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0. Introduction 
Proactive Network Maintenance (PNM) aims to proactively determine issues in a network so higher 
quality service can be provided and service impairments can be fixed before subscriber’s experience 
issues. PNM can leverage updates in Data Over Cable Service Interface Specification (DOCSIS), an 
international telecommunications standard that enables high-bandwidth data transfer through existing 
cable television systems. The introduction of many PNM related test metrics has made it possible to 
pinpoint the root causes of issues in an HFC network. Full band capture (FBC) data allows operators to 
have visibility into all downstream RF signals anywhere DOCSIS 3.0 or 3.1 modems are deployed. This 
eliminates the need to bring spectrum analyzers to customer homes and perform inspection. Through 
PNM, downstream RF signals can be monitored 24x7x365 just using the subscriber’s cable modem, 
which leads to better performance and impairment resolution.  Issues can be identified and located faster, 
leading to greater cost savings and improved subscriber experience.  

A challenge for operators is manually analyzing the FBC data from thousands or millions of modems. 
Further, the cable operator must be able to determine if RF impairments in FBC data are associated with a 
single home or multiple homes. When an impairment impacts a single home one can usually assume 
sending a technician to the individual home is the correct action. However, when multiple homes see the 
same impairment, sending a technician to a single home is almost always the wrong answer as the 
impairment is in the outside plant. In this scenario, rolling a truck to a single home for an outside plant 
impairment wastes time, money, extends MTR and annoys the subscriber. 

This is where the power of machine learning and PNM shine. Machine learning can quickly analyze the 
data of thousands or millions of modems in just minutes. Then it will lead the end user to determine if 
there are impairments and if so, where the impairments are located.  

This paper will discuss the type of RF impairments observable by PNM. Next it will discuss how machine 
learning is used to analyze impairments using an unsupervised model. Then it will look at how machine 
learning is combined with CableLab’s spectral impairment detector (SID) to substantially improve on 
SID’s impairment classifiers. Finally, the paper will look at how the author is using gamification to use 
feedback from end users to migrate to a supervised learning model. 

Enjoy. 

1. Types of Impairments 
It is important to provide a brief understanding of the typical types of impairments that are generally 
found using FBC. Rather than using the standard impairment chart kindly produced by Larry Wolcott of 
Comcast, this document will demonstrate the same impairments, but with new charts. These charts are 
taken from live cable operator plants using a PNM application.  

In the next sections, we will be focusing on the following impairments: adjacencies, suckouts, resonant 
peaks, rolloff, standing waves, and tilt.  

1.2.1 Adjacencies  

Adjacencies are essentially misalignments of radio frequency (RF) channels where adjacent channels 
have a large delta in channel power. This can result in packet loss, video tilting, freezing, and black 
screens. These impairments can often affect multiple cable modems (CMs) downstream, meaning that 
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clustering and especially localized clustering could find common impairments to better be able to identify 
the root cause of an adjacency [7]. 

 

Figure 1.1 Example of Adjacency at around 600 MHz 

1.2.2 Suckouts 

Suckouts are another type of RF impairment that span multiple channels. They dip down to a certain 
depth to make a V-shape in the signal. The depth and width of these impairments determine the severity 
and effect and may often not have any significant impact on customer performance [7].  

 

Figure 1.2 Example of a Suckout at around 550 MHz 

1.2.3 Resonant Peaks 

Resonant peaks are another impairment that usually spans multiple RF channels. They look like inverse 
suckouts, forming mountain-like peaks in the signal. They can be quite sporadic, forming and 
disappearing quickly, due to factors such as temperature and can have a wide range of performance 
impacts including packet loss, tiling, and freezing [7]. 
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Figure 1.3 Example of a Resonant Peak at around 520 MHz 

1.2.4 Roll Off 

Roll off is an impairment characterized by a gradual, non-linear, exponential looking decrease in 
amplitude and power. Roll off can have many causes including old cables being used or individual 
elements in the network being configured incorrectly. It can cause freezing or tiling of video channels and 
is, unfortunately, one of the more common RF impairments [7]. 

 

Figure 1.4 Example of Roll Off at around 820 MHz 

1.2.5 Standing Waves 

Standing waves are RF impairments which affect the entire spectrum. They are usually caused by an 
impedance mismatch in the signal and appear as waves seen at the peaks of the signals [7]. 
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Figure 1.5 Example of a Standing Wave 

1.2.6 Tilt 

Finally, tilt is an impairment that is characterized by amplitude differences between higher and lower 
frequencies. There can be a positive or negative slope to a CM. This impairment does not always cause 
issues for customers [7]. 

 

 

Figure 1.6 Example of Tilt 

1.3 Purpose of Clustering 
The purpose of clustering is to be able to find shared impairments between CMs in an automated method. 
This allows us to determine if an impairment affects one cable modem (CM) or if it affects multiple CMs 
so that cable operators can better pinpoint issues in their systems. As mentioned previously, the focus on 
clustering is to determine; do we roll a truck to the subscriber’s home or to the outside plant. Getting this 
right results in immediate time and cost savings. 

The objective is to find both global and local clusters of impaired modems. Global clusters are clusters 
where the entire signature of cable modems matches tightly while local clusters have similar signatures or 
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impairments in localized regions. Examples of localized clusters may be things such as a shared suckout 
between multiple cable modems.  

1.4 Purpose of SID Overlays 
The final step is to overlay CableLabs spectral impairment detection (SID) impairment labels to validate 
SID outputs and generalize SID predictions to more CMs. SID is software that can identify and localize 
common RF impairments in FBC data. It was created by the CableLabs PNM working group and has 
many thresholds that must be tuned to optimize performance. This does mean however that it often makes 
mistakes in correctly identifying impairments such as suckouts, standing waves, etc. 

By overlaying SID detections on existing clusters, it is possible to validate the SID impairment labels and 
generalize them to the rest of the CMs in the cluster. Further, if a certain percentage of CMs in a cluster 
share a common SID label, then these SID overlays can be applied to both global and local clusters. Once 
the ML model has identified a high correlation of modems having impairments detected by the ML 
engine and by the SID engine, it is possible to label the impairment to the end user with a high degree of 
confidence. 

2. Technical Approach 
It is assumed that the reader has some knowledge of machine learning from previous SCTE or other 
papers on this topic related to ML and FBC. For this reason, topics such as unsupervised learning, 
supervised learning, features, and general machine learning terminology will not be covered. It will be up 
to the reader to review currently available documents as referenced at the end of this document.[1][5][11] 

The next sections discuss how FBC data must be manipulated prior to any machine learning analysis. 
From a development standpoint, this is where the most work occurs in a machine learning exercise. It is 
often said that machine learning is easy, but it’s the preparation of the data that is hard. Meaning bad data 
in means bad data out. To get to a good machine learning model means lots of pre-work. 

While the following sections may initially appear a bit intimidating, it is important to note that the work 
being shown is fully automated in a PNM application. The user need not know any of the mechanics 
behind the machine learning. From the end user’s perspective, the result is displayed data which is easily 
actionable because now meaningful data is being presented. Machine learning just did the hard work of 
sifting through piles of data for the user. 

Now, let’s look at the technical approach for giving the end user a meaningful experience. 

2.1 Pre Processing 
Preprocessing steps are necessary to manipulate FBC data to have an optimal performance with 
clustering.  

2.1.1 Downscale Data 

The raw FBC data has a varied sample rate and a varied number of data points per cable modem. The 
clustering algorithms that were used however require all the data to have the same dimensions. Also, it 
makes the code simpler and faster since it allows for NumPy arrays to be used for many operations [8]. 
The data is downscaled to one datapoint per integer frequency from 89 to 996 MHz. Simply put, the 
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corresponding amplitude for the sampled frequency closest to each integer frequency is kept and stored to 
end up with 907 data points per cable modem. 

 

Figure 2.1 FBC Data Scaled Down 

Additional downscaling was tested by using the data points closest to every other frequency from 89 to 
996 MHz since most impairments did not lose any resolution and instead only some noise in the signal 
was eliminated. 

2.1.2 Rolling Median 

A rolling median is simply a median calculated for a certain window size passed over an entire signal [6]. 
This can remove very small and unimportant variations in the signal which would otherwise introduce 
unnecessary noise and produce incorrect clusters. Additionally, the advantage of a rolling median over 
something like a rolling mean is that it can filter out the gaps between channels. A rolling mean is not 
resistant to outliers meaning those dips would have a large impact on the surrounding regions. The 
median was calculated from the center meaning that n number of data points on the left and n number of 
data points on the right were used to find the median for the center point. 
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Figure 2.2 FBC Data Scaled Down with Rolling Median 

2.1.3 Transforming to a New Center 

When creating clusters, the power of a CM is irrelevant because impairments come from the deviations in 
a signal. Therefore, the signal was transformed up to 0 dBmV for the average of a certain region of the 
signal. The area of the signal was chosen to be 820-850 MHz because this results in transforming modems 
with rolloff much higher than other modems and therefore easily filtering them out (as seen with the blue 
CM in figure 2.3). Note that this arbitrary center frequency must be adaptive. For example, some plants 
may not have any signals between 820-850 MHz or there may be large impairments in this band. The 
transformation to a new center is used to find a clean and flat center where machine learning can be 
achieved. Finally, it was determined that rejecting the FM band (88-108 MHz) improved results because 
in nearly all cases FM ingress occurred in or near the subscriber home. 

 

Figure 2.3 FBC Data Scaled Down with Rolling Median and Transformed and Clipped 

2.1.4 Normalize Data 

Data is normalized from -1 to 1 before any machine learning is performed. Since all data that is clustered 
on is clipped before clustering, all the data is simply divided by the clipping amplitude maintaining the 
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same shape of the data but reducing the amplitude range to -1 to 1. The purpose of normalization is to 
have a standard range of the data so that any predetermined parameters work optimally [5]. Data 
normalization is a very common machine learning practice. 

2.2 Modem Health Classifier 
The first step in clustering aims to classify each modem in a node as impaired or not impaired. These 
classifications are done in an unsupervised manner as no accurate ground truths currently exist on which 
to create a supervised learning model. For this system to work properly, an assumption is made that the 
majority of CMs in a node are healthy. This is a bold assumption, but one which must be taken until 1) 
proven otherwise by inspection or 2) a supervised machine learning model is available. Note that as 
discussed later in this document, by using SID data, it is possible to overcome 1) above with the use of 
SID data. This is because SID data will provide the necessary information that all modems in a node have 
some type of impairment. Once a cluster is created, if all modems in the “healthy” cluster are shown to 
have SID impairments, then by inspection of the SID data it can be determined that the cluster is not 
healthy. 

2.2.1 Region Identification 

The first step of classifying modems as healthy or not was to identify the sections of RF spectrum that 
occupied by video or QAM channels. For the purpose of this document, occupied spectrum are named 
regions. Identifying regions is a necessary step because otherwise, classification could be made on 
modems with varying sections of used and unused spectrum which would be more quickly classified as 
an outlier and impaired than any modem which has an actual impairment. In Figure 2.5, an example of 
unused spectrum is the spectrum below about 375 MHz, where the blue line drops to -1.0. For someone 
familiar with the industry, it is apparent that a data only filter is in use in Figure 2.5. The data only trap 
causes all signals below 375 MHz to be attenuated. The signals that are still present below 200 MHz are 
FM ingress signals (88-108 MHz). As previously mentioned, the FM band is omitted from machine 
learning in the current model, so these low frequency signals will be ignored. 

The process starts by roughly identifying all the used frequencies of every modem in a node (see figure 
2.5 and 2.6). 
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Figure 2.5 Used Frequencies Identified on Modem 

 

Figure 2.6 Used Frequencies Identified on Modem with Band Stop Filter 

In Figure 2.6, it is evident that the pre-processing can identify unused frequencies, but this time it is not 
due to the presence of a data only filter. In this case, there are channels missing between 275-300 MHz. 
The blue line indicates pre-processing is eliminating these frequencies from the model. While there are 
unused frequencies higher in the band around 625 MHz, these do not the minimum width for the 
classification engine to exclude the band. 

The used spectrum is found by first passing a rolling median with a large window size over the 
normalized, transformed, and clipped signals from section 2.1.3 (see figure 2.7). Then, at any frequencies 
where the normalized amplitude is greater than -1, those regions are labeled as used (blue line at 0) and 
any frequencies where the normalized amplitude is -1, those regions are labeled as unused (blue line at -
1). 
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Figure 2.7 Used Frequencies Identified on Smoothed Modem with Band Stop Filter 

Once all the modems have their used regions extracted, regions can be extracted representing the various 
regions of commonly used frequencies between modems. This works by first identifying the regions with 
the most used spectrum of all modems (see figure 2.8 for used spectrum of all modems). In the case of 
this node, that region is from around 380-850 MHz. Then, health classification is done on this region as 
described in region 2.2.2. Following this, all modems will be identified as impaired or not impaired for 
that region. This region is then removed as being a used spectrum from all modems which have used 
spectrum in that region. Following this, the process repeats for the next region with the highest number of 
commonly used frequencies by classifying and then removing that region from the used regions as well. 
This process is repeated until there are no more used regions in the spectrum. At this point all modems 
have been classified as impaired or not impaired based on regions where modems have the same used 
and/or unused spectrum. 

 

Figure 2.8 Overlapped Used Frequency Regions 

2.2.2 Health Classification on Extracted Regions using Local Outlier Factor 

Once common regions of used frequencies are extracted, outlier detection is done on modems which have 
the regions. This outlier detection utilized the local outlier factor (LOF). LOF is an unsupervised (well, 
semi-supervised) machine learning algorithm that uses the density of data points in the distribution as a 
key factor to detect outliers, LOF roughly works by calculating a standardized distance to n number of 
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neighbors and labeling data points with a large distance as outliers [1]. In turn, this can filter out modems 
which deviate from the rest of the modems due to impairments.  

2.3 Global Clustering 
The next part of the clustering is to cluster together the impaired modems (outliers from clustering) to 
determine if there are any similar global impairments between cable modems. Global clustering requires 
that signatures of CMs match throughout the entire frequency range, meaning that it cannot cluster 
together smaller local clusters, but it can find modems with common signatures.  

Global clustering is useful in finding modems that have large impairments such as standing waves or tilt, 
which impact the entire spectrum. 

2.3.1 DBSCAN Clustering 

In machine learning there are many algorithms for grouping or clustering common sets of data together. 
One of the most used is K-Means. K-Means clustering works very well, however it is non-optimal for 
noisy data, such as FBC data. The current implementation in this paper is using a model called DBSCAN. 

DBSCAN stands for density-based spatial clustering of applications with noise. The algorithm works by 
first selecting a random point in the data. Then, if there are minimum points (a specified parameter) 
number of data points within the radius of Epsilon (EPS, a specified parameter) distance or the Euclidean 
distance, straight-line distance to the original point, it is labeled as a cluster. Then this process repeats for 
every point that was in the original cluster, if the points have at least minimum points number of points 
within their EPS distance, then the points are labeled as core points. However, if a data point does not 
have the minimum points number of data points, it is labeled an outlier, unless it is within the EPS of a 
core point. If there are no more data points nearby, then a new random point is chosen until all the data 
has been clustered [3]. 

2.3.1 Global Impairment Clustering 

Global impairment clustering was implemented purely using DBSCAN. The minimum points parameter 
is lowered to two to allow for very small clusters and the EPS is slightly lowered also to ensure clusters 
are tight. Figure 2.8 demonstrates the use of global clustering but also highlights some of the weaknesses.  

Global clustering can cluster these modems and conclude that they are all impaired and have both a 
common impairment and rest of signature. What the impairment is or where the impairment is located 
cannot be determined purely using global impairment clustering (this is where SID overlays are needed). 

The issues that arise from this approach is that if that same suckout were to be seen around 470 MHz on a 
different modem with used spectrum below 350 MHz, then they would not be clustered together. This is 
when local clustering is effective. 
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Figure 2.9 Global Cluster on Impaired Modems 

2.3.2 Global Impairment SID Overlay 

SID labels are overlain on global clusters to determine the location and type of impairments seen in a 
cluster. If a certain percentage of modems have an impairment, then that impairment can be generalized to 
the rest of the modems. Additionally, if that impairment is found in a local region for multiple CMs, then 
it can be generalized that those modems all have that impairment at that specific location. This is 
beneficial for two reasons: 

1. The data being used is unsupervised data, which means it is not known if the FBC data is 
impaired or not impaired, but overlaying SID data, it is now possible to determine not only if the 
FBC data is impaired, but also the type of impairment (i.e., suckout, standing wave, etc.). 

2. SID impairments are often inaccurate. For example, suckouts and adjacencies are often mis-
labeled by the SID engine. By classifying many modems with the same SID overlay, it is possible 
to improve the accuracy of SID classifications through scale. If many modems show the same 
SID impairment at the same frequency, then the probability that SID is accurate is high. 

SID overlays also allow the algorithm to discard SID impairments that are rarely found in the cluster. In 
figure 2.10 it is apparent that only 20% of the CMs in the cluster were labeled as having a resonant peak 
by SID. From this one can conclude that the modems in the cluster most likely do not have a resonant 
peak at around 620 MHz.  
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Figure 2.10 Resonant Peak Identified at 20% in Global Cluster shown by vertical purple bar 

On the other hand, SID labels can be verified based on the percentages that they occur at and if the 
location that they occur at overlap. In Figure 2.11, it is visible that 100% of modems are labeled as having 
a standing wave from around 100-900 MHz. Therefore, one can accept this label as being most likely 
true. This can also apply to other labels which are not seen in 100% of modems however such as the 
adjacency labeled in 40% of modems for this cluster around 650 MHz. This can be generalized to all 
modems in the cluster if the threshold of the percentage of modems in a cluster that need to have a SID 
label for a certain region is met. 

 

Figure 2.11 SID overlay with 40% Threshold 

2.4 Local Clustering 
To cluster together similar local impairments, different clustering techniques need to be used which only 
look at local regions. This is because CMs may share one common impairment, while not sharing a whole 
separate range of impairments and signatures which result in them being placed in different global 
clusters. Again, this is very important for narrow impairments such as suckouts and adjacencies. 

2.4.1 Local Impairment Clustering 

To find local impairments, clustering was done using DBSCAN on a certain window throughout the 
spectrum. This window slid over the entire FBC spectrum with a certain step size and clustered together 
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all the modems in the node using DBSCAN [10]. The FBC spectrum was preprocessed the same way as 
with variability-based outlier removal (section 2.3.2) so that the FBC data was straightened and centered 
at 0. This was important because DBSCAN would not work properly unless the data was in the same 
shape and located at the same amplitude because that is the only way for the Euclidean distance between 
sections of the FBC data to be small and therefore clustered together. 

Then if one of the clusters formed only contains impaired modems, it is a localized impaired cluster in 
that region. If a cluster contains modems that are not impaired, it means that the cluster found similarities 
that are not an impairment, and the cluster is therefore not considered a localized impairment cluster. 
Additionally, if a cluster contains more than a certain percentage of the modems in a node, it was 
removed from the local impairment clusters because it most likely is clustering on something that is not 
an impairment. 

In figure 2.11 we can see that the localized impairment clustering was able to find local clusters due to the 
preprocessing steps taken. Preprocessing manipulated the data to be in the shape seen in figure 2.12. Here 
DBSCAN can easily find clusters in certain windows even though the orange modem has many used 
channels under 400 MHz that the blue modem doesn’t and that the blue CM has tilt but the orange one 
doesn’t. This resulted in a important breakthrough, which was the ability to detect similar impairments on 
modems with radically different spectrum usage due to bandpass and band stop filters. 

 

Figure 2.12 Localized Impairment Clusters on Impairment Modems 
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Figure 2.13 Localized Impairment Clusters on Impairment Modems Pre-Processed 

2.4.2 Local Impairment SID Overlay 

The last step with the localized clustering was to overlay the SID impairment labels for localized 
impairments (i.e., suckouts and adjacencies). This allowed us to draw conclusions about the accuracy of 
the SID labels and see if the labels intersected with the local cluster regions. In all the figures below, the 
green highlights indicate local cluster regions while the red indicates the global cluster regions. 

In figure 2.13, we can see that SID labeled that both modems in the same local cluster had standing waves 
and that the labels intersected with regions of local clusters, meaning that we can conclude that both these 
modems have standing waves in the regions of overlap between the SID label and local cluster regions. 
We cannot generalize and say that both modems have standing waves on all regions from 100-850 MHz 
however because since this is local clustering, the regions could have nothing to do with each other.  

As seen in figure 2.13, local impairment clustering can also be used to generalize impairments that are not 
detected in all modems such as the resonant peak around 530 MHz. Even though only 50% of the 
modems in the cluster had this label, it can be generalized to apply to both modems because it falls under 
a local clustering region. Figure 2.14 contains more visuals of a different local impairment cluster. 
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Figure 2.14 SID Overlay on a Local Cluster with Threshold of 40% 

 

Figure 2.15 Resonant Peak SID Overlay 
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3. Results and Discussion 
This section will analyze some of the performance, nuances, optimizes and observations identified during 
the use of machine with full band capture data. As this technology is continuously being improved upon 
but not only the author of this paper, but others in the industry, it is the hope that some of the findings in 
this paper will be used by others to build upon this and a collaboratively shared for the betterment of the 
industry.  

3.1 Modem Health Classifier 

3.1.1 Pre Processing Performance 

The preprocessing steps were vital to the clustering. By clipping and centering the signals, small local 
impairments such as resonant peaks and suckouts become much more influential in the data and are 
therefore easily labeled as outliers only using DBSCAN.  

Preprocessing does occasionally run into issues, however. Occasionally, minor impairments such as the 
red spike around 600 MHz in figure 3.1 are run over in preprocessing as seen in figure 3.2. This is most 
likely a result of the spike being very thin and the rolling median, therefore, discarding it. The spike is 
most likely the result of RF interference that could impact customers and was missed. 

 

Figure 3.1 Raw FBC Cluster 
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Figure 3.2 Pre-Processed FBC Cluster 

3.1.2 LOF Performance 

LOF proved to be optimal for this use case because it accurately and efficiently was able to identify 
outliers with impairments. Finding the optimal number of neighbors was a difficult task and will continue 
to be a difficult task when applying this software to various CMTSs and cable operators. Figure 2.14 
shows LOF finding outliers on the highlighted regions while figure 2.15 shows the modems not labeled as 
having outliers. 

Figure 3.3 shows a cluster of modems which has been continuously showing up across cable operator 
systems since this algorithm has deployed. Notice the spikes appearing roughly 20 dB above nominal RF 
spectrum. When examined more closely, these spikes are roughly 8 MHz in bandwidth. The author of this 
paper has visited several subscriber locations where the signal is present. The signal was not observable 
using traditional swept-spectrum analyzers. Further, once the subscriber modem was replaced the modem 
was replaced, the signals were no longer present. Suspect modems were collected and are under current 
evaluation. 
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Figure 3.3 Impaired Modems with Used Regions Indicated 

Figure 3.4 shows what is expected for a healthy cluster of modems on the same node. Here we see many 
cable modems not showing the spike in figure 3.3. The point of this example is that although root cause is 
not yet determined, machine learning combined with PNM was successful in identifying anonymous 
activity in modems which were customer impacting. Each customer with spurious activity had open 
tickets for downstream video or DOCSIS issues which where un-resolved.  

 

Figure 3.4 Healthy Modems with Used Regions Indicated 

3.1.3 Fixes for Band Stop Filters 

Band stop filters filter out ranges of frequencies in a signal [2]. They are used by cable operators to 
restrict certain channels from customers. In the data we used for this paper, band stop filters were 
occasionally found in CMs as seen in figure 3.3. By using the different regions with commonly used 
frequencies, modems with Band Stop filters were not automatically classified as impaired, but instead 
accurately classified based on the rest of the used frequencies and how they related to the rest. 
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Figure 3.5 Modems with Band Stop Filters 

3.2 Global Clustering 
Global clustering was effective for its purpose of finding impaired modems with similar global signatures. 

3.2.1 Global Clustering Shortcomings 

One issue seen with both global and local clustering is when validating SID impairments when there are 
few modems in a cluster. If there are only 2 CMs in a cluster and one has an incorrect SID label, if the 
threshold for the correct SID label to be generalized is 50% then the incorrect impairment is accepted. 
However, if the threshold is at over 50%, correct SID labels may also be overlooked. 

3.3 Local Clustering 
Local clustering was effective in finding local regions with similar signatures. Occasionally regions that 
just happen to only be found in impaired CMs are labeled as local clusters when they are completely 
healthy regions of the spectrum that just have signatures not found in the rest of the healthy CMs. 

3.3.1 Local Clustering Shortcomings 

Shortcomings include times local clusters were identified but no SID labels were to be found in those 
regions and when common SID labels were found in regions and no local clusters were identified. Using 
both the clusters and SID labels, however, allows one to build greater confidence in the SID labels even if 
the system is not 100% accurate. 

Local clustering also has the same issue when there are few cable modems in a cluster as seen with global 
clustering in section 3.2.1. 

3.4 Optimization of Parameters 
One factor seen across the board is that there are many parameters with this approach. Optimizing 
parameters also takes lots of processing and lots of time. Every cable operator with different hardware 
and different severities may need different parameters and perhaps even different CMTSs. There is no 
numerical way to find the optimal parameters as this is an unsupervised setting with no ground truths, 
meaning that someone must look through as much data as possible and look through many variations of 
parameters to find which fits the given data the best while not overfitting. 



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 24 

There are also many parameters that impact each other such as the window size parameter for local 
clustering. If the window size is changed, the EPS parameter in DBSCAN must also be changed to adjust. 
This makes optimization even more complex. 

For this reason, real-time optimization parameters are added to the application which enable the end user 
to modify DBSCSAN parameters. These optimizations on performed on the cable operators’ network to 
ensure DBSCAN is optimized based on the system’s channel lineup. 

4. Conclusion 
This project is effectively able to identify common impairments between CMs and is also a step towards 
replacing SID with a more intelligent system. Extensive preprocessing and clustering on FBC signatures 
were able to reveal shared impairments between CMs in a node. Additionally, SID labels were then 
overlaid to clusters to verify the accuracy of SID labels. This model was further modified and applied to 
RxMER data of OFDM channels in DOCSIS 3.1 downstreams. This had value in identifying outside plant 
impairments impacting multiple subscribers with DOCSIS 3.1 modems. 

4.0 Operationalizing the Plant Maintenance 
PNM and machine learning begin to show their complimentary value when it comes to operationalizing 
plant maintenance. Before applying machine learning, it would be up to the end user to manually view 
many fullband capture images and attempt to make mental correlations. This was a tedious process and 
relied on human to first do the work and second be effective at doing the job. The job being to determine 
if an impairment was impacting one home or many. Machine learning will automate this task by 
automatically clustering FBC data. It is up to the application programmer to make the data available to the 
end user. 

One example can be seen in Figure 4.1 where a widget is made available to the end user with a list of 
FBC correlation groups (i.e. cluster groups), the node each correlation group, the number of subscribers 
impacted by the impairment and the impairment type. Clicking on the blue hyperlink takes the user to a 
visual representation of the impairments (shown in Figure 4.2) on a map, where action can be taken. 
  



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 25 

 

 
Figure 4.1: FBC Correlation Widget Groups by Node, Modem Count, and Impairment Type 

(Image Courtesy: NimbleThis) 

Figure 4.2 the machine learning-based results of FBC correlated modems as plotted on a map. The blue 
modems on the map are associated with the FBC data on the right-hand side. A user may select a modem 
on the left, a MAC address on the right, or a trace bottom right to interact with the data. The actionable 
data for the end user is that this section of coax plant has a system-wide standing wave. Fixing the 
standing wave by visiting a subscriber’s home is not a good choice. This is an outside plant problem 
which must be addressed as such.  

 
Figure 4.2: Representation of FBC correlation group on map (left) with respective FBC 

impairments (right) 
Image courtesy: NimbleThis 
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As indicated, this same algorithm is easily adapted for RxMER data in DOCSIS 3.1 OFDM channels. As 
with FBC data, it is useful to present data at a high-level first as a widget, shown in Figure 4.3. 

 
Figure 4.3: RxMER Correlation Widget Groups by Node, Modem Count, and Average 

RxMER 
(Image Courtesy: NimbleThis) 

The operational value of the RxMER correlation widget is that an end user can quickly identify clusters 
with low RxMER. Clusters with low RxMER will operate at a low OFDM modulation resulting in low or 
no data speed to subscribers. The low RxMER in a cluster is a result of outside plant impairments, so 
these can be addressed by outside plant techs. 

Figure 4.4 shows the mapping of the clustered data. This view results when clicking on the correlation 
group in the widget of Figure 4.3. 
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Figure 4.4: RxMER Clustered data on map (left) with clustered RxMER data (right) 

(Image Courtesy: NimbleThis) 

Figure 4.4 shows the actual RxMER clustered data on the right-hand side. As can be observed, there are 
many locations in the RxMER data where the MER drops below 35 dB. An ideal OFDM channel would 
have its RxMER data above 39 dB across every data point to support 4096-QAM. 

On the left-hand side of Figure 4.4, the blue modems indicate which DOCSIS 3.1 modems are part of the 
cluster group and are impacted by low RxMER. In many networks today there is not 100% penetration of 
DOCSIS 3.1 modems, so it is quite common to have many DOCSIS 3.0 and DOCSIS 2.0 modems that 
are around the cluster but are not impacted because they do not use the OFDM channel. 

Again, the value of Figure 4.4 is that a technician can quickly observe that the downstream impairments 
in the OFDM channel are common to every subscriber. Visiting an individual subscriber home will not 
fix the impairment. This is an outside plant problem which must be addressed in the outside plant. 

4.1 Future Research 

4.1.1 Supervised Learning 

The current implementation, while very powerful, uses unsupervised machine learning. This means the 
ML engine has no knowledge if the FBC data is impaired or not impaired nor does it know the 
impairment type once it is classified as impaired. The classification comes from SID data, which is only 
somewhat accurate. The next level is to achieve supervised learning, which is a machine learning engine 
whereby the engine already has knowledge about FBC impairment types. This requires a lot of work from 
end users to label these existing impairments and build a database through which the ML engine can be 
trained. 
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There are two approaches in process to do this. First, a built-in gaming feature that encourages its users to 
label impairments when fixing problems has been applied. Fix a problem and label an impairment and get 
points. Users with the most points get on the leader board. This is used by cable operators as an incentive 
program for their technicians. An example of this is shown in Figure 4.5. 

 
Figure 4.5: Leaderboard used for incentivizing users and collecting labeled data 

(Image Courtesy: NimbleThis) 

Second, CableLabs is working to have several expert users, including the author of this paper, to label a 
set of FBC data. It is hopeful that either or both two methods will generate a large enough dataset to be 
used for a true supervised learning model which can further improve upon the existing model. 

4.1.2 New Impairment Detector 

In the future, one could analyze ways to create a reliable way of identifying and localizing impairments to 
bypass the need for SID and clustering in the first place. Analysis/clustering on accurate labels of 
impairments would be able to find the same impairment in multiple modems but do so with greater 
confidence and accuracy. To be able to identify and localize all these impairments there needs to be large 
datasets of labeled data which are currently not accessible. Models for prediction could be made for each 
impairment or one large model could be made to make predictions about all impairments. Possible 
avenues to investigate include Convolutional Neural Networks (CNNs), perhaps some like ones seen in 
computer vision such as YOLO (You Only Look Once) to both classify and localize impairments [4, 9].  

This starts to move into the arena of artificial intelligence (AI). Which the author of this paper chooses to 
use with great care. Today machine learning is being used and often times AI is used as a marketing 
gimmick. However, given enough data, a true AI model can be developed with the help of technicians. 
Lots of technicians feeding accurate data into PNM applications. Once this level is achieved, ML and/or 
AI models can be developed which will look at a single or multiple FBC images and not only inform the 
user of what the impairment is (i.e., suckout or standing wave), but further it can make very accurate 
suggestions of what the most probably repair for the impairment may, such as “85% probability of a bad 
drop cable”. This technology is not years away, but something we expect to realize within the next 1-2 
years and will change the technicians interact with PNM technology. 
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Abbreviations 
 

CM Cable Modem 
CMTS Cable Modem Termination System 
CNN Convolutional Neural Network 
DBSCAN Density-Based Spatial Clustering of Applications with Noise 
DOCSIS Data Over Cable Service Interface Specification 
EPS Epsilon parameter in DBSCAN 
FBC Full-Band Capture 
FEC forward error correction 
HD high definition 
Hz hertz 
LOF Local Outlier Factor 
ISBE International Society of Broadband Experts 
PNM Proactive Network Maintenance 
RF Radio Frequency 
SCTE Society of Cable Telecommunications Engineers 
SID Spectral Impairment Detector Released by CableLabs 
YOLO You Only Look Once 
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