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1. Introduction 
This paper will detail the design and implementation of a cloud-based application to enable DOCSIS 
Time Protocol (DTP) deployment. This application is unique to the cable environment and its 
implementation can serve as a reference design for future cable cloud applications. 

The key components of the app will be a database and an application programming interface (API). The 
application can be implemented on multiple cloud platforms. We chose to prototype our application on 
Amazon Web Services (AWS). The architecture design will follow the AWS Well-Architected 
Framework to leverage the benefit of the cloud and will provide horizontal scalability, pay-as-you-go cost 
structure, and high availability. The application will also be designed for service assurance, which is 
critical in field deployments. All cloud-based components and a CMTS emulator with the API client will 
be implemented on AWS. 

DTP was invented in 2011 by John Chapman of Cisco [1], in anticipation of using the DOCSIS network 
to provide timing as a service (TaaS). In 2012, DTP was standardized as part of DOCSIS 3.1 [2]. This 
version of DTP defined the core algorithm and functionality. Since the primary use case for DTP is 
mobile backhaul over DOCSIS, CableLabs introduced the SYNC specification [3] in 2020 to address this 
use case. As part of the SYNC specification initiative, Elias Chavarria and John Chapman from Cisco 
redesigned the DTP algorithm to bypass a set of limiting assumptions in the original DTP design [4]. 
Also, in 2020, a group of companies, including Cisco, Hitron, Charter, and CableLabs, did a proof of 
concept (PoC) to validate the performance of DTP. The test results of the proof of concept are reported in 
a separate Society of Cable Telecommunications Engineers (SCTE) paper this year [5] and a CableLabs 
technical report [6]. 

At its core, DTP allows a DOCSIS network to interface its native timing and frequency to external timing 
protocols. To do this, DTP establishes a set of techniques and DOCSIS signaling messages between the 
cable modem (CM) and the cable modem termination system (CMTS). 

In the original DTP design, the DTP messages contained CM and CMTS timing parameters. The 
underlying assumption was that the timing parameters for the CM could be measured separately from the 
CMTS ones before deployment. The timing parameters in the CMTS and CM would have been scalable 
in this distributed measurement model. For the assumption to be valid, a testing device capable of 
measuring those timing parameters needs to exist. However, no such testing device exists. Therefore, the 
usability of the original DTP design was limited. For this reason, DTP was redesigned as part of the 
SYNC specification effort [2]. 

In the redesigned DTP, the timing parameters are no longer measured separately for the CM and the 
CMTS, they are instead measured jointly. With this change, existing testing devices in the market can be 
used. A consequence of this change is that the number of measurements grows from linear to exponential. 
If 𝑛𝑛 number of CMTS products and 𝑚𝑚 number of CM products support DTP, the original DTP design 
required 𝑛𝑛+𝑚𝑚 measurements of timing parameters. The redesigned DTP calls for 𝑛𝑛 ∗ 𝑚𝑚 measurements of 
timing parameters. 

The values of the DTP timing parameters that a DOCSIS network should use also depend on the CMTS 
and CM configuration, e.g. the interleaver configuration. For example, if there are 𝑤𝑤 number of different 
interleaver configurations, the total number of measurements of timing parameters grows to 𝑛𝑛 ∗ 𝑚𝑚 ∗ 𝑤𝑤. In 
Phase 2 of the DTP PoC that Cisco, Hitron, Charter, and CableLabs are conducting [5], they will assess 
the impact of other configuration parameters, e.g., modulation, cyclic prefix, and frame size. If all these 
configuration parameters impact the DTP timing parameters, the total number of measurements will 
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continue growing exponentially. Assuming 𝑥𝑥 different modulations, 𝑦𝑦 different cyclic prefixes, and 𝑧𝑧 
different frame size, a total of 𝑛𝑛 ∗ 𝑚𝑚 ∗ 𝑤𝑤 ∗ 𝑥𝑥 ∗ 𝑦𝑦 ∗ 𝑧𝑧 timing measurements would be required. 

The cable industry has two options to handle the measurement, storage, update, and accessibility of all the 
DTP timing measurements. One option is for every CM and CMTS vendor to do everything by itself, 
which would lead to a replication of effort and resource investments with little added value for the 
vendors. The second option is for a common entity, such as CableLabs, to lead the measurement, storage, 
update, and accessibility of the DTP timing parameters. This second option allows the cable ecosystem – 
both vendors and operators – to leverage a shared pool of resources. The opinion of the authors is that the 
second option is more feasible for the cable industry. To make this second option a reality, the authors 
propose a cloud application, as discussed in the following sections. 

The DTP calibration includes three major steps: 1) collect the calibration data; 2) build a cloud app that 
distributes the data; and 3) a CMTS to access and apply the calibration data. The DTP calibration test 
could be conducted in many test labs. For example, CableLabs/Kyrio established a Network Timing Lab 
that could evaluate the DTP performance and collect the calibration data. One of the key contributions of 
this paper is to present the design of API and the AWS cloud server that distributes the calibration data. 
The CMTS will access the database to obtain calibration values in real-time via the API. Using these 
values, the CMTS will calculate the timing offsets for the CM and the 5G radios. CableLabs expects to 
continuously sponsor the application to enable the commercial deployment of DTP. 

2. DTP Calibration Method 
In this section, we further explain why DTP needs calibration and how to do the calibration. The DTP 
timing diagram is shown in Figure 1, where DS-T and US-T denote downstream (DS) and upstream (US) 
delays inside the CMTS, DS-H and US-H are DS and US delays in the hybrid fiber-coaxial (HFC) plant, 
and DS-C and US-C are DS and US delays caused by the CM. The CMTS sends the DOCSIS 3.1 
timestamp. The timestamp is delayed when it arrives at the CM. In other words, the timestamp that 
arrived at the CM represents an early version of the CMTS timestamp. The time error (TE) is in the DS 
only. Ideally, DS-T, DS-H, and DS-C should be measured separately and used by DTP. However, 
DOCSIS does not provide the reference points to measure these delays. DTP provides a practical way to 
calibrate the DOCSIS 3.1 timestamp using the true ranging offset (TRO). 

 
Figure 1 - DTP Timing [3] 

DTP messages are exchanged between CMTS and CM, see Figure 2 for the case when the CMTS is the 
DTP master and the CM is the DTP slave. The CM measures the round-trip delay as the TRO. The CM 
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reports the TRO to the CMTS in the “DTP-Response” message. The CMTS sends the time adjustment t-
adj, or t-cm-adj, to the CM using the “DTP-Info” message. The t-cm-adj is approximately equal to half of 
the TRO. The CM timestamp over its CM to CPE interface (CMCI) ports is equal to the DOCSIS 3.1 
timestamp plus t-cm-adj. The t-cm-adj corrects the time error in the network. Note that the propagation 
delay through coaxial cable and fiber is theoretically symmetrical. 

 
Figure 2 - DTP Message Flow [3] 

If t-cm-adj is set to be half of the TRO, t-cm-adj cannot correct asymmetrical delay (different in DS and 
US). The asymmetrical delay is introduced by devices like CMTS, CM, remote physical RF layer (R-
PHY) and remote physical and MAC layers (R-MACPHY), and any HFC elements. This asymmetrical 
delay needs to be measured in lab for each pair of CMTS and CM combos. The measured asymmetrical 
delay could be computed at the CMTS. For example, the following method is supported by the Cisco 
integrated CMTS (I-CMTS) cBR-8: 

t-cm-adj = t-tro/2 + y,          (1) 

where y is an additional time adjustment that applies in the CMTS to calibrate the DS delay in the 
DOCSIS 3.1 timestamp. This approach is described as method 2 in Section 5.4 in [6]. CM location, plant 
length, and other symmetrical TE are taken care of by the TRO. The asymmetrical TE is addressed by the 
additional time adjustment y. This additional time adjustment y can be mapped to formula (18) in the 
SYNC spec [3], which we copy here: 

t-cm-adj = t-cm-adj-R + [t-tro + t-hfc-ds-o – t-hfc-us-o – t-tro-R]/2,   (2) 

where t-cm-adj is the live time adjustment that the CMTS sends to the CM, while t-cm-adj-R is the value 
of the DTP time adjustment used in the calibration test that brings the average PTP two-way time error to 
zero [3]. Similarly, t-tro is the live TRO that the CM measures and sends to the CMTS. t-tro-R is the TRO 
reported by the CM in the lab calibration test. t-hfc-ds-o and t-hfc-ds-o represent any fixed delay elements 
in the HFC plant that contribute to delay [2], in DS and US, respectively. t-hfc-ds-o and t-hfc-ds-o are 
provided by the CMTS to the CM. 

The above formula can be rearranged as: 

t-cm-adj = t-tro/2 + [t-cm-adj-R + t-hfc-ds-o/2 – t-hfc-us-o/2 – t-tro-R/2],  (3) 

Comparing Eq. (3) to Eq. (1), we get that: 

y = t-cm-adj-R + t-hfc-ds-o/2 – t-hfc-us-o/2 – t-tro-R/2.     (4) 
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Note that if the HFC plant is assumed to introduce no asymmetry, i.e., t-hfc-ds-o/2 = t-hfc-us-o/2, then 
Eq. (4) is further simplified as: 

y = t-cm-adj-R – t-tro-R/2.        (5) 

Eq. (5) captures the asymmetry in the reference-length plant (see Section 6.4.1.1 in [3]) introduced jointly 
by the I-CMTS and CM (in an I-CMTS architecture), or jointly by the RPD and the CM (in an R-PHY 
architecture). In DTP calibration, the values for t-cm-adj-R and t-tro-R that make the average PTP two-
way time error to zero will be measured in the lab and the additional time adjustment y will be distributed 
by the AWS database. t-tro and t-cm-adj in Eq. (1) will be calculated lively in the field. 

In summary, as shown in Figure 3, DOCSIS 3.1 timestamp is used in DOCSIS 3.1 networks that include a 
delay in DS. DTP uses TRO to correct the symmetrical part of the DS delay. DTP calibration further 
corrects the asymmetrical part of the DS delay. For example, DTP calibration reduced the time error from 
3,223,800 ns to 13-31 ns as reported in Section 8.4 in [6]. 

CMTS CM
DOCSIS 3.1 timestamp

DTP

DOCSIS 3.1 timestamp includes the downstream 
time delay due to HFC plant length and equipment 
impairment.

DTP improves DOCSIS 3.1 timestamp accuracy:
• Using TRO that corrects the symmetrical time error;
• Still has asymmetrical time error.

Calibrated DTP further improves DOCSIS 3.1 timestamp 
accuracy:
• Using TRO that corrects the symmetrical time error;
• DTP calibration corrects the asymmetrical time error.

CMTS CM
DOCSIS 3.1 timestamp

Calibrated DTP
CMTS CM

DOCSIS 3.1 timestamp

 
Figure 3 - DOCSIS 3.1 Timestamp, DTP and DTP Calibration 

3. DTP Calibration Cloud Database Design 
On a high-level, the primary components of the DTP calibration cloud database are – a database, a web-
based graphical user interface (GUI) to provide a human interface for the lab engineer to add, read, and 
delete the DTP calibration entries, and an API framework to provide a machine interface for the CMTS to 
fetch the DTP calibration entries. Since the components to be implemented were functionally fairly 
uncomplicated, the decision to select a cloud provider was also relatively uncomplicated. AWS was 
selected as the cloud provider for DTP calibration since it is the most mature and enterprise-ready 
provider [7]. 

AWS provides multiple different methods to implement the abovementioned three components depending 
on the amount of modularity required in the system design. Figure 4 shows three possible system designs 
to implement a database, a web GUI, and an API in AWS with varying levels of modularity. Figure 4(a) 
illustrates implementing the three components within a single compute instance. While this approach 
provides vertical scaling capabilities, it offers limited flexibility and availability benefits. In Figure 4(b), 
the database is transitioned out to its own module while the web GUI and API reside on a single compute 
instance. Disaggregating the database offers added benefits of leveraging a database management system 
to abstract away the setup, operation, and scaling tasks. In Figure 4(c), all three components are 
implements in their own module. This approach provides the most modularity in terms of allowing 



  

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7 

independent management and innovation of each component while hiding the complexity of each part 
behind an abstraction and interface. 

 
Figure 4 - Possible System Designs of the DTP Calibration Cloud Database 

The complete framework of the DTP calibration cloud database is shown in Figure 5. The database is 
hosted using Amazon Relational Database Service (RDS), the web GUI is running on an Elastic Compute 
Cloud (EC2) instance, while the API framework includes Amazon API Gateway as the frontend and 
AWS Lambda service as the backend. To validate the end-to-end functionality of the cloud application, a 
CMTS emulator was developed to test sending requests and receiving responses from the cloud 
application. 

 
Figure 5 - Functional Design Diagram of DTP Cloud Calibration Database 

Since the structure of the data to be stored in the database is not expected to change frequently, a 
relational database was selected as the database type. Amongst the different relational database engines 
available, MySQL was chosen as it is open-source and provides sufficient flexibility to run on any 
operating system. A Python script was developed to instantiate and create the database schema allowing 
for any possible changes in the future. Database reliability could be enhanced by utilizing the RDS Multi-
AZ (Availability Zone) functionality provided by AWS wherein a standby database instance is 
automatically created in another AZ and data is synchronously replicated between the two instances. 

The web GUI is implemented in Python using Flask [8]. Flask was selected as the web framework as it 
allows for easy addition of libraries or plugins for an extension and comes with a built-in development 
server and fast debugger. Additional modules for handling forms and enabling login using username and 
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passwords were implemented using Flask extensions. The web GUI provides the user with the capability 
to add new calibration entries to the database, read existing entries from the database, update existing 
entries in the database, and delete any existing entry from the database. 

AWS offers two types of API Gateways – HTTP-based and websocket-based. HTTP APIs were selected 
as the API Gateway type since the communication between the CMTS and the cloud application is 
expected to be stateless and not based on stateful real-time two-way communication applications such as 
chat apps or streaming dashboards which require websocket APIs. Amazon’s HTTP API Gateway 
provides API proxy functionality and low-latency, cost-effective integrations with other AWS services. 
Both HTTP GET and POST methods are implemented to enable sending query parameters via the URL of 
the GET request and the request body of the POST message. Since the connection between the CMTS and 
the cloud application is not expected to be persistent and would be infrequent (only when there is a new 
configuration pairing of CMTS-CM), the API backend also does not require persistent compute. 
Therefore, serverless Lambda functions are used in the API backend to consume compute resources only 
when needed – in case of an incoming request from a CMTS. The API Gateway is configured to pass the 
query/payload received from the client to the Lambda function and return the function’s response to the 
client. A Lambda function is developed to run a database read query based on the received query/payload 
parameters (CMTS-CM Hardware-Firmware versions) and return the result (timing parameters) along 
with a valid HTTP status code. 

The CMTS emulator is essentially an API client developed to test the responses of the cloud application 
by sending HTTP requests to the API Gateway with different Hardware-Firmware combinations. The 
content-type is set to application/json for these requests and responses. JSON is used as the payload 
format as it is lightweight and is suitable for both human reading and machine parsing. The motivation 
behind developing this emulator is to demonstrate the work needed by CMTS vendors to enable the 
remote collection of timing parameters from the cloud application. 

The current application design also supports adding calibration entries, in addition to reading them, using 
the API Gateway and Lambda function framework. This would allow automation in the calibration 
process wherein a large number of timing entries could be added in the database without requiring manual 
work. Application security is considered at two levels: (i) API level: Access to the API can be restricted 
by either using HTTP request parameters-based authorization (such as username/password) or by using 
token-based authorization (such as JSON Web Token, JWT), and (ii) Network level: Access to the virtual 
network where the API framework is hosted can be restricted to known CMTS IP addresses only. 

4. DTP Calibration Cloud Database API Design 

4.1. Cloud App Message Flow 

The message flow between the AWS server and CMTS is HTTP-based, as shown in Figure 6. HTTP uses 
TCP as transport layer to provide reliable network transmission using acknowledgments. Our DTP API 
uses “HTTP request” and “HTTP response” to exchange information between the CMTS and AWS 
server. The CMTS (client) sends Cal-data Request to the server that is contained in the HTTP Request. 
The Cal-data Request message includes network architecture and hardware/firmware combinations, see 
Section 4.2. The server sends Cal-data Response to the client that is contained in the HTTP Response. 
The data elements contained in the Cal-data Response message is described in Section 4.2.  

The client sets a timer (i.e., 500 ms) using a status code when sending the Cal-data Request message. The 
client checks the status code and the received calibration data. If failure, the client resends the Cal-data 
Request message. The AWS server may provide multiple IP addresses for redundancy, and the client may 
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try another server IP address if failure over five times. There could be three failure reasons: 1) timer 
expired; 2) network architecture and Hardware/Firmware combinations do not match requested data; and 
3) calibration data (test configurations or measured time error results) incomplete. 

 

 
Figure 6 - HTTP and DTP Calibration Message Flow 

4.2. Cloud App Data Structure 

The data structure is illustrated in Table 1. Cal-data Request message only includes the first two data 
elements: network architecture and hardware/firmware combinations. Cal-data Response message 
includes all elements listed in Table 1. DTP could be deployed on the traditional network with I-CMTS 
and distributed access architecture (DAA). DAA also includes remote-PHY and remote -MACPHY. 
Network architecture is represented by two bits. Hardware and firmware combinations includes make, 
hardware and firmware version of I-CMTS chassis, I-CMTS line card, RPD (for DAA only), and CM. 

Test configurations considered in the initial version of the cloud app include DS modulation scheme, DS 
interleaver, DS cyclic prefix, US modulation scheme, US cyclic prefix, and US frame size. DTP PoC [5] 
phase 2 testing is evaluating the impact of each parameter. Parameters that do not strongly impact DTP 
performance will be removed from Cal-data Response message. Other parameters that strongly influence 
DTP performance but are not listed above will be added to the Cal-data Response message. 

Table 1 - Example Data Structure. 

Network 
Architecture 

Hardware & 
firmware 

combinations 

Testing 
lab 

Testing 
date 

Test 
configurations 

Additional time 
adjustment y 

(ns) 

Constant 
Time Error 

(ns) 
 
 

I-CMTS Combo 1 CableLabs 
11/1/2020 Config 1 200,000,000 -50  
11/1/2020  300,000,000 …  
11/2/2020 Config N 400,000,000 100  

DAA Combo 2 CableLabs 
12/1/2020 Config 1 200,000,000 50  
12/1/2020  300,000,000 …  
12/1/2020 Config N 400,000,000 -100  
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5. Conclusion 
4G/5G mobile networks require a high-accuracy synchronization source in the backhaul where the GPS 
signals are unavailable. DTP provides such sync signals in the backhaul over HFC networks. DTP needs 
automated calibration in the field to guarantee time accuracy. 

This paper presented the DTP calibration method and design of a cloud app that distributes the calibration 
data. The cloud app is prototyped on AWS. A modular application design is developed allowing to 
leverage various cloud benefits such as abstraction, automation, and high-availability. The web GUI is 
implemented in Python using Flask allowing an engineer to add, read, and delete the DTP calibration data 
entries. The API uses HTTP protocol with JSON as the data format, and calibration data message flow 
was designed. Security and reliability enhancement features are considered and will be added based on 
costumers’ requirements. Future work of automated DTP calibration includes collecting calibration data 
in test labs and adding them into the AWS database via the Web GUI. CMTS will need to add the 
corresponding feature to inquiry and apply the calibration data automatically. Proof-of-concept test for the 
AWS cloud app and automated DTP calibration is planned in the near future [5]. 

Abbreviations 
API application programming interface 
AWS Amazon Web Services 
AZ availability zone 
CM cable modem 
CMTS cable modem termination system 
cTE constant time error 
DAA distributed access architecture 
DOCSIS Data-Over-Cable Service Interface Specification 
DS downstream 
DTP DOCSIS Time Protocol 
EC2 elastic compute cloud 
GUI graphical user interface 
HFC hybrid fiber-coaxial 
I-CMTS integrated cable modem termination system 
PoC proof of concept 
RDS Relational Database Service 
RPD remote physical layer device 
R-PHY remote physical RF layer 
SCTE Society of Cable Telecommunications Engineers 
TaaS timing as a service 
TE time error 
TRO true ranging offset 
US upstream  
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