

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Reducing the cost of network traffic monitoring with
AI

Petar Djukic

Director AI & Analytics
Ciena Canada

Ottawa ON, Canada
pdjukic@ciena.com

Maryam Amiri

Lead AI Engineer
Ciena Canada

Ottawa ON, Canada
maamiri@ciena.com

Wade Cherrington
Software Engineer

Ciena Canada
Ottawa ON, Canada
wcherrin@ciena.com

mailto:pdjukic@ciena.com
mailto:maamiri@ciena.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
1.1. Overview of IP Network Monitoring .. 3

2. Data Collection for IP Network Monitoring ... 5
2.1. Router information .. 5

2.1.1. Route information .. 5
2.1.2. Link Information ... 6
2.1.3. Flow information .. 6

2.2. Overview of the paper .. 7
3. Foundations of AI technologies .. 8

3.1. How DNNs make prediction ... 8
3.2. How DNNs learn... 9
3.3. DNN Models ... 10

4. Reducing network monitoring data with AI ... 11
4.1. Reducing the amount of collected information ... 11
4.2. Reducing the amount of telemetry ... 14
4.3. Reducing the amount of stored information ... 17

5. Summary .. 20

Abbreviations .. 21

Bibliography .. 22

List of Figures
Title Page Number
FIGURE 1 - IP NETWORK .. 3
FIGURE 2 IPFIX MEASUREMENT ARCHITECTURE .. 6
FIGURE 3 AN EXAMPLE 2-LAYER DNN .. 9
FIGURE 4 RELATIONSHIP BETWEEN LINKS AND END-TO-END FLOWS .. 11
FIGURE 5 ITERATIVE ESTIMATION OF THE TRAFFIC MATRIX ... 13
FIGURE 6 SPATIALLY AND TIME CORRELATED MULTI-VARIATE TIME-SERIES ... 15
FIGURE 7 PRUNING AND RECONSTRUCTION ARCHITECTURE ... 16
FIGURE 8 RECONSTRUCTION ARCHITECTURE .. 16
FIGURE 9 NETWORK DATA COLLECTION INFRASTRUCTURE ... 18
FIGURE 10 DECOMPRESSION ... 19
FIGURE 11 TIME-SERIES STORAGE ... 19

List of Tables
Title Page Number
TABLE 1 EXAMPLE TRAINING DATASET FOR 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝒙𝒙 ... 10
TABLE 2 SUMMARY OF OD FLOW ESTIMATION FROM LINK DATA PERFORMANCE RESULTS 14
TABLE 3 SUMMARY OF PRUNING/RECONSTRUCTION PERFORMANCE RESULTS ... 17
TABLE 4 SUMMARY OF COMPRESSION PERFORMANCE RESULTS ... 20

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

1. Introduction
This paper describes three visionary approaches to reduce the amount of network telemetry. The
problem we discuss is that internet protocol (IP) network monitoring requires collection and
storage of a large volume of data. This is a big issue for service providers (SPs), but the solution
is usually not thought of outside of conventional approaches. With the advent of artificial
intelligence (AI) approaches, especially in estimation, interpolation and imputation, new solution
avenues are becoming available.

IP network monitoring often implies the use of NetFlow or Internet Protocol Flow Information
Export (IPFIX). However, as we show shortly the two alone are not enough to cover all use
cases. NetFlow and IPFIX can be used to turn the network into a large collection of sensors
collecting information about IP traffic, which can be used to monitor network usage, identify
misconfigured network elements, identify compromised network end points and detect network
attacks (Santos, 2016). However, high fidelity network monitoring with technologies such as
IPFIX comes with many challenges due to the amount of data that is collected by network
elements, then transmitted to where it can be stored and finally processed to get the insights that
the operator is looking for. IPFIX also only gives a partial view of the network state and
additional technologies are needed to build a complete view of the network.

1.1. Overview of IP Network Monitoring

Figure 1 - IP Network

Figure 1 shows a simplified monitored IP network architecture. An IP flow is shown in red and
refers to a distinct set of packets occurring in the same period that share a 5-tuple IP header
(destination IP address, destination port, source IP address, source port and type-of-service).
Aggregate flows, which combine traffic between points in the network may be used in core
networks where there are too many flows to track individually. Flows traverse many network

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

elements, but as the focus of this paper is the IP domain, routers and links are the important part
of the figure. Routers and links are both physical elements, however they can have appropriate
“digital twins” in network monitoring/inventory software, which is used to create a logical
network topology.

There two types of network monitoring: active and passive (Network monitoring, n.d.). In this
paper, we are considering passive approaches, which are based on measuring network
information without disturbing existing network traffic. Passive IP monitoring can be done at an
IP flow level, link level, network level or router level. Active approaches include injecting
network packets to probe the network. Some of the approaches for network probing are MTR
(Wikipedia, n.d.), based on Internet Control Message Protocol (ICMP) (Wikipedia, n.d.), Iperf
(Wikipedia, n.d.), based on a proprietary packet generation and application level protocols, or
others, based on RFC 2544 (Wikipedia, n.d.). Active network monitoring can benefit from the
applications of AI shown here, but due to space and time limitations these are not discussed.

The goal of IP network monitoring is to get an accurate enough picture of the network state, so
that network operators can implement their operational use cases (Quittek, Zseby, Claise, &
Zander, 2004). IP network monitoring addresses many use cases:

• Usage-based accounting is a business model for selling IP services. A user or a user
group is charged based on how much traffic was transmitted. For example, this traffic
usage model is used by Amazon Web Services (AWS) to charge for transmitting data out
of the cloud. To enable it, very accurate packet counts for the user are required at an
ingress/egress point.

• Traffic profiling uses information collected about an IP flow to describe it succinctly so
that its statistical profile can be used inside of a traffic model. The model of the IP flow
can be used in network planning or network dimensioning. For example, the profile may
have the average or peak traffic volume and does not require very precise measurements.
Depending on how traffic profiling is used flows may be individual or aggregated.

• Traffic engineering uses the information collected about IP flows to control the network
with the goal of optimizing network resources and traffic performance. Typical
measurements are link utilization, traffic volumes between network nodes and routing
information. While precise information may be required about flow routing, the
information about link utilization and traffic volumes can be approximate. For example, it
may be sufficient to know the largest flow on a “hot” link to initiate its route transfer to
another part of the network.

• Attack/Intrusion detection uses the information about IP flows to detect unusual
situations and suspicious flows and then monitors attacking flows. This use case may
require stateful packet flow analysis, which requires deep packet inspection. However, to
analyse traffic for anomalies all that may be required is a statistical model of the traffic,
which can be learned with machine learning.

• QoS monitoring uses quality measurements of IP flows to validate QoS parameters
negotiated during service level specification (packet loss, latency). QoS monitoring
requires correlation of data from multiple observation points, which requires proper clock
synchronization. As QoS monitoring is often specified in statistical terms, precisely

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

collected information is not required to enforce SLAs, rather it is important to build up a
statistical profile of the observed QoS experienced by flows.

Each use case has its own requirements on the veracity and type of data required, meaning that
there may be multiple protocols and software required to collect the information for any one of
the use cases. We note that while some require precise collection and storage of data (usage-
based accounting), others may only require precise data collection, while the stored data does not
have to be prices (attack/intrusion detection), and some do not require precise collection or
storage of data (traffic profiling, traffic engineering, QoS monitoring).

2. Data Collection for IP Network Monitoring
IP network observation is done by collecting information about the infrastructure (routers and
their physical connections), information about IP flows traversing the infrastructure and
information about how IP packets are routed through the network (routes). This paper implicitly
talks about the network observations of the core network (shown in the middle of Figure 1), but
the content of this paper also applies to the aggregation and peering parts of the network.

There is no one standardized method to collect all the information required for each of the
network monitoring use cases. Typically, a combination of network monitoring protocols is used,
and the information is collected by a software tool, provided by vendor specializing in this. Most
networks are multi-vendor networks, presenting a commercial and technical challenges to
equipment vendors to collect network information from other vendors’ equipment. A third-party
vendor would resolve those challenges and provide a data collection software. Collected
information can be grouped into device, routing, link and flow information. The monitoring
software tool correlates the information and presents it in a “single pane of glass”. Users can then
get subsets of data required for their use case.

2.1. Router information
Router information can be obtained with direct queries using their command-line interface (CLI)
(Wikipedia, n.d.). CLI commands typically provide network element information (infrastructure
information), which is not otherwise available through other means. For example, configuration,
CPU utilization, or debug logs can be obtained in this way. Other information such as routing
tables and link utilization are also available, however routers are typically not optimized to
access this information through their CLI interfaces and that should be avoided. CLIs can change
at the whim of the network device vendor, making it difficult to track changes for a 3rd party
vendor providing the monitoring solution.

While not strictly required for IP flow monitoring, some of the information collected directly
from the routers can be used for root cause analysis (RCA) of undesirable network behaviours.
Particularly, system logs may be useful for this purpose.

2.1.1. Route information
IP routing information can be collected with routing protocol sniffing. Interior gateway protocols
(IGPs) such as Open Shortest Path First (OSPF) (Wikipedia, n.d.) and Intermediate System to

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

Intermediate System (IS-IS) (Wikipedia, n.d.) are used by routers to exchange topology
information in an autonomous system (AS), which enables calculation of forwarding tables on
routers. A monitoring system sniffs the inter-router traffic for route update packets and builds the
known network topology as a router would.

Using the sniffed network topology and shortest path routing, the monitoring system can in real-
time build the routing matrix for the network, which is a “digital twin” representation of the
network forwarding tables. The routing matrix relates flows to the paths they traverse in the
network. Note that since IP uses dynamically changing hop-by-hop routing, the routing matrix is
a delayed version of the real-time routing matrix and is only a close approximation of how
packets traverse the network.

2.1.2. Link Information
Link information includes volume of packets carried on a link and link utilization. This
information can be obtained by subscribing or polling Simple Network Management Protocol
(SNMP) (Wikipedia, n.d.) or Network Configuration Protocol (NETCONF) (Wikipedia, n.d.)
router’s management interfaces. SNMP is an older protocol with many limitations. For example,
it has a polling interval of 5-10 minutes, while NETCONF can be configured to stream
messages, which are sent on change detected by the router. NETCONF can use the Yet Another
Next Generation (YANG) (Wikipedia, n.d.) format to collect information from the network
devices. Internet Engineering Task Force (IETF) is actively working on defining new data
sources and formatting of their data across router equipment (IETF).

2.1.3. Flow information

Figure 2 IPFIX Measurement Architecture

Flow information can be collected with NetFlow or IPFIX (Wikipedia), which are equivalent in
functionality. IPFIX is the standardized method of doing it and we will limit our discussion to it,
keeping in mind that problems with IPFIX also exist in NetFlow. Figure 2 illustrates key
components of the IPFIX traffic measurement architecture. IPFIX device and IPFIX collector are
two major components of the protocol.

• An IPFIX device is typically a part of routers or switches. It reports information about
flows. A dedicated IPFIX device could also be installed to capture packets from the fiber

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

tap or the mirrored port at a switch. The IPFIX device could be hardware based, or
virtualized, so it could also be software installed on a datacenter server.

• The IPFIX collector gathers and analyzes IPFIX flows from multiple IPFIX devices
through reliable transport protocols. A typical IPFIX telemetry data record consists of 5-
tuple of IP/TCP/UDP header fields, the number of bytes, the number of packets, the flow
start time, and the flow end time. In IPFIX, communication between the IPFIX device
and the flow collector is done through reliable transport protocols such as Stream Control
Transport Protocol (SCTP) or TCP2.

As we just showed, IPFIX way of collecting flow information requires installation of a
specialized monitoring system with intermediate collectors, large volume data storage and an
enormous number of computational resources to analyze the collected data. The data volume
problems start at the network element where the software and hardware are typically not able to
track all flows passing the element. Still, the aggregate volume of information may be such that
the multiple collectors, distributed across the network, may have to be used. Finally, the volume
of collected data makes it impractical to keep IPFIX collected data for long periods of time.

Due to hardware limitations, the monitoring system is usually unable to track a majority of the
traffic. One practical approach to mitigate the collection overhead in IPFIX is a technique called
threshold compression. In this technique the router reports only flows above a threshold to the
collection station. The main disadvantage of this method is that the information of flows below
the threshold are not sent. It is quite possible that up to 90% of the flows don’t cross the
threshold and are not reported.

An alternative method of measuring traffic is use direct counters on traffic tunnels (aggregated
flows). However, here we focus on standardized solutions such as IPFIX.

2.2. Overview of the paper
The rest of the paper is organized as follows. We start with a short description of how AI is
implemented using deep neural networks (DNNs). Then we describe three ways to use DNNs to
decrease the volume of telemetry and stored data, while keeping the fidelity of the data above
what is required by traffic monitoring use cases. These are solutions to the problems with IPFIX
that we just outlined.

Throughout the paper we cite Wikipedia and AI blogs for various AI concepts. While this may
appear to not be the most scientifically sound, we found these articles easy to follow and they
always link to the more complete computer science papers for the keen reader. There is much
DNN jargon used in the paper. We introduce DNN-specific terms in quotes “” to emphasize their
jargon origin.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

3. Foundations of AI technologies
This section is intended as a general overview of AI technologies. Readers familiar with
concepts of deep neural networks (DNNs) and machine learning (ML) can skip it. More
information about DNNs can be found in (Goodfellow, Bengio, & Courville, 2016).

AI technologies are based on the use deep neural networks for machine learning. Machine
learning is a computer science concept in which functional software blocks are created by
showing the computer examples of correct outputs from inputs, instead of explicitly writing
functions that instruct the computer on how to produce outputs from inputs in structured
programming (Wikipedia, n.d.). Instead of coding the algorithm, a generic machine learning
algorithm is “trained” with examples of what the correct outputs are for given inputs. In recent
years, DNN technology has elevated machine learning to the level of human capability in some
cognitive tasks. For example, it is now possible to train a DNN-based machine learning
algorithm to read a paragraph of text and answer questions about more accurately than humans,
or to categorize X-ray images better than a radiologist (Zhang, et al.).

DNN technology is based on basic linear algebra components – matrix multiplication and
addition and basic calculus – derivatives. Most of the knowledge required for DNNs has been
around for hundreds of years since the time of Carl Friedrich Gauss (Wikipedia, n.d.) and Issac
Newton (Wikipedia, n.d.). What is new at this time is that the advances in parallel computing
have made it possible to deal effectively with large matrices and train very large DNNs. The
most common computing platform are the Graphic Processing Units (GPUs) (Wikipedia, n.d.),
which can be used even beyond DNNs, and they are now being complemented with Tensor
Processing Units (TPUs) (Wikipedia, n.d.), which are specialized computing units for DNNs. AI
accelerators such as TPUs are now found almost anywhere from being embedded in laptops,
cellphones, and dedicated data center servers.

For completeness and interest of the reader we now give a simplified overview if how DNNs
make predictions and how they are trained.

3.1. How DNNs make prediction
A DNN is a set of algebraic equations that describes how outputs are determined from inputs
using matrix operations. A graphical version of the DNN representation is shown Figure 3a,
which shows the most basic type of building block for DNNs, known as “dense blocks”. The 2-
layer DNN shown in the figure is shallow. A typical may have dozens of layers (blocks).

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

a) Graphical Description of a 2-layer neural network

𝑦𝑦 = max(0,𝑊𝑊2 × max(0,𝑊𝑊1 × 𝑥𝑥 + 𝑏𝑏1) + 𝑏𝑏2)

b) Mathematical Description of the 2-layer neural network
Figure 3 An example 2-layer DNN

The network in Figure 3a evaluates an equation involving linear algebra shown in Figure 3b. In
this example equation, 𝑊𝑊1 × 𝑥𝑥 is a matrix multiplication (Wikipedia, n.d.) and the max function
ensures that the result of all operations is positive. Terms 𝑏𝑏1 and 𝑏𝑏2 are called bias for the layer.
The input to the network is 𝑥𝑥, while the output is 𝑦𝑦, so the equation describes the functional
blocks used in the DNN. The output 𝑦𝑦 is also called a prediction. The input 𝑥𝑥 is a mathematical
vector whose components is called a “features”. Each feature is a separate input variable
contributing to the output of the DNN.

The simple set of algebraic transformations in this example is very powerful as it can be shown
mathematically that a neural network with enough layers – depth – can approximate any
function. For this reason, DNNs are known as “universal approximators” (Hanin & Sellke,
2018).

A pictorial description of a DNN shown in Figure 3a can be translated into the above equation in
Figure 3b by an AI engineer and then made into a software program that performs the set of
algebraic equations. In practice, the software piece is simple to write using libraries such as
TensorFlow (Abadi, et al., 2015) and PyTorch (Paszke, et al., 2019). The DNN can also be
exported into the Open Neural Network Exchange (ONNX) (Open Neural Network Exchange,
n.d.), which describes the equations and can be loaded into many DNN software frameworks.

3.2. How DNNs learn
So far, we have described the prediction or inference part of a DNN. If we know the weights of
the DNN (e.g. matrices 𝑊𝑊1 and 𝑊𝑊2 in Figure 3) then upon receiving the inputs, the set of matrix
calculations described by the DNN is performed to determine the outputs. The outputs of the
DNN are called the “predictions”. This process of making prediction is sometimes called
“inference”. Weights are determined during a process of training.

For example, if we have the function

𝑦𝑦 = 2𝑥𝑥2 + 3𝑥𝑥,

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

we can generate a dataset of training samples shown in Table 1 in the two left-most columns.
With the dataset, we can use a training function provided in open-source software such as
TensorFlow (Abadi, et al., 2015) to determine a set of matrices 𝑊𝑊1 and 𝑊𝑊2 that result in the best
approximation of the function. The training function is called “fit” as it fits the weights of the
DNN to the dataset during the training. The fitting function minimizes the error of the
predictions 𝑦𝑦� for the dataset compared to actual values in the dataset 𝑦𝑦. The error can be
measured with the Mean Absolute Percentage Error (MAPE) shown in the right-most column of
Table 1.

Table 1 Example training dataset for 𝒚𝒚 = 𝟐𝟐𝒙𝒙𝟐𝟐 + 𝟑𝟑𝒙𝒙

Input 𝑥𝑥 Actual output 𝑦𝑦 Predicted output 𝑦𝑦� MAPE ‖𝑦𝑦�−𝑦𝑦‖
𝑦𝑦

1 5 4.5 10 %
2 14 15.6 11.5 %
3 27 25.4 5.9 %

The great DNN research achievement in recent years has been to devise an efficient training
procedure that finds the set of internal weights 𝑊𝑊 to minimize the error of the DNN. The training
procedure uses “stochastic optimization” who’s understanding essentially requires a PhD in
mathematics or computer sciences. However, this understanding is not necessary to use DNNs as
almost anyone who understands software development can write approximately 10 lines of code
to create the DNN and train the function.

The training procedure is iterative and takes in a set of examples of inputs and outputs in batches.
For each batch, the training procedure takes in the inputs and generates predictions using the
current weights. The predictions from the DNN are compared with the known outputs to find the
error in the predictions (the “loss” function) and this error is used to calculate the adjustment to
the current weights. The adjustment is usually done using a gradient descent that takes a
“learning rate” as an input and calculates the error of the predictions from the weights and
number of predictions. The learning rate determines how quickly the descent happens and how
closely to the best fit the training gets. The gradient of the whole DNN is calculated using
“backpropagation” (Wikipedia, n.d.), which is an algorithm applied backwards through the DNN
to differentiate it. Backpropagation is an example of automatic differentiation using the chain
rule (Wikipedia, n.d.).

3.3. DNN Models
A DNN model is a trained DNN. A single DNN may have multiple models for different versions
of the training data, or different versions of the training algorithms. Each version may have the
same structure (number of matrices, size of matrices, and flow through the matrices), but the
values in the internal matrices may be different. In a parallel to software development, DNN
models have different versions, which presumably improve with higher version numbers. Unlike
software, a DNN model is not guaranteed to work well over time, as the inputs may have
significant changes in their statistical properties. An example would be traffic demands changing
if a new data center peering point is added to the network.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

Automating re-training of DNNs due to changes in input data is beyond the scope of this paper.

4. Reducing network monitoring data with AI
Now, we take a deep dive into three approaches for reducing network monitoring data volumes
collected with IPFIX. Currently, this problem is resolved in unsatisfying ways. For example,
IPFIX may not be active in the network at all, so end-to-end flow information is not collected. If
IPFIX is turned on, it may not monitor all the flows – to reduce the pressure on the routers, some
flows are simply reported. The collected data is often stored temporarily, or if it stored for longer
time, it is reduced by averaging across days, weeks, or months.

We propose three new approaches to deal with the volume of data in the context of IPFIX. First,
we consider how to reduce the volume of IPFIX measurements by using link volume
information, without a substantial loss of end-to-end flow data quality. Second, we consider how
to actively reduce the volume of IPFIX telemetry by taking advantage of correlations in the data.
Third, we show how to use AI to compress stored network measurements without major loss of
fidelity.

4.1. Reducing the amount of collected information

Figure 4 Relationship between links and end-to-end flows

Traffic profiling and traffic engineering are two major use cases for IP network monitoring. Each
requires an estimate of the Origin-Destination (OD) traffic matrix, which describes the amount of
traffic between each OD pair in the network. Figure 4 shows the relationship between OD pairs
(end-to-end flows) and links. In the figure we have 4 routers A, B, C, D and 4 links AB, AC, BD
and CD. In case of a core network, we would want to know the aggregate traffic between each
OD pair. There are 12 relevant OD pairs, for example for router A there are AB, AC, AD. The
premise of the idea in this section is that if we can deduce OD flows from link measurements, we
can limit data collection to links. In the case of Figure 4, the amount of reduction would be 75 %
(instead of collecting information on 12 OD pairs, we can collect information on 4 links).

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

Currently, IPFIX is a go to method to obtain OD pair information. IPFIX samples packets
transiting through a given router and infers their origin and destination from packet headers. We
now show that finding the entire traffic matrix can also be done by utilizing the available link
counts and routing information.

Obtaining end-to-end traffic volumes from link measurements is a mathematical problem, which
requires a matrix inversion. The instantaneous traffic matrix can be related to link measurements
and the routing matrix with

𝒚𝒚 ≈ 𝑅𝑅𝒙𝒙
where 𝒚𝒚 is the vector of measured link loads over links in the network, 𝑅𝑅 is the routing matrix,
and 𝒙𝒙 is OD traffic matrix with one row corresponding to the demand of each OD pair. A flow in
the matrix is denoted with row 𝑥𝑥𝑖𝑖 ∈ 𝒙𝒙 in the OD matrix 𝑥𝑥. The routing matrix is structured in a
way that the link measurements 𝒚𝒚 correspond to the sum of OD flows that traverse the link. Due
to packet latencies and the random nature of OD pair traffic, the equation is approximate.

For the mathematically inclined, it may be obvious that the instantaneous traffic matrix can be
estimated with

𝒙𝒙 ≈ 𝑅𝑅−1𝒚𝒚
where 𝑅𝑅−1 is the “inverse” of the routing matrix. Alas, the routing matrix undetermined and is
typically not invertible, so this solution is not possible.

One way to solve the undetermined equation is to find the OD traffic matrix 𝒙𝒙�, which minimizes
a distance between the true end-to-end flow measurements and their estimate:

𝒙𝒙� = argmin
𝒙𝒙

‖𝑅𝑅𝒙𝒙 − 𝒚𝒚‖.

which is a problem solvable using AI technology. The equation reads: find an approximation of
end-to-end flow volume, 𝒙𝒙�, which has the smallest error, compared to the true matrix 𝒙𝒙. If we
have many link measurements taken during different times of the day, the estimate becomes the
maximum likelihood estimate of the end-to-end flows.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

Figure 5 Iterative estimation of the traffic matrix

The optimization approach alone does not provide the best results. We have found it necessary to
also combine that approach with stochastic approaches to deal with the randomness in network
measurements. The details of how that is done go beyond the scope of this paper due to the
volume of mathematics involved.

The approach used above ignores many of the known network constraints since it is defined as
an unconstrained optimization. To get around this, the AI method can be incorporated in an
iterative procedure shown in Figure 5. The method takes an initial traffic matrix estimate and
then uses an estimation procedure followed by an adjustment procedure. As the procedure goes
on, it produces a sequence of the traffic matrix estimates 𝒙𝒙�0, … ,𝒙𝒙�𝑛𝑛, each of which is expected to
be closer to the true traffic matrix 𝒙𝒙. As the initial traffic matrix estimate and the estimate in the
iterative step may produce a traffic matrix which may not match information known about the
traffic (e.g. ingress/egress aggregate counts), an adjustment procedure that projects the estimate
into the known constraints is used to fix this.

We evaluate the performance our methodology using real traffic traces from a backbone
network. Our source of data is the IP-level traffic flow measurements collected form every point
of presence (PoP) in the Abilene Internet2 back bone network (Roughan). Abilene is the major
backbone network, connecting over 200 universities in the US, and peering with other research
networks in Europe and Asia. At the time the data was collected, the Abilene network had 11
routers resulting in 121 origin–destination flows; there were 15 links in the network. We note
that Abilene was collecting OD pair information using flow sampling technology and it was also
simultaneously collecting link information, which allows us to estimate OD flows from link
measurements and then use true flow measurements to evaluate the performance of the AI-based
approach.

Table 2 summarizes the results we obtained on the Abilene dataset. We make several
observations. First, the AI approach reduces the error in the estimate significantly (by 42%).

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

Second, the estimates are now in the range of what is acceptable for the traffic engineering task.
Third, the amount of data collection has been reduced by 78%, as we only need packet counters
from links.

Table 2 Summary of OD flow estimation from link data performance results

 MAPE Reduction in MAPE
Non-AI approach 29.6% -
AI Approach 17 % 42%

We think that this may be a promising approach to reduce operator dependence on IPFIX in
estimating OD pair demands for the purposes of network planning and traffic engineering.

4.2. Reducing the amount of telemetry
Another way to reduce the amount of IPFIX data is in network telemetry. Here we look at ways
to reduce number of samples of the collected data. Unlike the previous method, which reduces
the number of data sources, where the data is collected, this method reduces the amount of data
collected by each data source.

The main idea is to reduce collection of data by decreasing the amount of information collected
about some flow, and then to use the information collected from other sources (flows) and AI to
infer what data that was not collect would be.

There are two uses for the method described in this section. First, it could be used to reduce the
amount of telemetry data. Second, it could be used to increase the frequency of some
measurements, while keeping the volume of telemetry about the same. The way this works is that
we increase the frequency of measurements on some of the sources, while reducing the
frequency of measurements of other sources. We then use AI to impute (estimate) the missing
values in the sources with reduced measurement interval.

Network data samples are taken at a prescribed measurement interval (typically in the order of
minutes). When picking the sampling interval, the network operator is typically not concerned
about sampling interval from the point of view of the Nyquist criterion (Wikipedia), which is
required to reconstruct the sampled data without the loss of information. The operators are not
trying to reconstruct the data at the point of the collection and processing; data is typically
collected for other purposes (forecasting, anomaly detection), so the precise reconstruction of the
underlying random process is not important.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

Spatially correlated time-series Reported time-series

Figure 6 Spatially and time correlated multi-variate time-series

As an example of time-series collection, we show two network elements and 4 time-series in
Figure 6. NE1 collects time-series A and B, while network element NE2 collects time-series C
and D. Time-series are on the same element are correlated, which means that information of both
flows exists in either flow. For example, A(C) could be link utilization and packet latency could
be series B(D). If link utilization is high, packet latency is also high, meaning that the two are
correlated. Similarly, time-series on the same path are correlated. So, if A is link utilization on
NE1 and C is link utilization on NE2, they are correlated due to the shared flows on those links.
For example, if link utilization is A is high, this could be due to a large flow traversing NE1,
which is also traversing NE2, so C is also high.

Data pruning

To reduce the information generated and transmitted by NEs we drop (prune) some of the
samples. This is called “measurement sampling”. Measurement sampling is a well-known
technique used in both packet and flow-based measurement to reduce the data volumes required
to report. The main idea in this technique is to take only a subset of packets or flows out of all
packets or flows to obtain reasonable result for the measurement. For example, we could prune
every kth sample of each time-series. This is called subsampling and can be undone for each
time-series using a low-pass filter, if the Nyquist criteria is satisfied for the subsampled time-
series. However, this is not what we do.

Given measurement sampling, we propose a system architecture shown in Figure 7. In the
network element, (1) the data pruning module receives the data from the data gathering module
and removes some portion of the data before (2) transmitting it to the network analytics. In the
network analytics module, a data recovery module (3) reconstructs (imputes) the data and passes
it to the recovery evaluation module to (4) determine if the recovery was of high enough quality.
Finally, the pruning logic module (5) instructs the data pruning module on how to prune data to
improve performance.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

Figure 7 Pruning and reconstruction architecture

Correlation means that information about one time-series is available in another time-series. This
is the fact we use when pruning and imputing missing information. We remove parts of a time-
series so that some information is always available in another, correlated time-series. The
information can be removed in many ways, but the easiest is to use an offset between the time-
series when the kth sample is removed. For the example in Figure 6, the samples can be reduced
by only sending A1, A3, B2, B4, and C1, C3, D2, D4.

Data reconstruction

Figure 8 Reconstruction architecture

There are many ways of imputing the missing values received from the network elements. Here
we discuss one way of doing it as a way of an example. The DNN treats the missing values as
noise in the data and can work with any pruning strategy - the method does not require any
information about how the data was pruned.

The AI reconstruction is shown in Figure 8. We use a multistage DNN. The pruned data is used
as the input, while the reconstructed data is determined as the output. The method treats missing
values as noise, so it is using a denoising method using an autoencoder (Wikipedia) (shown as
the encode-bottleneck-decoder architecture). As the values are missing, the reduced data is first
transformed in the frequency domain (using inverse Fourier transform or wavelet domain using
wavelet transform). The transform into the frequency domain interlaces the missing and present
values and so the structure of the data is pronounced even if some of the values are missing. The
autoencoder structure denoises the frequency representation of the data thus emphasizing the
structures in the data. The inverse Fourier transform then returns the denoised frequency domain
data into the time domain.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

Table 3 Summary of pruning/reconstruction performance results

Data reduction 5% 10% 20%
MAPE 4% 5% 9%

To evaluate this approach, we use the Abilene backbone dataset, which was discussed earlier.
This is a relatively small dataset for this purpose, so learning to reconstruct the data is harder.
Nevertheless, our analysis shows that data reduction is possible. For example, if we can tolerate a
10% reduction in data precision in data sources, which are being pruned, we can reduce the
amount of transmitted data by 20%.

We think that this may be a promising approach to reduce the amount of telemetry used in IPFIX
at a small loss of data precision.

4.3. Reducing the amount of stored information
Useful network data is high in volume, making it difficult to store for extended periods. Here we
discuss compression of the data to make storage cheaper. For example, a network with a million
data sources may generate 46Gb of 1-minute sampled data in one day, which translates to 16Tb
of data per year. While the number of data sources may seem high, even in a traditional IP
network this number would be inside the realm of possibility when considering each flow to be a
data source. The number of data sources would be much higher when considering cloud services,
IoT networks with billions of devices, multiple network layers, or high sampling network
measurements (e.g., state of polarization, or wireless SNR measurements).

Using the example of 16Tb of data per year, the Amazon Web Services (AWS) S3 (AWS) cost
to store it would be around $5000 in the first year and accumulating to $25,000 in year 5 of
storing this data (AWS). Here, we describe a DNN-based lossy compression scheme to compress
network data, which has a compression ratio of 100x-200x (Wikipedia). The one-time cost of
compressing 16Tb using this compression scheme would be approximately $2.50 and the cost of
storing the data for a year would be approximately $150-$250 for the one-year period, depending
on the compression ratio. Over a 5-year period, the savings from compressing the data would be
around $24,000, or 96%. These are significant savings that could be used in other business areas,
instead of for simply storing data in the cloud.

Today’s solution is not to store the data, reducing the operator’s ability to make data-based
decisions. Due to cost, network measurement data is not stored for extended periods, or it is
aggregated in larger periods of time (daily, weekly, monthly, yearly), thus losing fidelity in an
important historical record of what has happened in the network. The process of
aggregation/averaging is a very crude way of lossy compression for time-series. For example,
averaging represents a time-series with a single number over a period, so its accuracy is not
good. The compression of averaging is not that good either - compressing 15-minute into a daily
bin only has a compression ratio of 96, which we show is easily attained with neural networks.

Time-series compression with DNNs

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

We propose a method of storing network data in a deep-neural network, which greatly reduces
the volume of information that needs to be stored. Figure 9 shows an example architecture for a
network using the compression scheme. Data is collected from network elements (NEs), stored
in temporary storage, compressed, and deployed as a deep neural network. Data is deleted after
compression. Instead of using a database to store the data we use a server which hosts the DNN
and allows querying of it to retrieve the data.

Figure 9 Network data collection infrastructure

The compression of the time-series is accomplished by using the ability of DNNs to memorize
the mapping for any function. For example, we can train a DNN to memorize a relationship
between a random index and a sequence of measurements. Suppose that the network data
consists of sampled samples ts1, … , ts𝑛𝑛. The samples are windowed into fragments w𝑖𝑖 =
�𝑥𝑥1, … , 𝑥𝑥𝑝𝑝� of 𝑝𝑝 samples. Each fragment is associated with an index 𝑖𝑖.

Now we have a dataset where the features are the bits of the index 𝑖𝑖 and the labels are the values
in the fragment. We use a DNN to learn a function which maps a 32-bit integer into a 𝑝𝑝 sample
long fragment of a time-series. As an example, a 3-layer DNN is shown in Figure 10. Input to the
DNN is the index of the bucket 𝑖𝑖 and the output calculated by the DNN is the approximation of
the time-series window w�𝑖𝑖

w�𝑖𝑖 = 𝑊𝑊3max{0,𝑊𝑊2 max{0,𝑊𝑊1𝑖𝑖 + 𝑏𝑏1} + 𝑏𝑏2} + 𝑏𝑏3.

We note that due to lossy compression w�𝑖𝑖 ≠ w𝑖𝑖, but their difference can be made arbitrarily
small.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

Figure 10 Decompression

Figure 11a compares the DNN approach to how data is stored today. Raw time-series are stored
as fragments on disk and a table is used to relate times-series, periods, and the files on disk.
Figure 11b shows how data is stored into a DNN. A table is utilized to relate the time-series,
periods, and fragments with indices. The DNN contains the relationship between the index and
the stored time-series. When an index is presented to the DNN, the DNN reconstructs the time-
series bucket for that index.

a) Raw storage b) Compressed storage

Figure 11 Time-series storage

Achievable compression

The level of compression is strongly related to the level of achievable precision. In general, the
stronger the compression, the less achievable precision is possible. This means that the
compression can be used judiciously to save on space and time to train the DNNs. When
comparing compression algorithms, an important metric is the compression ratio (Wikipedia).
The compression ratio is the ratio of the size of the uncompressed data to the size of its
compressed form. For example, if the original size of a dataset is 16 MB and its compressed size
(size of the DNN) is 4 MB, the compression ratio would be 4x.

In many cases, the size of values in a time-series may vary significantly. Consider the case of
“mice” and “elephant” flows in an IP network. There may be several orders of magnitude
difference in the size of these flows. In the case of traffic engineering, it is much more important
to know the size of large flows precisely than the size of small flows precisely. For example, if
there are 100 small flows that can be compressed at 100x compression ratio and 1 large flow that
can be compressed at compression ratio of 10x, to maintain its acceptably high precision for each

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 20

set of flows, the average compression ratio compression could be 91x1. This should be compared
to compressing all flows at the compression ratio of 10x, which the minimum required by
elephant flows.

Table 4 Summary of compression performance results

Compression ratio 10x (XOR) 20x 40x 80x 128x 200x
MAPE 0% 0.5% 1% 2% 5% 10%

Table 4 show the compression achievable by DNNs. We used an IP-like dataset that we generated
with a simulation. We use this dataset since we can control the size of the time-series, which
makes it easier to see the performance of the compression scheme across different sizes. We also
tried this on an IP dataset with similar results. The first column is for the XOR compression
(Time-series compression algorithms, explained, n.d.), which is a lossless algorithm designed
specifically for time-series. The MAPE for this algorithm is 0% since it is lossless. Next columns
in the table use the compression we just showed. The compression varies from 20x to 200x,
depending on the error in the estimates. We note that at 5% MAPE, which is very reasonable
across a range of use cases the compression ratio is well over 100x.

We think that this may be a promising approach to reduce the disk space required to store IPFIX
data at a small loss of data precision.

5. Summary

This paper has talked about various methods to reduce the amount of transmitted and stored
telemetry data in IP network monitoring. We have described why network monitoring is
important in relation to the monetization strategies used by network service providers. In most
network monitoring use cases, the precision of the data is less important than the cost of
collecting and storing the data. This introduces opportunities to trade off precision in the
collected and stored IP telemetry with the cost of collection and storage.

We have reviewed 3 approaches that can reduce network telemetry 20% to 75% and the amount
of stored IPFIX data by orders of magnitude. These are visionary applications of DNNs in
network monitoring and the authors would appreciate feedback on their potential usefulness to
service providers.

1 We get this by calculating the compression ratio of large flows and small flows and then averaging out across all
flows.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 21

Abbreviations

AI Artificial Intelligence
CLI Command-line interface
CPU Central Processing Unit
DNN Deep neural network
GPU Graphic Processing Units
IGP Interior gateway protocols
IP Internet Protocol
IPFIX IP Flow Information Export
MAPE Mean Absolute Percentage Error
ONNX Open Neural Network Exchange
PoP Point of Presence
RCA Root Cause Analysis
S3 Simple Storage Service
SP Service Providers
TPU Tensor Processing Unit

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 22

Bibliography
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Jozefowicz, R. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved from
Software available from tensorflow.org: https://www.tensorflow.org/

AWS. (n.d.). Amazon S3: Object storage built to retrieve any amount of data from anywhere.
Retrieved 07 21, 2021, from https://aws.amazon.com/s3/

AWS. (n.d.). AWS Simple Monthly Calculator. Retrieved from
https://calculator.s3.amazonaws.com/index.html

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Hanin, B., & Sellke, M. (2018). Approximating Continuous Functions by ReLU Nets of Minimal

Width. Retrieved from https://arxiv.org/abs/1710.11278
IETF. (n.d.). Operations and Management Area Working Group (opsawg). Retrieved 07 13, 2021,

from https://datatracker.ietf.org/wg/opsawg/documents/
Network monitoring. (n.d.). Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Network_monitoring
Open Neural Network Exchange. (n.d.). Retrieved from https://onnx.ai/
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . DeVito, Z. (2019). PyTorch:

An Imperative Style, High-Performance Deep Learning Library. Advances in Neural
Information Processing Systems 32, (pp. 8024--8035).

Quittek, J., Zseby, T., Claise, B., & Zander, S. (2004). Requirements for IP Flow Information Export
(IPFIX). Retrieved from https://www.rfc-editor.org/info/rfc3917

Roughan, M. (n.d.). Internet Traffic Matrices. Retrieved 07 16, 2021, from
https://roughan.info/project/traffic_matrix/

Santos, O. (2016). Network Security with NetFlow and IPFIX: Big Data Analytics for Information
Security. Cisco Press.

Time-series compression algorithms, explained. (n.d.). Retrieved 07 22, 2021, from
https://blog.timescale.com/blog/time-series-compression-algorithms-explained/

Wikipedia. (n.d.). Autoencoder. Retrieved from https://en.wikipedia.org/wiki/Autoencoder
Wikipedia. (n.d.). Automatic Differentiation. Retrieved June 5, 2021, from

https://en.wikipedia.org/wiki/Automatic_differentiation
Wikipedia. (n.d.). Backpropagation. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Backpropagation
Wikipedia. (n.d.). Benchmarking Methodology for Network Interconnect Devices. Retrieved 07 09,

2021, from https://datatracker.ietf.org/doc/html/rfc2544
Wikipedia. (n.d.). Carl Friedrich Gauss. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
Wikipedia. (n.d.). Command-line interface. Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Command-line_interface
Wikipedia. (n.d.). Data compression ratio. Retrieved 07 21, 2021, from

https://en.wikipedia.org/wiki/Data_compression_ratio

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 23

Wikipedia. (n.d.). Graphics processing unit. Retrieved June 2, 2021, from
https://en.wikipedia.org/wiki/Graphics_processing_unit

Wikipedia. (n.d.). Internet Control Message Protocol. Retrieved 08 09, 2021, from
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

Wikipedia. (n.d.). IP Flow Information Export. Retrieved 07 13, 2021, from
https://en.wikipedia.org/wiki/IP_Flow_Information_Export

Wikipedia. (n.d.). Iperf. Retrieved 07 09, 2021, from https://en.wikipedia.org/wiki/Iperf
Wikipedia. (n.d.). Isaac Newton. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Isaac_Newton
Wikipedia. (n.d.). IS-IS. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/IS-IS
Wikipedia. (n.d.). Matrix Multiplication. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Matrix_multiplication
Wikipedia. (n.d.). MTR (software). Retrieved 07 09, 2021 , from

https://en.wikipedia.org/wiki/MTR_(software)
Wikipedia. (n.d.). NETCONF. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/NETCONF
Wikipedia. (n.d.). Nyquist frequency. Retrieved 07 16, 2021, from

https://en.wikipedia.org/wiki/Nyquist_frequency
Wikipedia. (n.d.). Open Shortest Path First. Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Open_Shortest_Path_First
Wikipedia. (n.d.). Simple Network Management Protocol. Retrieved 07 06, 2021, from

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
Wikipedia. (n.d.). Structured programming. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Structured_programming
Wikipedia. (n.d.). Tensor Processing Unit. Retrieved June 2, 2021, from

https://en.wikipedia.org/wiki/Tensor_Processing_Unit
Wikipedia. (n.d.). YANG. Retrieved 07 06, 2021, from https://en.wikipedia.org/wiki/YANG
Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., . . . Perrault, R. (n.d.).

The AI Index 2021 Annual Report. Retrieved from arXiv: https://arxiv.org/abs/2103.06312

	1. Introduction
	1.1. Overview of IP Network Monitoring

	2. Data Collection for IP Network Monitoring
	2.1. Router information
	2.1.1. Route information
	2.1.2. Link Information
	2.1.3. Flow information

	2.2. Overview of the paper

	3. Foundations of AI technologies
	3.1. How DNNs make prediction
	3.2. How DNNs learn
	3.3. DNN Models

	4. Reducing network monitoring data with AI
	4.1. Reducing the amount of collected information
	4.2. Reducing the amount of telemetry
	4.3. Reducing the amount of stored information

	5. Summary
	Abbreviations
	Bibliography

