
are more impacted than others, as well as understanding if there are subgroups of data inside major 
groups. An example of how this could be applied in the DAA space would be taking an RPD event 
classified via the methods in Section 4.1 and attempting to see if there are sub-populations of RPDs that 
experienced a given event for different reasons to help triage the event. Specifically, if partial service 
events are identified, clustering would be able to determine if some RPDs have CPEs in partial service 
mode because of noise ingress, platform-related issues, configuration issues, scheduled maintenance or 
even CPE-specific issues. This information could then be used to address the root cause of the 
individualized partial service issues. A simplified example of this is shown in Section 6.1. 

Pattern Recognition: The next application of ML is advanced pattern recognition. As discussed earlier and 
as per industry standards, events on the network are typically identified via logic-based threshold 
exceedances, where an event is identified when a certain metric exceeds a predetermined value. While 
this is useful is many cases, it is limited when it comes to multi-dimensional events with complex 
relations, because completing a comprehensive detection algorithm with nested if/then logic becomes 
very cumbersome and hard to maintain. This is where ML shines: If example patterns in the data can be 
labeled by experts, models could be trained to find the important relationships across many different 
metrics to identify more complicated patterns than traditional logic-based approaches. An example use 
case of this in DAA could be identifying RPD backup battery degradation by looking at current and 
voltage drain during power outages. This application is in development.  

Prediction: The third initial application of ML in DAA is the prediction of future issues given real-time 
data. At Comcast, customer experience is paramount and the ability to forecast and address issues before 
customers are aware of them is groundbreaking. Given the expansive coverage and real time nature of 
DAA telemetry, it is possible to use ML methods to find leading indicators of customer impacting events 
that are classified by the methods discussed earlier. An example of this for DAA could be forecasting 
when core server load will be too high, to the point of potentially shutting down.  
This can be proactively addressed to obviate an outage. This application is also in development. 

5.1. Clustering Example 

This section presents a real-world use case for clustering DAA data. The example used here is trying to 
identify clusters of issues that cause partial service events at the RPD level. Using the Sherlock event 
classification module, partial service events were identified across all RPDs, where an event is classified 
as 25% or more of CPEs are in US partial service mode for at least 15 consecutive minutes.  

Since the Sherlock data is very high dimensional and time-based, the first action is to perform a 
dimensionality reduction, to help the model focus on important features of the data. Several methods are 
possible here: traditional feature extraction/engineering, principal component analysis and even auto-
encoding neural networks. This compresses the data into a smaller feature domain for the model to learn 
patterns. The architecture for clustering is shown in Figure 8. 

 
Figure 8 - Clustering Architecture 
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Clustering algorithms require a distance/proximity matrix that contains the distance between every pair of 
points in the sample data. This is often an area that requires a significant amount of tuning, because the 
choice of distance metric used has a huge impact on results. In most cases, Euclidean distance is used. 
However, in cases where the data set contains mixed continuous and categorical data, Euclidean distance 
hardly makes sense and typically custom distance metrics are derived for the specific problem at hand. 
Developing custom distance metrics can be extremely time consuming. For this reason, Sherlock is using 
a relatively novel distance calculation that relies on a type of ML method called “random forests,” which 
can handle continuous and categorical data simultaneously with minimal pre-processing. The random 
forest is run on the data with training mode off, which essentially splits the data based on inherent 
similarity (typically entropy or Gini index.) The result can be turned into a proximity matrix as the 
number of times pairs of samples ended up in the same leaf node across all the trees in the forest.  

The proximity matrix is then passed to a clustering algorithm to attempt to find clusters. Since the 
underlying structure of the data is not known a priori, representation-based clustering algorithms such as 
K Means are likely not a good fit. Instead, density-based methods such as density-based spatial clustering 
of applications with noise (DBSCAN) are utilized, since they make no assumptions about the 
shape/structure of the clusters. DBSCAN is also a good choice, since it does not require the desired 
number of clusters to be specified and instead attempts to identify the ideal number of clusters as well as 
any outliers. Once the clusters are identified, interpretability techniques should be employed to identify 
what clusters represent in the real world.  

Once the cluster labels for each sample are determined, the data can then be passed to an interpretable ML 
classification algorithm. Essentially, the raw data and the corresponding cluster labels are used to train a 
classification model. In this case, the model is a single decision tree, to determine the path a sample takes 
to its classification target. Once the model is trained, it can be investigated to understand if the cluster 
labels have any real-world meaning. 

In the example of US partial service clustering, the event pipeline discussed in Section 4.1 was run on the 
full footprint of DAA for three weeks, during which 897 partial service events were identified. The 
features for the clustering algorithm are a wide data table with Boolean flags for other events that 
occurred in proximity to the USPartialServiceEvents. In this example, the only other events considered 
were usFecEvents and rpdRebootEvents (to simplify the analysis); all events would be considered in a 
full analysis. The clustering algorithm was able to identify four clusters. Those four clusters were then 
passed as labels in addition to data as training samples to a decision tree. The resulting decision tree is 
shown in Figure 9. 

 
Figure 9 - Interpreting Cluster Results via a Decision Tree 
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From Figure 9, one can see the learned set of rules the tree uses to assign the cluster labels to a given US 
partial service sample. A tabular summary of the tree paths for each class is given in Table 5. From here it 
is easy to see that the decision tree can learn the cluster meanings relatively well. It is worth mentioning 
that the cluster label -1 is provided from the DBSCAN algorithm as outlier points that don’t fit in to 
particular clusters, thus the decision tree has no path to correctly label those samples.  

Table 5 - Decision Tree Paths for Clusters 
Cluster 
Label 

Number of 
Samples Decision Tree Path Decision Tree Label 

Accuracy 
0 409  (usFecEvent <= 0.5) and (rpdRebootEvent <= 0.5) 95% 
1 344 (usFecEvent > 0.5) 99% 
2 119  (usFecEvent <= 0.5) and (rpdRebootEvent > 0.5) 100% 
-1 25 N/A N/A 

The results from the above clustering example can be used to identify why RPDs experience widespread 
partial service events and lead to further mitigation-related enhancements to try in the future. In this case, 
partial service seems to be driven by usFecEvents and rpdRebootEvents. Further work could be done to 
understand the samples that had no usFecEvent and no rpdRebootEvent. While the results from this 
analysis are not too surprising, the architecture is a springboard for correlating different types of events 
and trying to identify where to dig deeper in understanding non-trivial issues. It is easy to see how this 
type of analysis could be expanding to more complex issues like understanding sporadic 
auxOfflineEvents, provided the correct data was fed to the ML architecture.  

6. Conclusion 
When Comcast began deploying DAA, the need for an automated big data analysis framework was 
immediately apparent. The DAA framework enables extremely rich telemetry with high frequency 
sampling rates, making two things true: 1) manual data analysis was infeasible, and 2) exposing the large 
amounts of data that is perfect for ML-based analysis. Our solution, internally called Sherlock, combines 
high fidelity data from a variety of sources across our physical infrastructure into a single centralized data 
structure that can be easily accessed for an assortment of analyses. Creating a centralized data structure 
with relevant DAA data proved to be instrumental in providing actionable insights from Sherlock 
analyses.  

Sherlock was implemented using state-of-the-art technology that will allow for future scaling as we 
continue to grow our DAA footprint. Sherlock’s core data structure allows for a multitude of analysis 
implications including event detection, event ranking, visualization, as well as ML advancements. These 
features allow us to identify and prioritize system issues at a glance, whereas such analyses were 
previously much more involved and required many manual operations. These analyses are currently being 
used by our internal teams to monitor DAA deployments and overall system stability. 

While Sherlock is a relatively new tool, it is already starting to expand with applications to enhance the 
power of the insights provided to the DAA teams. As part of this work, we are exploring ML applications 
to find important trends in the complex DAA data. The immediate ML applications include clustering, 
pattern recognition and future event prediction. We are also working to integrate Sherlock into our 
expanding network topology graph, which will also open up new possibilities for advanced insights on 
the DAA network. The goal was and is to build a platform that can identify issues and recommend 
preventive maintenance before customers are impacted. Sherlock has proven to be extremely powerful in 
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its present state and is expected to become even more useful as the next generations of features are 
developed.  

Abbreviations 
API application programming interface 
AUX auxiliary  
AWS Amazon Web Services 
CCW corrected codewords 
CM cable modem 
CMTS cable modem termination system 
CPE customer premise equipment 
DAA distributed access architecture 
DAAS distributed access architecture switch 
DBSCAN density-based spatial clustering of applications with noise 
DOCSIS Data-Over-Cable Service Specifications 
DS downstream 
EC2 [Amazon] Elastic Compute Cloud 
FEC forward error correction 
GCP generic control plane 
GCPP Generic Control Protocol Principal 
HAGG headend aggregation switch 
HFC hybrid fiber/coax 
HTML hypertext markup language 
HW hardware  
ID 1) identification; 2) identifier 
IP Internet Protocol 
MER modulation error ratio 
MIB management information base 
ML machine learning 
OS operating system 
PHY physical layer 
PoC proof of concept 
PPOD physical point of deployment 
QAM quadrature amplitude modulation 
RPD remote PHY device 
R-PHY remote PHY 
SCTE Society of Cable Telecommunications Engineers 
SNR signal-to-noise ratio 
SQL structured query language 
SW software 
TCP Transmission Control Protocol 
UCCW uncorrected codewords 
UDP User Datagram Protocol 
UECW unerrored codewords 
UI user interface 
US upstream 
vCMTS virtualized cable modem termination system 
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