

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

Implementing Multi-layer Infrastructure Management
for Multi-Access Edge Computing (MEC) Services

Using Kubernetes

A Technical Paper prepared for SCTE by

David K. Bainbridge
Senior Director, Software Engineering

Ciena Corporation
7035 Ridge Road

Hanover MD, 21076
dbainbri@ciena.com

Stephane Barbarie
Software Engineer
Ciena Corporation
7035 Ridge Road

Hanover MD, 21076
sbarbari@ciena.com

Dmitri Fedorov

Embedded Software Engineer
Ciena Corporation
7035 Ridge Road

Hanover MD, 21076
dfedorov@ciena.com

Marco Naveda

Senior Director, Network Architecture
Ciena Corporation
7035 Ridge Road

Hanover MD, 21076
mnaveda@ciena.com

Raghu Ranganathan

Principal & Distinguished Engineer, Advanced Architecture
Ciena Corporation
7035 Ridge Road

Hanover MD, 21076
rraghu@ciena.com

mailto:dbainbri@ciena.com?subject=SCTE%20Paper
mailto:sbarbari@ciena.com?subject=SCTE%20Paper
mailto:dfedorov@ciena.com
mailto:mnaveda@ciena.com?subject=SCTE%20Paper
mailto:rraghu@ciena.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Table of Contents .. 2

1 Introduction .. 3
2 Background and Technologies .. 4

2.1 Kubernetes In Brief .. 4
2.2 Multi-cluster Strategies ... 6
2.3 Node/Cluster Capability Discovery ... 7
2.4 Constraint Policy .. 7
2.5 Scheduling Optimization... 9
2.6 Network Controller.. 10
2.7 Common Application Function Model ... 10
2.8 Public/Private Cloud Integration ... 13

3 MEC Architecture on Kubernetes .. 15
3.1 MEC Host ... 15
3.2 MEC System Level Management ... 18

4 Summary .. 20

Abbreviations and Definitions ... 21

References .. 22

List of Figures
Title Page Number
Figure 1 - Kubernetes cluster with all its components .. 5
Figure 2 - Multi-Cluster Scheduling Strategies ... 6
Figure 3 - Constraint Policy Overview ... 8
Figure 4 - Orchestrating Device Configuration via Kubernetes CRDs .. 11
Figure 5 – CRD Driven Chaining .. 12
Figure 6 - Enterprise Multi-MEC Applications ... 13
Figure 7 - Using Constraint-Base Scheduling with Public Clouds .. 14
Figure 8 - MEC Architecture with Kubernetes Overlay ... 15
Figure 9 - Depiction of a Kubernetes Cluster Mesh .. 19

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

1 Introduction

Communications networks are at the heart of advancing society and bringing people and places
closer together. The evolution of communications services will be central in transforming how
we work, play, collaborate, and interact with the environment around us. Emerging collaboration
technologies such as augmented and mixed reality (AR/MR) promise to offer highly immersive,
multi-user, real-time and content rich experiences that will simplify business operations, improve
productivity, and unlock new services and revenue sources across a wide range of verticals. This
type of application relies on large amounts of bandwidth and extremely low network delay to do
real-time processing of very large data sets and tracking user and virtual object movement, while
enabling fine-grained interactions between remote users, the physical world, and holographic
objects. This will be possible as network application intelligence and cloud platforms converge at
the network edge in Multi-Access Edge Computing (MEC) locations.

Over the last decade, communication service providers (CSP) have invested in significant
network modernization to keep up with a growing demand for bandwidth hungry applications
and increasingly distributed service consumption patterns. The adoption of Telco Cloud
architectures for virtualizing network services has improved the operational responsiveness of
the network. However, despite advances in network automation, the traditional top-down
BSS/OSS operating model has not adapted to the realities of delivering dynamic, cloud-native
network services to meet the needs of distributed MEC applications. This new application
delivery paradigm requires new operational tools that enable CSPs to maintain carrier-grade
operations for virtual machine-based virtual network functions (VNF), while evolving to the on-
demand and intent-based deployment of cloud-native containerized workloads for the next
generation of network services and MEC applications.

MEC infrastructure and connectivity services are expected to be a growing revenue source for
service providers who build a distributed edge compute network platform for application
delivery from cloud to edge to the customer premise [11]. However, no single provider will be
able to address this massive opportunity, thus, there will be a need to coordinate resources across
multiple layers of the network infrastructure as well as the federation of services from different
providers in the wide area network (WAN). This type of inter-provider coordination requires the
flexibility to define a specific network topology for a given application and user endpoints as
well as exposing Telco Edge Operator Platform capabilities [9]. Such a system must include a
tighter coupling with application networking for optimal placement of MEC workloads given the
specialized requirements for compute resources and proximity to endpoints.

As enterprises adopt hybrid, multi-cloud strategies to support their digital transformation
initiatives, pressure is mounting on the traditional telco cloud environment to align with the same
level of service agility and developer experience offered by the hyper-scaler cloud providers.
This is driving the need to support multiple providers for different components of the application
infrastructure. For example, a cloud provider could be responsible for portions of the application
infrastructure while a network provider could be responsible for portions of the network
infrastructure and latency-constrained application components. Additionally, the use of the same
MEC environment to support components from multiple application providers will require
different hard or soft isolation techniques at MEC locations. A service provider must also find

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

ways to align to a cloud provider’s edge deployment and operations model with suitable hooks
for tighter visibility and control of the service provider’s network. Service providers will need
tools to do this at scale with the likely need to manage 100s-1000s of highly distributed sites.

In this paper, we propose a Kubernetes-based control plane with built-in intent-driven
automation to address these operational challenges and facilitate deployment of both virtual
machine-based and container-based network functions (VNFs/CNFs) alongside MEC
applications in a hybrid, multi-cloud architecture with a multi-layer connectivity network
underlay.

This paper first describes the use of Kubernetes technologies and extensions to those
technologies introduced as a solution to address the operational challenges implementing a MEC
architecture (section 2). These technologies are then applied as the paper describes deploying a
MEC architecture based on the Kubernetes system (section 3). Finally, the findings and
recommendations based on the work completed are summarized (section 4).

2 Background and Technologies

The European Telecommunications Standards Institute (ETSI) [1] provides a reference
architecture for the deployment of MEC hosts and applications. With the shift to containerized
workloads in a cloud-native environment, ETSI [7, 8] work supports the use of container
management systems such as Kubernetes for providing platform-as-a-service (PaaS) services.
Additionally, the mapping of the ETSI management and orchestration (MANO) information
model to the container workload deployment model enables an approach for implementation
using a Kubernetes model. The MEC architecture can be deployed using a Kubernetes model
and, with extensions, a more complete MEC model can be achieved with virtual machines (VM),
VM to container service chaining, and constraint policy-based connectivity.

ETSI [Section 8 of reference 1] defines MEC service as a service provided and consumed either
by the MEC platform or a MEC application. In the context of this paper, the term is inter-
changeably used for both user application services, e.g., a MEC application like AR/VR
rendering, as well as host or platform services, e.g., traffic management service or domain
network service. As an example, some host level MEC services could be offered by a network
provider while some application level MEC services could be offered by a cloud provider. Some
of these MEC services may be part of the Kubernetes implementation.

2.1 Kubernetes In Brief

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads
and services, that facilitates declarative configuration and automation. It has a large, rapidly
growing ecosystem. It provides a framework to run distributed systems resiliently, providing
standard patterns for application deployment, scaling, failover, security, and load balancing. A
full description of Kubernetes and its capabilities can be found at [10].

Since Kubernetes primarily operates at the container level rather than at the hardware level, it
provides some general features common to PaaS offerings, such as deployment, scaling, load
balancing, and lets users integrate their logging, monitoring, and alerting solutions. There are

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

also extensions to Kubernetes that allow it to manage VM based workloads which will be
discussed later in this section of the document.

Kubernetes is not monolithic, and its default solutions are optional and pluggable. It provides the
building blocks for building platforms but preserves user choice and flexibility where it is
important.

A single Kubernetes deployment is known as a cluster and consists of a set of machines (physical
or virtual) called nodes, which are utilized to host containerized applications. The nodes within a
cluster can be classified as either a control-plane node, where workloads that implement the
Kubernetes system are executed, or a worker node, where primarily application workloads
deployed to the cluster are executed.

The Kubernetes control plane manages the worker nodes and the pods in the cluster, and it
makes global decisions about the use of cluster resources. A Kubernetes pod is a schedulable
entity that is comprised of one or more containers. The control plane components can be run on
any machine(s) in the cluster, however, the usual practice is to run all control plane components
on one or more machines and avoid running user containers on the same machines as the control
plane components.

The following illustrates Kubernetes cluster elements described above [12].

Figure 1 - Kubernetes cluster with all its components

As mentioned, Kubernetes is an extensible system and a key mechanism to extending Kubernetes
is implementing a custom resource definition (CRD). A resource created through this feature can
be used to store and manipulate information in the Kubernetes system. These custom resources
are normally used in combination with a custom Kubernetes controller that interprets the data for
the custom resource type contained in the Kubernetes store and then reacts to changes in the data
(adds, deletes, modifications). This extensibility via CRDs highlights the fact that at its core,
Kubernetes is a declarative based resource management system, and this can be leveraged when
implementing a MEC architecture with Kubernetes.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

2.2 Multi-cluster Strategies

Enterprises are adopting Kubernetes as a platform to enable application portability and agile
deployment across public clouds, private environments, and more importantly on the network
edge to optimize local service performance. This is critical for enterprises running retail,
hospitality, and manufacturing operations with 100’s if not 1000’s of locations where application
infrastructure is needed to support business to consumer (B2C) and business to business (B2B)
applications, as discussed in section 2.8.

Kubernetes supports mechanisms such as pods and name spaces to isolate application
components, and ensure resources are allocated optimally within a multi-tenant edge cluster.
However, as Enterprise MEC applications proliferate at the network edge, industry trends are
starting to emerge to define mechanisms to spread workloads across multiple clusters in different
geographic areas. The chief technical reasons for multi-cluster deployments are:

• Lower latency by deploying applications closer to end users
• Service availability with fail-over support and geo-redundancy
• Workload scalability across distinct physical clusters with specialized resources
• Workload isolation & security with physical separation

The main two dimensions of these multi-cluster trends are the distribution of an application’s
resources and the delegation of lifecycle control of the distributed application resources, (see
Figure 2).

Figure 2 - Multi-Cluster Scheduling Strategies

Distribution of an application’s resources refers to how an operator specifies the initial
distribution of the resources across the available clusters. Distribution may also reference how an
application’s resources are redistributed based on a failure or other event. In a prescriptive
system, the operator specifies the cardinality and location (Kubernetes cluster) for each

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

application resource. In a constraint-based system, the operator specifies the constraints for
application resources, such as CPU, memory, network bandwidth, and network latency to an
internal application resource or another external MEC application. These constraints are used by
a scheduler to determine the optimum placement of the application resources.

Delegation of application resource lifecycle control refers to how the lifecycle of a resource is
managed, including initial assignment to a member cluster, and any reassignment to a different
cluster based on manual intervention or an event. In an open-loop system, once a resource is
delegated to a participating cluster, the resource’s lifecycle is completely managed by that cluster
and will never be removed from that cluster except via an explicit action. In a closed-loop
system, once the resource is delegated to a participating cluster, a feedback loop is used to
monitor the resource and decisions about moving a resource would be based on a defined policy.

Both the distribution and delegation dimensions reflect the level of automation in a multi-cluster
system. Systems that fall to the lower right quadrant (see Figure 2) tend to be more autonomous
where systems that fall to the upper left quadrant tend to be configuration systems that strictly
enact actions in the exact way the operator specifies without any remediation based on failures or
resources violations.

2.3 Node/Cluster Capability Discovery

Applications are increasingly looking to leverage available hardware accelerators (GPUs, TPUs,
etc.) and software data plane technologies (DPDK, VPP, etc.) to meet their performance
requirements. This information is useful to a MEC control plane when placing MEC service
components on inter-connected compute nodes. Leveraging Kubernetes and CNCF projects
enables the deployment to self-discover a node’s capabilities and report or expose those
capabilities to a control-plane to be used during scheduling of workloads. Specifically, the CNCF
node feature discovery project [55] provides this capability by discovering node features and
labeling nodes in a standard format to allow features to be used as part of the standard
Kubernetes scheduling capability. This is of critical importance in space & power constrained
MEC environments, where full visibility of resource capabilities and programmability of the
network infrastructure enable optimal allocation of premium resources.

2.4 Constraint Policy

Kubernetes provides a mechanism for a workload to specify resource constraints that can be used
by the control-plane to influence the node selected when scheduling a workload. The existing
mechanism is simplistic and predefines only the CPU and memory resource. Kubernetes does
allow for other resources to be defined but limits the requested value of those resources to be an
integer without a unit specification.

The system we have developed defines a constraint policy model that allows for arbitrary
resource constraints to be specified and then leveraged by a custom scheduler as well as de-
scheduler [6] extension.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

Figure 3 - Constraint Policy Overview

Figure 3 depicts the model and interaction of the constraint policy extension. A constraint policy
is a set of constraint rules, where each rule is a tuple of constraint name, constraint request, and
constraint limit. The constraint subsystem is designed to be dynamically extensible, and as such
the constraint name is a moniker that is used to locate a constraint provider implementation at
runtime. The implication is that the system does not pre-define any set of constraints. The
constraint request and limit mirror the semantics of the existing resource constraints in
Kubernetes in that a request is the preferred value, and the limit is the “worst” allowed value.

A Constraint offer ① is used to associate a constraint policy to one or more workloads (Pods,
Services, or NSM network chains in the current implementation). The association is discovered
by the Constraint Offer Controller ②, using a selector based on the tuple of Kubernetes
ApiVersion, Kind, and Name. For each association discovered, a Constraint binding ③ is created
to track the specific policy-workload association including its compliance status. Offers are
periodically evaluated and the set of bindings is updated accordingly, deleting bindings that are
no longer valid and creating those that now exist.

The Constraint Binding Controller ④ periodically evaluates the policies against the list of
bindings leveraging the various provider services ⑤. A provider service is identified via a well-
known label based on the constraint name. This allows providers, and thus constraint types, to be

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

dynamically managed. The compliance of a binding is updated as part of the status value for the
binding.

This implementation extends the CNCF de-scheduler project ⑥ to monitor the status of the
bindings and when a binding is found to be non-compliant, the de-scheduler may, based on a
policy setting, evict the pod via the Kubernetes API ⑦.

2.4.1 Network Connectivity Constraints

Utilizing the constraint policy capability, this implementation defines a set of network
connectivity-based constraint providers: bandwidth, latency, and jitter. Using these constraints,
an operator can specify the requirements for connectivity between two or more workloads.

By implementing a declarative model for connectivity within Kubernetes, the network becomes
part of the overall resource model within the environment, opening new automation use cases,
including the ability to declaratively specify constraints that affect the underlay and overlay
networks to meet the operator specified application requirements.

2.5 Scheduling Optimization

By default, the scheduling context for Kubernetes is a single pod. During scheduling, Kubernetes
selects a node and assigns the pod to that node. Once a pod is assigned to a node, the containers
defined within the pod are created and invoked. This can lead to sub-optimal scheduling when
constraint policies (see Section 2.4.1) represent a binding between two or more pods as is the
case with a connectivity constraint. For optimum scheduling, the entire set of connected pods to
be scheduled should be known, and a “plan” should be created such that the pods can be
scheduled according to the optimized plan.

To provide this capability, a scheduler extension was developed that operates as an optimized
schedule plan builder, as well as a gating function to prevent pods from being scheduled until a
trigger is detected. For the initial implementation, we are using a “quiet” timer, but this is easily
extendable to support additional trigger types. The quiet timer simply fires when no new pods are
defined over a specified period, thus the assumption being that all required pods have been
defined and an optimal schedule can be produced.

Before the trigger fires, the scheduler is called repeatedly for each pod. When the planner is
invoked, it queries the list of all unscheduled pods and creates a candidate plan, utilizing any
specified constraints via the constraint policy resources. If the candidate plan is preferred over
the existing plan, the existing plan is replaced by the candidate plan. In either case, an empty
node list is returned indicating to Kubernetes that the pod cannot be placed at this time and the
pod will remain in a “Pending” (non-assigned) state. After the trigger fires and the scheduler is
called, the scheduler uses the plan to determine the node to which to assign the pod. As pods are
assigned to nodes, they will be instantiated, and their containers will be created. At this time the
connectivity-based constraint policy bindings will be created based on the scheduled pods.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

2.6 Network Controller

As described in previous section, the scheduler extension developed as part of this work can
leverage the connectivity-based constraints when scheduling workloads.

During development of the solution, while simulating network latency between two nodes, it was
noticed that the connectivity-based constraints could not be met by the existing network
configuration, causing workloads never to be scheduled, even though the underlying network had
the capacity to meet those constraints. As these conditions could exist in a production
deployment, especially a multi-cluster deployment, the concept of a network controller was
introduced into the solution.

A network controller was represented by a defined interface and could be used by the scheduler
to request network resources when the current network configuration could not meet the
specified constraints. From the perspective of the scheduler, the network controller is an external
entity located by a label on the Kubernetes service resource.

When invoked, the network controller has the flexibility to modify the underlay, overlay
network, and/or network slicing to meet the resource request, returning to the scheduler enough
information so that the pods that will be created can leverage the modified resources. This
information can be used with the network service mesh project to ensure the connectivity to
containers by creating the proper network interfaces and configuration on the containers. When
the existing network does not meet the constraints and the network controller is not able to
modify the network to meet the constraints, the pods will remain in the pending state until the
constraints are modified, or the network comes into compliance.

The network controller was then integrated into the de-scheduler capability. When a
connectivity-based constraint was found to be out of compliance, rather than immediately
evicting the pod for rescheduling, a capability was added to the network controller to mediate
this situation via network configuration. If the network controller is not able to bring the network
back into compliance, then based on policy, pods may be evicted to be rescheduled or the
violation can be ignored to prevent service disruption.

2.7 Common Application Function Model

Telco cloud implementations based on the ETSI network function virtualization (NFV) model
have been in production for several years, delivering data and control plane network functions in
a much more flexible and software-based format. These virtual machine-based VNFs evolved
from the software applications delivered via dedicated hardware appliances for traditional
switching, routing, firewall, and signaling services, among others. From a compute environment
perspective, these network applications are no different than enterprise or consumer type
applications that are delivered from cloud-native environments today, except for requiring
specialized hardware assist for packet processing functions. These functions include protocol
encapsulation and decapsulation, packet header classification, inspection and manipulation, wire-
speed forwarding, encryption, and traffic protection, to name a few. These functions typically
require traffic to be steered through multiple functional blocks that make up a network
application service chain. The implication is that it is possible to describe a common model for

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

service function chaining of network application components independently of the specific
software logic running within these components. This service function chaining specifies the
communication patterns and processing policy for function chaining blocks.

2.7.1 Service Function Chaining

A network function is composed of one or more deployable components. These components can
be inter-connected workloads to provide the overall features intended by the network service.
The workloads form a chain with traffic flow sequence dependencies, and therefore, should be
deployed as a unit on a single compute cluster node for optimal performance. In a hybrid
virtualization configuration, a network function could potentially inter-connect hypervisor and
container-based workloads on the same cluster node. For this reason, the MEC compliant
platform should expose a common network function model to onboard and chain different
workload formats.

Although sub-optimal, there may be cases where service function chains span multiple nodes
within the same cluster or even multiple clusters separated by an edge network. This may result
from constraints imposed on the service chain and the availability of specialized resources such
as GPU or smart NICs required to support hardware accelerated functions. In such cases,
constraints such as network latency, bandwidth, packet delivery guarantees, and traffic balancing
must be taken into consideration when composing the end-to-end service chain through cluster
federation mechanisms and network connectivity constraint policy.

2.7.2 Kubernetes Controllers for Function Chaining

When a purpose-built device and associated objects that consume compute resources are not
directly modeled by Kubernetes, they can be represented through CRDs and the Kubernetes API
can be extended to expose the configuration and capabilities of that new device. A custom
controller can then be implemented to manage the lifecycle and translate the resource data into
instructions that the target device may understand. Once CRDs and controllers are installed in a
Kubernetes cluster, the orchestration of the device can be done through the Kubernetes control
plane by abstracting the interactions through the custom device controller.

Figure 4 - Orchestrating Device Configuration via Kubernetes CRDs

We used this approach to support the orchestration of VM-based and container-based network
functions (NF) on a common operational platform and service chained on a common network
layer. This common orchestration framework was achieved by defining models to abstract the
network function and chaining complexity. The models are then converted to Kubernetes custom
resources with their corresponding controllers. The NF controllers are responsible for
orchestrating a VM or container, based on the specified NF type. The chaining controller can

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

instruct the cluster to establish connectivity between the NFs on the underlying data plane, which
may consist of software-based switching and hardware-based traffic processing.

This orchestration walkthrough for VMs and containers is a simplified and high-level view of
what really needs to occur. Two scenarios can be considered to configure a system that supports
virtualization for both VMs and containers.

1. System with hypervisor engine only with a VM instance running container native
constructs, such as Kubernetes, to host containers.

2. System with both hypervisor and container engines to host VMs.

Figure 5 – CRD Driven Chaining

In the first scenario (Figure 5, left side), VMs are orchestrated through the system's hypervisor.
A VM running Kubernetes is also used to deploy the container-based network functions. The
connectivity between network functions is handled by service chaining the interfaces allocated to
the VMs and then linking the containers with the Kubernetes VM interfaces using container
networking interface (CNI) plug-ins (for example, Multus). In the second scenario, VMs and
containers are orchestrated by their respective virtualization engines. The connectivity between
the network functions is handled by service chaining the interfaces allocated to the VM and
containers. In both cases, the interface allocation is provided by the data plane embedded in the
NFV infrastructure.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 13

In the second scenario (Figure 5, right side), the VM/Kubernetes capable infrastructure is used to
create both the VMs and the containers. The connectivity between the network functions handled
by using the infrastructure interfaces to chain the VM interfaces across the data-plane and then
into the container-based NFs.

2.8 Public/Private Cloud Integration

When architecting a multi-cluster Kubernetes deployment, it is important to understand common
industry deployment models. Currently, it is common that network operators and enterprises
leverage both their private cloud resources and resources available from cloud hyper-scalers such
as Google, Amazon, and Microsoft. Consider a scenario where an Enterprise customer with a
large chain of retail stores is planning the introduction of new cloud native applications for
inventory management, store security, advertising, and in-store customer engagement. This
customer uses one of the major cloud providers to run their own DevOps environment and a
national network operator to inter-connect all their stores to MEC locations, private data centers
and cloud. A key requirement for the Enterprise IT operations team is to unify the management
and delivery of containerized applications to 100’s of locations (premise and edge) while
maintaining a common network and security policy nationally. As Figure 6 illustrates, this leads
to designing a fabric of Kubernetes clusters deployed at many locations, managed through a
cloud provider’s control-plane and interconnected by a network operator that hosts some of the
clusters within the MEC locations.

Figure 6 - Enterprise Multi-MEC Applications

While the capabilities described in the sections above can be deployed into Kubernetes clusters
under the administrative control of the network operator, it is not always possible to deploy these
capabilities on the Kubernetes clusters provided by the hyper-scalers. This is more obvious when
it comes to the aggregation or federated level as each hyper-scaler typically provides a custom
federation solution as one of multiple tightly integrated cloud-based services, i.e., Google
Anthos, Amazon EKS, Microsoft Arc, Rancher, etc.

How these capabilities can be integrated with the various hyper-scalers’ offering depends on the
amount of customization each allows. In the case where a custom scheduler extension cannot be
deployed, this can be “worked-around” by creatively assigning node affinity to resources before

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 14

allowing the hyper-scalers scheduler to be activated. Node affinity is a standard Kubernetes
capability available on all distributions.

This can be implemented by shifting the capabilities described above, particularly scheduling
and de-scheduling, from the Kubernetes domain to a DevOps domain, as depicted in Figure 7. In
this situation, the DevOps pipeline would be leveraged such that when an application is pushed
to storage ①, the pipeline would evaluate the scheduling needs of the workload and augment the
resources with the node assignment encoded as a node affinity configuration ②. Additionally,
the constraint aware scheduler may, depending on availability, contact a network controller
provided by the network provider ③ to request network capabilities compliant with the
constraints specified in the constraint policy. This in turn might trigger the network provider to
reconfigure the underlay network ④. If a network controller is provided by the hyper-scaler, then
the scheduler may also make requests via that interface which could affect both the overlay and
underlay ⑤. After the scheduler updates the manifests and commits those back to storage, the
DevOps pipeline receives the augmented manifests ⑥ and pushes the manifests to the hyper-
scaler managers ⑦. The hyper-scaler managers process the manifests using their standard
schedulers ⑧, adhering to the standard affinity rules, and enact the set node assignment ⑨.

Figure 7 - Using Constraint-Base Scheduling with Public Clouds

Other than the scheduler extension, the described technologies should be able to be leveraged
within a hyper-scaler’s environment as the other technologies either are common user-based
extensions (CRDs + controllers) or components that run outside the core Kubernetes control-

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 15

plane (de-scheduler). The one exception is the network controller, which may require support
from the hyper-scalers to support underlay control, although it is possible to implement a
network controller that only affects the overlay.

3 MEC Architecture on Kubernetes

In this section, we describe how the MEC architecture can be implemented using the de facto
industry standard container orchestration system originally developed by Google, i.e.,
Kubernetes. Figure 8 depicts the standard MEC architecture on the left and on the right depicts
that same architecture with an overlay that indicates the cloud native technologies that can be
leveraged to implement the MEC architecture. The following sections will detail how each
component of the MEC architecture can be implemented using specific cloud native
technologies.

Figure 8 - MEC Architecture with Kubernetes Overlay

3.1 MEC Host

A MEC host is defined as “an entity that contains the MEC platform and a Virtualisation
infrastructure which provides compute, storage and network resources for the MEC applications.
The Virtualisation infrastructure includes a data plane that executes the traffic rules received by
the MEC platform and routes the traffic among applications, services, DNS server/proxy, 3GPP
network, other access networks, local networks and external networks.” [1]. By this definition
the MEC Host is functionally equivalent to a Kubernetes cluster, which is defined as “A set of
worker machines, called nodes, that run containerized applications” [2] The Kubernetes cluster
provides the virtualisation infrastructure and data plane as required by the MEC definition. While
Kubernetes’ original focus was orchestration of containers, several virtualizations extentions
have been added to Kubernetes to provide a run-time for virtual machines and networking.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 16

3.1.1 MEC Virtualization Infrastructure

The virtualization infrastructure of a MEC compliant system should have the ability to
orchestrate hybrid service deployments where VMs and containers can coexist on the same
platform. To achieve this hybrid configuration, there is a need to accommodate VM based
network functions within Kubernetes. A system with such capabilities would have to share
resources (compute, memory, storage, networking) to offer a seamless integration with the
hosting platform. KubeVirt is one of several projects of the Kubernetes ecosystem that can
manage the lifecycle of virtual machines within a Kubernetes cluster while also supporting
container workloads.

Additional solutions and platforms exist that provide VM/container capability through the
Kubernetes declarative model solution. Further, some of these solutions provide a tight
integration with the network interfaces such that they are purpose built to support VM and
container-based network functions.

Today the declarative models used to define VM based resources vary across the available
solutions and most focus primarily on the detailed attributes for creating a VM and less on the
concept of chaining NFs. The solution proposed in section 2.7 bridges this gap by allowing the
specification of network services that can contain both VMs and container-based NFs,
abstracting away the specific virtualization choice and focusing on the connectivity between
those functions. Further, this approach can be extended in the future to support additional
virtualization techniques and/or new infrastructure as it is released by vendors.

3.1.2 MEC Applications

A MEC application “runs a virtualized application … on the infrastructure provided by the MEC
host” [1]. Within Kubernetes, the typical executable workload is known as a pod, which is a set
of containers run on a single Kubernetes node that share storage and networking. As shown
above, with the use of CRDs, Kubernetes can be extended such that a workload may be either a
pod (container) or a VM.

Kubernetes provides several “higher” level resources constructs that help the operator group and
deploy the basic building blocks of an application. These include a Deployment, which is a set of
distinct pod definitions and the cardinality for each of the pod types, as well as a ReplicaSet,
which maintains a stable set of pod instances for a single pod definition. In addition to pods and
other deployment constructs, Kubernetes also provides mechanism to enable load-balancing and
high availability for applications.

These basic building blocks provided by Kubernetes provides the basis on which MEC
compliant applications can be built. Because an application typically requires more than a single
Kubernetes resource, a higher-level application construct can be created using the CNCF Helm
[3] tool. This abstraction allows a MEC application developer to specify any number of
Kubernetes resources as a set and then deploys that set of resources under a single name, thus
allowing a complete application to be deployed instead of dealing with the applications
piecemeal.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 17

At its core, Helm is a template engine that create instances of resources based on defined
templates, parameterized Kubernetes resource definitions, substituting configurable values for
the required parameters. Templates can be core Kubernetes resources as well as CRD defined
resources, thus providing access to the full resource model.

3.1.3 MEC Host level management

As described above, the MEC virtualization infrastructure capability can be provided by
Kubernetes with extensions to support VMs. Through the defined NF CRDs, both VM and
container-based capability can be specified and deploy via a common abstraction. Once
deployed, the Kubernetes control-plane will monitor the lifecycle of the resources accounting for
scalability and high availability. Additionally, Kubernetes provides a security and network
infrastructure to support application deployment.

With the additional of the connectivity-based constraints, scheduler extensions, de-scheduler,
and network controller, Kubernetes provides the base capabilities required of MEC host level
management.

3.1.4 MEC Host Level Scheduling

MEC host level scheduling is the equivalent of scheduling on a single Kubernetes cluster. The
previously described technologies (constraint-based scheduler, optimized scheduler, de-
scheduler, and network controller) work in concert to provide the scheduling of workloads to
nodes.

3.1.5 MEC Host Level Networking

While a single Kubernetes host provides basic MEC host networking capabilities, through the
use of add-on capabilities such as the network service mesh (NSM), additional MEC host (or
Kubernetes intra-cluster) networking can be leveraged. A key consideration when deploying a
NSM into a Kubernetes cluster is the ability to declaratively define the network connectivity
such that there is a separation of concerns between the development of the application and the
deployment of the application., i.e., the expected connectivity should not be “baked” into the
application code and instead be left to deployment (declarative) configuration. This can be
achieved with the NSM implementation.

A network function deployed within a MEC host must focus on serving its intended purpose and
should remain unaware of any chaining requirements with other network functions. The Network
Service Mesh framework (NSM) in the Kubernetes eco-system fills the role of creating chains
and managing the assignment of a network function within a chain. It does so by augmenting
orchestrated network functions with a sidecar container and controlling the interactions between
the sidecars. The NSM manager can then implement the desired topology by establishing links
between sidecars through the NSM data plane.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 18

3.2 MEC System Level Management

The Cloud Native Computing Foundation (CNCF) has defined a special interest group, the
Multi-cluster Special Interest Group (SIG), whose charter specifies that this SIG focuses on
“solving common challenges related to the management of multiple Kubernetes clusters”. [4] As
indicated above, if a MEC Host represents a single Kubernetes cluster, then the MEC system
level management is meant to manage multiple MEC Hosts and thus multiple Kubernetes
clusters.

The CNCF Multi-cluster SIG facilitates the development of a solution for deploying workloads
across multiple Kubernetes clusters known as “KubeFed”. KubeFed allows an operator to
specify the cardinality and location of workloads that are part of an application. Thus, an
operator can deploy an application and prescriptively control which cluster a pod is deployed on
and how many instances of that Pod are deployed to that cluster. While this is required, it is not
sufficient for an autonomous MEC system that can deploy MEC services based on their
compute, storage, network, and other resource constraints. Sections 2.4, 2.5, and 2.6 describe a
constraint policy extension to Kubernetes that can be applied to a multicluster Kubernetes
deployment to provide the capability to deploy MEC services across multiple MEC hosts based
on operator specified constraints.

3.2.1 Why Multi-MEC Host is needed

In modern deployment architectures, a single MEC host is not always sufficient to meet the MEC
service requirements for latency and/or performance. MEC services will be designed around
network and performance bottlenecks, but these designs cannot always compensate for the
limitations imposed by the constraints of a single MEC host.

To truly meet the requirements of modern and near future MEC services, deployments must take
advantage of multiple MEC host deployments where some of the MEC hosts may be “network
close” to the end client with lessor compute power, commonly called edge, and other hosts may
be “network distant” with greater computer power.

It is important when deploying a MEC application across multiple MEC hosts that the MEC
application is not “topology aware” in that it is not aware of the network location of the compute
nor the network on which it is deployed. Instead the MEC applicaiton must specify the
constraints it requires and allow the “MEC control-plane” to allocate resources to meet the
specified constraints. Providing this separation of concerns between the MEC application and
the MEC control-plane allows operators to better align their resources and provide the expected
quality of service (QOS) to their clients.

3.2.2 MEC and Edge Computing

Edge computing is the delivery of computing capabilities to the logical extremes of a network to
improve the performance, operating cost and reliability of applications and services to the user of
the services.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 19

As ETSI GS MEC 003 document [1] states, “Multi-access Edge Computing enables the
implementation of MEC applications as software-only entities that run on top of a Virtualization
infrastructure, which is located in or close to the network edge.”

While this means that MEC can define a network edge capability, it is also true that MEC can
define a metro or central data center. In the context of MEC, any Kubernetes cluster is
considered a MEC host regardless of the “nearness” to any given client. As such, at the system
level, MEC hosts create a mesh of connectivity that can be leveraged by users that deploy MEC
applications.

A MEC location capability is simply the MEC host that is “network near” the client of a given
MEC application. Thus, any given MEC host may be at the edge to some client regardless of its
actual location.

Figure 9 - Depiction of a Kubernetes Cluster Mesh

The illustration above shows an example of how Kubernetes clusters can be inter-connected to
represent a MEC host mesh. While some of the clusters are labeled “Edge” or “Upstream” it is
important to note that all clusters are functionally equivalent. Where the cluster may differ is in
resource capacity or nearness to a given client, but these are operator deployment choices, and an
“Edge” could have just as much or more capacity as an “Upstream” cluster.

Based on the above, it is possible to qualify existing or purpose-built MEC hosts as edge clouds
for placement of services required by applications that use them.

This edge computing requirement driven optimization of network and compute resources also
can be achieved by re-configuration of the underlay connecting MEC hosts.

3.2.3 MEC System Level Scheduling

At the Kubernetes multi-cluster (multi-MEC host level), scheduling is provided via the KubeFed
project. At the federation level, the scheduling process changes from scheduling a single pod to a
node to delegating or replicating Kubernetes resources to a cluster. The constraint-based

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 20

scheduling described above in the context of a single cluster can be applied at the system level
with minor additions to the capabilities.

In KubeFed’s existing implementation of scheduling, an operator specifies how a resource is
federated across the set of member clusters. This includes the specification of the cluster as well
as the cardinality of a resource assigned to that cluster. There is a capability to allow the
federation to be ratio-based as opposed to completely explicit, but this still equates to a
prescriptive federation.

By augmenting KubeFed’s scheduling algorithm, as it does not provide the same extension
mechanism that base Kubernetes provides, constraint-based scheduling, including connectivity-
based constraints, can be achieved. Instead of specifying a cardinality and a cluster, the
cardinality and connectivity constraints can be specified allowing the scheduler to place the
workloads across the multiple clusters. After the workloads are placed, the constraints can be
monitored and upon violation, the resources can be rescheduled within the currently assigned
cluster or to another cluster.

3.2.4 MEC System Level Networking

Kubernetes does not provide inter-cluster networking capability natively nor as part of KubeFed
project. CNCF provides multi-cluster DNS capability that can be used in a multi-cluster
deployment.

Inter-cluster connectivity can be facilitated via the exposing of cluster services via a standard
Kubernetes ingress controller or the NSM. Additionally, as part of the scheduling process, a
network controller can be used to establish new network paths or modify existing paths.

When using an ingress controller, the services provided through a given cluster are exposed on a
public IP address and port. This allows services from other clusters to access these services. The
downside of this approach is that it only supports layer 3 (L3), and in some implementations only
HTTP connections.

With an NSM implementation, inter-cluster networking can be established through peer to peer
connections between NSM managers in each cluster. This allows the establishment of layer 2
(L2) and L3 connections. Further, using sidecars, this connectivity can be declarative,
maintaining the SOC between application development and application deployment.

Where a network controller can be integrated, either through a scheduler extension or a DevOps
pipeline, new network connections can be established that meet the connectivity-base constraints
specified via the constraint policy system. Between the use of the network controller and the
NSM complex, inter-cluster networking scenarios can be supported.

4 Summary

This document described extensions and additions to the standard Kubernetes deployment that
provide constraint-base, specifically connectivity-based constraints, scheduling of Kubernetes
workloads. Additionally, support for VM as well as container-based workloads was introduced,

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 21

including chaining of those workloads. How these capabilities can be applied to a single
Kubernetes cluster and a federation of Kubernetes clusters was described. Additionally, how
these technologies could be applied to non-operator cloud capabilities (i.e., hyper-scaler
Kubernetes clusters) was described.

This document then showed how the Kubernetes-based technologies could be deployed to
provide an architecture that is compliant with the MEC architecture and how the components of
the Kubernetes deployment map to the MEC architecture.

In summary, this document has shown how a MEC compliant multi-host system can be deployed
using existing CNCF projects with a few key extensions providing a declarative based,
autonomous system for MEC service deployments.

Abbreviations and Definitions

API application programming interface
AR/MR augmented and mixed reality
BSS/OSS business support system / operations support system
B2B business to business
B2C business to consumer
CNCF Cloud Native Computing Foundation
CNF cloud-native network function
CNI container networking interface
CRD custom resource definition
CSP communication service providers
DNS domain name service
ETSI European Telecommunication Standards Institute
HTTP hypertext transfer protocol
K8s Kubernetes
L2 layer 2 networking
L3 layer 3 networking
MEC multi-access edge computing
NF network function
NFV network function virtualization
NSM network service mesh
NFVO network function virtualization orchestration
MANO management and orchestration
PAAS platform as a service
QOS quality of service
SCTE Society of Cable Telecommunications Engineers
SIG special interest group
SOC separation of concern
VM virtual machine
VNF virtual network function

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 22

WAN wide area network

Mixed Reality Merging of physical and virtual worlds to produce new

environments and visualizations, where physical and digital
objects co-exist and interact in real time.

Augmented reality Related to Mixed Reality term, and it takes place in the physical
world, with information or objects added virtually.

Edge Computing The delivery of computing capabilities to the logical extremes of
a network in order to improve the performance, operating cost
and reliability of applications and services. By shortening the
distance between devices and the cloud resources that serve
them, by reducing network hops, edge computing mitigates the
latency and bandwidth constraints of today's Internet, ushering in
new classes of applications. In practical terms, this means
distributing new resources and software stacks along the path
between today's centralized data centers and the increasingly
large number of devices in the field, concentrated, in particular,
but not exclusively, in close proximity to the last mile network,
on both the infrastructure and device sides.

Edge Cloud Cloud-like capabilities located at the infrastructure edge,
including from the user perspective access to elastically-
allocated compute, data storage and network resources. Often
operated as a seamless extension of a centralized public or
private cloud, constructed from micro data centers deployed at
the infrastructure edge. Sometimes referred to as distributed
edge cloud.
Implementation of these capabilities with Kubernetes clusters is
this paper’s focus.

References
[1] ETSI GS MEC 003 v2.2.1 (2020-12): Multi-access Edge Computing (MEC); Framework and
Reference Architecture; European Telecommunications Standards Institute;
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_MEC003v020201p.pdf

[2] Kubernetes Documentation: Glossary (10-AUG-2021);
https://kubernetes.io/docs/reference/glossary/?all=true#term-cluster

[3] Helm: project home page (10-AUG-2021); https://helm.sh/

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.02.01_60/gs_MEC003v020201p.pdf
https://kubernetes.io/docs/reference/glossary/?all=true#term-cluster
https://helm.sh/

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 23

[4] CNCF Multicluster Special Interest group (10-AUG-2021);
https://github.com/kubernetes/community/tree/master/sig-multicluster

[5] CNCF Node Feature Discovery (10-AUG-2021); https://github.com/kubernetes-sigs/node-
feature-discovery

[6] CNCF Descheduler (10-AUG-2021); https://github.com/kubernetes-sigs/descheduler

[7] ETSI GR NFV-IFA 029 V3.3.1 (2019-11): Network Functions Virtualisation (NFV) Release
3; Architecture; Report on the Enhancements of the NFV architecture towards "Cloud-native"
and "PaaS"; European Telecommunications Standards Institute;
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-
IFA029v030301p.pdf

[8] ETSI GS NFV-IFA 040 V4.2.1 (2021-05): Network Functions Virtualisation (NFV) Release
4; Management and Orchestration; Requirements for service interfaces and object model for OS
container management and orchestration specification; European Telecommunications Standards
Institute; https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/040/04.02.01_60/gs_NFV-
IFA040v040201p.pdf

[9] Global System for Mobile Communications (13-AUG-2021): 5G Operator Platform;
https://www.gsma.com/futurenetworks/5g-operator-platform/

[10] Kubernetes Documentation (13-AUG-2021): https://kubernetes.io/docs/home/

[11] Mobile Experts, “Edge Computing for Enterprises” (July 2019); https://mobile-
experts.net/Home/Report/1152

[12] Kubernetes Components (13-AUG-2021),
https://kubernetes.io/docs/concepts/overview/components/

https://github.com/kubernetes/community/tree/master/sig-multicluster
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/kubernetes-sigs/node-feature-discovery
https://github.com/kubernetes-sigs/descheduler
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/029/03.03.01_60/gr_NFV-IFA029v030301p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/040/04.02.01_60/gs_NFV-IFA040v040201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/040/04.02.01_60/gs_NFV-IFA040v040201p.pdf
https://www.gsma.com/futurenetworks/5g-operator-platform/
https://kubernetes.io/docs/home/
https://mobile-experts.net/Home/Report/1152
https://mobile-experts.net/Home/Report/1152
https://kubernetes.io/docs/concepts/overview/components/

	Table of Contents
	1 Introduction
	2 Background and Technologies
	2.1 Kubernetes In Brief
	2.2 Multi-cluster Strategies
	2.3 Node/Cluster Capability Discovery
	2.4 Constraint Policy
	2.4.1 Network Connectivity Constraints

	2.5 Scheduling Optimization
	2.6 Network Controller
	2.7 Common Application Function Model
	2.7.1 Service Function Chaining
	2.7.2 Kubernetes Controllers for Function Chaining

	2.8 Public/Private Cloud Integration

	3 MEC Architecture on Kubernetes
	3.1 MEC Host
	3.1.1 MEC Virtualization Infrastructure
	3.1.2 MEC Applications
	3.1.3 MEC Host level management
	3.1.4 MEC Host Level Scheduling
	3.1.5 MEC Host Level Networking

	3.2 MEC System Level Management
	3.2.1 Why Multi-MEC Host is needed
	3.2.2 MEC and Edge Computing
	3.2.3 MEC System Level Scheduling
	3.2.4 MEC System Level Networking

	4 Summary

	Abbreviations and Definitions
	References

