

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 1

A Common Remote PHY Software Stack for all RPDs?

A Technical Paper prepared for SCTE by

Michael Robinson
Remote PHY Software Architect
Comcast Cable Communications

1701 JFK Blvd – Philadelphia, PA 19103
+1 (404) 723-7847

michael_robinson2@comcast.com

Jorge Salinger
VP, Access Architecture

Comcast Cable Communications
1701 JFK Blvd – Philadelphia, PA 19103

+1 (215) 439-1721
jorge_salinger@cable.comcast.com

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Typical Cable Access Network .. 3
3. Benefits of DAA ... 4
4. Common Issues Faced with RPD Deployments ... 5
5. Solutions Attempted To Date .. 7
6. Collaborating on a Single Software Solution ... 7

6.1. Chosing the Target Hardware .. 8
6.2. RPD Software Architecture .. 8

7. Managing the Software ... 9
7.1. Deciding on the Build Framework .. 9
7.2. The Yocto Project: Layers and Recipes ... 10
7.3. Organization of Layers in the RPD Project .. 10
7.4. Managing the Layers .. 11

8. What Comes Next? ... 11
9. Conclusion ... 12

Abbreviations .. 12

List of Figures

Title Page Number
Figure 1 – DAA Implementation Components .. 4
Figure 2 – Functional CMTS-RPD Interoperability Matrix ... 6
Figure 3 – RPD Software Architecture .. 8
Figure 4 – Yocto Layers for the RPD Project .. 10
Figure 5 – Example Selection of Yocto Layers ... 11

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 3

1. Introduction
We have all heard the term “Software Fragmentation”, especially in the context of mobile device
applications. Software fragmentation occurs because of the variety of hardware and software platforms.
As a consequence, applications may not be compatible with that new hardware, forcing the need for
application changes or the need for another application altogether.

The above also happens with Remote PHY Devices (RPDs). A single cable MSO will typically deploy
RPDs from multiple suppliers, each with a different application software, and even multiple RPDs from
the same supplier that have different hardware components and require different application software.
Although RPD software design is based on common specifications, the behavior of the software differs
between RPDs implemented with different hardware components and/or by different suppliers. As these
differences accumulate, managing the system and maintaining interoperability becomes more complex.

How can this be mitigated?

A common software base can be shared between RPDs, even when they come from different suppliers.
This paper will explain how sharing a common software base is implemented, and how it is applied to the
RPD platform and supplier ecosystem.

2. Typical Cable Access Network
Most MSOs’ hybrid fiber-coax (HFC) networks have been designed with an upper spectral boundary of
750 or 860 MHz, while some are designed to support 1 GHz and other newer networks designed to
support 1.2 GHz. For the more abundant 750 or 860 MHz networks, if not already fully utilized, it is
expected that the use of their capacity will soon be increased to the point of exhaustion.

The increased utilization of this access network capacity has been driven by the success of cable MSOs’
service offerings.

As it is well known and understood, for many years the growth in, and demand for, more video
programming resulted in the need to allocate large numbers of EIA (Electronic Industries Association)
channels for video services, mostly known for their fixed, 6 MHz size, and used both for BC (Broadcast)
and NC (Narrowcast). These 6 MHz EIA channels have filled every available portion of the spectrum.

Additionally, the success of, and growth in, HSD / broadband services continues. Most, if not all,
operators offer increased service tiers and observed a growth in the use of HSD service capacity for well
over a decade now, which amounts to a significant year-over-year compounded growth. This phenomenal
success drives the need for increased network capacity, which is implemented by either expanding the
spectrum allocation for HSD, or continuous service group segmentation, to reduce the number of users
per service group. Or both.

In a separate but parallel trend, operators have been actively converging video and data services into a
common Converged Cable Access Platform (CCAP) platform. This evolution, which has been underway
for many years now, is intended to reduce the environmental requirements in HEs (headends) that result
from service group segmentation. This is because as more service groups are added through segmentation,
more HE equipment is needed, which drives the need for space, power and cooling. These trends imply an
evolution towards newer, more modern, and denser equipment.

However, as the success of high-speed data and on-demand services continued, the evolution of the
access network progresses towards further expanded capacity and ever-smaller service groups. For the

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 4

former, the spectrum allocated to narrowcast services increases, driving operators to deploy Data Over
Cable Service Interface Specification (DOCSIS©) services including more SC-QAM (Single Carrier
Quadrature Amplitude Modulation) channels, and more recently, with DOCSIS 3.1, the allocation of
network spectrum for more or wider OFDM (Orthogonal Frequency Division Multiplexing) channels, as
well as more narrowcast video services. For the later, more CCAP ports are needed, which drives the
deployment of more line cards and eventually more chassis. These expansion trends result in a continuous
growth of headend equipment, which is already starting to exceed the capacity that headend facilities can
support.

3. Benefits of DAA
The above trends are now intractably linked to two additional evolutions: distribution of components of
the access network, implementing a Distributed Access Architecture (DAA), and virtualization of the core
network functions.

There are many benefits from the implementation of DAA. One key benefit is the improvement on
performance, which is achieved in multiple ways, including: improved SNR characteristics, enable longer
link distances between the headend and the nodes, provide higher service reliability, better use of
capacity, etc. Beyond the performance improvements, a key benefit of DAA is the increased headend
capacity. The implementation of DAA makes it possible to improve the density of CCAP devices in
several ways, including the implementation of denser equipment, the use of Ethernet technology which is
simpler and smaller in footprint, which more than doubles the capacity as compared to traditional CCAP
chassis.

DAA can be implemented in many ways. As the optical link from the headend to the node is converted
from analog modulated forward to digital, using Ethernet as the transport, several approaches can be
taken for the implementation of the remaining headend components. One approach, for which a key goal
is to convert all required components into functionally individual software pieces implemented
independently, is to implement DAA in various discrete SW components as shown below.

Figure 1 – DAA Implementation Components

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 5

The key components depicted in the DAA implementation above include:

• The Principal GCP Core, or GCPP, is the first component that the RPD will contact after
receiving an IP address. GCPP is implemented such that it will configure all the RPD functions
except DOCSIS channels and behavior, which will be implemented by the DOCSIS CMTS. As
the name implies, GCPP communicates with the RPD using the GCP protocol. Included in the
GCP Principal Core are all the non-DOCSIS command and control functions for the RPD,
including configuration, management and reporting.

• The DOCSIS Core, which is the second component that the RPD will contact in the network. The
DOCSIS Core also communicates with the RPD using GCP, and provides all configuration,
command and control for DOCSIS channels, both downstream and upstream.

• Narrowcast and Broadcast Video engines, which can be implemented as separate components or
combined into a single device, provide all the video content services for the various RPDs in the
network. It is important to note that neither the Narrowcast nor the Broadcast Video engines
communicate with, nor have knowledge of, the RPDs. Instead, services are configured statically
in the Narrowcast and Broadcast Video engines upon their bring-up, and are multicast to all
RPDs, which listen for these services as configured by the GCP Principal.

• Out-of-Band engines or cores are implemented separately from the video engines. Given that
video systems are implemented using a single encryption and command/control technology, only
one (i.e., either SCTE 55-1 or SCTE 55-2) of them is deployed in any one system. The OOB
function may or may not implement GCP for communicating with the RPD. When GCP is
implemented the OOB server is a Core, and it will configure the OOB downstream and upstream
OOB channels in the RPD. However, when GCP is not implemented the OOB server is an
engine, and the GCP Principal will configure the downstream and upstream OOB channels.

• Finally, not depicted in Figure 1, is a very important component: the Timing Server. Also known
as the Grand Master, the Timing server provides the critical timing synchronization for all the
DAA components. Each of the DAA components will include a Timing Client, which will
communicate with the Timing Server to maintain timing synchronization. While timing
synchronization is not absolutely critical for video services, it is imperative for DOCSIS service
to operate. Therefore, video services may be initiated before timing synchronization is achieved,
but DOCSIS services will not.

The key advantages for the above architecture are: implementation consisting of a multi-supplier platform
where each component can be developed independently, smaller functional components with simpler
implementation, and generally reduced time-to-market. However, implementation of smaller discrete
components has its downsides, such as: the implied requirement to more tightly specify the behavior of
each component to ensure that the overall system will operate as intended, management of the various
components including their configuration and upgrade, and the need for more elaborate orchestration.

4. Common Issues Faced with RPD Deployments
The base implementation of a DAA system is generally simple. However, significant complexity is
introduced when interoperability with different suppliers’ components is introduced.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 6

Figure 2 – Functional CMTS-RPD Interoperability Matrix

When considering the overall CCAP system, the complexity to achieve multi-supplier interoperability is
even larger. Over the years, larger MSOs have deployed multiple CMTSs, and eventually multiple
CCAPs, experiencing the complexities associated with such equipment implementation interoperability.

As depicted in Figure 2, the number of combinations of interoperable components increases geometrically
as additional components are added on either side of the interoperability matrix. Having a single CMTS to
interoperate with multiple suppliers’ RPDs is complex and requires a lot of careful planning and
implementation. But if the number of CMTS implementations is increased to 2 or 3, the interoperability
complexity doubles and triples respectively. Furthermore, in the case of DAA, if multiple GCP Principals
and/or multiple DOCSIS cores, and/or multiple video engines, and/or multiple OOB engines/cores are
introduced into the mix, the amount of complexity and work required for lab and field testing to maintain
interoperability increases by orders of magnitude.

Therefore, a multi-supplier RPD deployment coupled with a single headend implementation is a sensible
approach to an interoperable DAA ecosystem. In this way, the HE components of the DAA, which are
deployed in the hundreds, are kept the same for all MSO sites, but the component that is deployed in the
thousands, tens of thousands, or even hundreds of thousands, are obtained from multiple sources,
ensuring an innovative and competitive ecosystem.

Finally, it is important to recognize that there are numerous types of HFC nodes and network use cases,
which will drive the need for an even larger variety of RPD types.

In the same way as there are different kinds of nodes for different HFC network applications, there are
also Remote PHY devices with different characteristics that are best suited for each of the specific HFC
network use cases. For example, nodes that are best suited for N+x network architectures may have
different RF characteristics, and their corresponding RPDs may be implemented to support more service
groups. By contrast, N+0 network architectures have different node RF characteristics and require RPDs
that are intended for fewer subscribers.

Similarly, while there are use cases for RPDs in the outside plant, there are also applications for RPDs in
headends, or “inside plant” as it is frequently called, which will have different implementation
characteristics. This use case diversity has driven suppliers to offer RPDs packaged for nodes, where
there is a single RPD, or in some cases 2 RPDs, and the only opportunity for cooling is through
convection by contact with the outside node enclosure, while other RPDs are packaged in shelves, where
the number of RPDs is much larger, even requiring the need to support line-cards, and it is possible to
implement cooling through forced air movement.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 7

Therefore, while it is possible to maintain the HE equipment constant, the variety of MSO’s HFC
networks and application use cases, plus the desire to maintain a multi-supplier RPD ecosystem, drives
the need for a large number of RPD types (e.g. upstream/downstream port counts and frequency splits),
models and suppliers.

5. Solutions Attempted To Date
Over the last few years, as the development of RPDs proceeded through more use cases and newer
models, suppliers have made every effort to reduce the number of implementations, and to the extent
possible maintain a single RPD design. While the RPD hardware implementation is different between
RPDs intended for different use cases, it is especially beneficial to maintain the same software base. To
that end, most suppliers have tried to implement a single software base for their RPDs.

This is possible while the key hardware components used in the implementation of RPDs are the same or
are of the same hardware generation. However, when the hardware implementation is different, it is no
longer possible to maintain the same software base. Such is the case for RPDs that were implemented
initially with discrete hardware components, and eventually were migrated to functionality integrated
transceiver-type hardware devices, it is especially the case when migrating to generations of RPD
hardware components that implement newer versions of the DOCSIS specifications, as is the case now
with the advent of DOCSIS 4. In such cases, a change in the software base becomes inevitable.

To mitigate the need for software diversity, an approach was launched within the industry, led by
CableLabs® and supported by a multitude of suppliers and operators, known as OpenRPD. The approach,
implemented as an open-source project, consisted of developing an application layer software, which
interfaced with the RPD hardware via a hardware abstraction layer and device drivers, and operated above
a lower-level kernel software.

While all the above efforts were intended to maintain and/or arrive to a single software base, various
ecosystem situations and changes in the hardware approach made it difficult to succeed.

6. Collaborating on a Single Software Solution
Given our industrial experience throughout the evolution described above, it became clear that many of
the issues stemmed from the differences in the software implementation of the standard. The variability
of behavior increases the complexity of managing and debugging the devices. So how could this be
mitigated? The answer is, once again, to move to a single RPD software base. To accomplish this, a
common RPD application software program was created to include all suppliers developing RPDs for the
operator.

The idea of RPD suppliers sharing a common software base is not new. As described above, CableLabs
hosted a similar program known as OpenRPD. The OpenRPD program allowed participating suppliers to
access a common software base as well as submit changes for features and fixes. These suppliers showed
early successes during the Remote PHY interoperability activities at CableLabs. Issues were certainly
found during these activities, as expected. But when solutions to these issues were found, all participants
reaped the benefits.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 8

6.1. Chosing the Target Hardware

Before beginning the architectural design of the software, it is important to decide on the initial
hardware that will be supported. This decision will have a large impact on the software development
scope of work.

The primary question here is, should the currently deployed devices be considered in the software
implementation? Or should the focus of the software be on only on new hardware development?
Targeting both existing and new hardware would certainly reduce the mix of implementations to
support, which is the goal of the project. But at the same time, it would greatly increase the scope of
work necessary to deploy the software.

On the other hand, supporting only new hardware development could simplify the software
architecture by leveraging the design of the new generation of integrated silicon solutions.
Additionally, the new devices would soon be replacing the previous generation in the field. And
because of these reasons, it was decided that focusing on the next generation of RPDs was the way to
go.

6.2. RPD Software Architecture

Proper architecture of the software is critical when supporting multiple hardware targets. It is
important to separate the main components are shared and those that will differ between the various
platforms. Figure 3 below shows the basic architecture of the RPD software:

Figure 3 – RPD Software Architecture

The above blocks highlighted in green represent the functional components that are shared across all
target platforms.

• RPD Applications: This is the collection of applications that provide the primary control
interface and orchestrate control operations such as device configuration and monitoring.

• DOCSIS HW API: This specifies the programming interface for the DOCSIS-specific
hardware. This includes operations such as DOCSIS channel and data-plane configuration.

• Platform API: This specifies the programming interface for the platform-specific hardware.
This includes operations such as amplifier and attenuation configuration, LED control, timing
configuration and monitoring, etc.

• Third-Party Applications and Libraries: This includes dependencies for features such as
DHCP, SSH, 802.1x, etc.

• Linux Kernel: The distribution provides the supported Linux kernel version.

The blocks highlighted in shades of blue are specific to the hardware on the target platform.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 9

• DOCSIS Drivers: These drivers conform to the interface defined by the DOCSIS API. They
perform the low-level operations necessary to program the DOCSIS-specific hardware.
Platforms that use the same DOCSIS hardware solution share the common drivers from the
hardware provider.

• Platform Applications: These applications conform to the interface defined by the Platform
API. These applications are specific to the each of the suppliers’ hardware designs.

7. Managing the Software
The common RPD software will be used by multiple RPD suppliers targeting multiple platforms. This
introduces some complexity when considering how the software base will be managed. Some of the
questions raised are:

• Which build framework should be used to create the OS distribution?
• How should the software repositories be organized?
• How can each supplier separate their IP from the common software?

7.1. Deciding on the Build Framework

There are many choices when it comes to managing the project’s build framework and operating
system distribution. Some of the more popular frameworks for embedded systems are:

• Buildroot
• Yocto
• OpenWRT
• “Roll your own”

As expected, each of the choices come with its own advantages and disadvantages, briefly
summarized below.

Buildroot is known for its simplicity. This means developers new to the framework can get started
relatively quickly. However, precisely because of its simplicity, a significant amount of
customization may be required to support many platforms within a single project.

The Yocto project, on the other hand, was designed with flexibility in mind. Yocto comes ready with
a vast library supporting a large number of platforms. But with this flexibility comes complexity.
Yocto is known for its steep learning curve.

The OpenWRT Project’s primary focus is building firmware for commercial devices such as routers.
It can be used for other types of embedded devices as well, but stepping away from its design for
routers means additional customization.

Creating a custom distribution without a third-party framework is another option. This is something
to consider if a project has very specific requirements that existing solutions do not provide. But this
can introduce more overhead in maintenance when it comes to tasks such as keeping security patches
up to date and resolving dependencies for upgrades.

Considering the choices above, the Yocto project was selected for managing the RPD program’s OS
distribution. In the end, it was decided that the time spent on learning the tools would be well worth
the flexibility and hardware support required by the program.

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 10

7.2. The Yocto Project: Layers and Recipes

So, what makes the Yocto project flexible?

Let’s start with what Yocto refers to as “recipes.” A recipe is basically a script that provides
instructions on how to build a particular entity (e.g. application, library, file system image, etc.). In
its simplest form, a recipe for an application can just provide the location of the source software.
Yocto can determine how to build the application and install it as long as the source is using one of
the common automated build systems (e.g. autotools, cmake, meson, etc.).

Recipes are located in directory trees where the top directory is referred to as a “layer.” A layer is a
collection of recipes and configuration files. A single layer typically encompasses a particular
category of recipes. For example, one layer might include recipes for shells, or even common RPD
software applications. A typical project will have multiple layers, but will not necessarily use every
recipe in every layer.

7.3. Organization of Layers in the RPD Project

The RPD project contains four categories of layers:

• Third-Party Applications Layer: This is actually several layers. The RPD project pulls in
the existing layers from Yocto that provide the third-party open-source applications and
libraries such as DHCP, SSH, and 802.1x. These layers are shared among all RPD projects.

• Common RPD Applications Layer: This layer contains the recipes for all of the common
configuration and monitoring applications for the RPD. In addition, recipes for the DOCSIS
HW and Platform APIs are provided. This layer is shared among all RPD projects.

• SoC Applications Layer: These layers contain the recipes for the various system on a chip
(SoC) solutions available. They provide recipes for the required OS kernel and the DOCSIS
HW drivers. Each RPD project selects the SoC layer associated with the hardware chosen for
the target platform. Access control is necessary to restrict its use to suppliers that have the
associated license agreements with the SoC provider.

• OEM Applications Layer: These layers contain recipes for applications, libraries, and
drivers specific to the target device. Access control ensures that this layer is restricted to the
associated supplier.

Figure 4 – Yocto Layers for the RPD Project

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 11

As described above, some of the layers are shared while others are selected based on the needs of
the target device. For example, two different suppliers could use two different SoC solutions in
their respective RPDs. Figure 5 below illustrates the combinations of layers required for an RPD
developed by supplier “1” using SoC “B”:

Figure 5 – Example Selection of Yocto Layers

7.4. Managing the Layers

As explained in the previous section, the Yocto layers are useful for organizing the build recipes into
logical categories. These categories make sense from a software architectural standpoint. But they
are also helpful when it comes to managing software changes and access control.

The layers in the RPD project have different access requirements depending on which category they
fall into. For example, the common RPD applications must be accessible to all developers, but a
specific supplier’s OEM layer must not be available to other suppliers. To handle this requirement,
each layer is placed in a separate repository. The proper access permissions can now be set uniquely
for each repository.

One concern with this setup may be that developers now have to deal with a large number of
repositories just for a single target. It is certainly true that the list of required layers can grow,
especially given that just the third-party applications alone can be spread over many layers. But this
is easily handled by using an application such as Google’s “repo” command. Tools like this can take
a single manifest that points to the collection of repositories for a project and manage any bulk
operations such as checking out the software, branching, committing, etc. Operations on individual
repositories can be performed as usual.

With the access controls in place for each of the repositories, this naturally decides which developers
can see and make software changes as well as participate in software reviews for each layer. For
example, only the suppliers with licensing agreements for a specific SoC can participate in the
development for the associated layer. Likewise, all parties can participate in the development of the
common RPD software layer.

8. What Comes Next?
Features continue to be added to the Remote PHY specifications that will need to be supported. The next
big feature on the roadmap is streaming telemetry. This is a paradigm change from the pull model

© 2021, SCTE® CableLabs® and NCTA. All rights reserved. 12

supported today. Adding the vast number of statistics required for monitoring field deployments is no
small task. But the results of this effort can be shared among those involved with the project.

Another task on the horizon is virtualization of the RPD control plane. Running the RPD software
without the underlying hardware can have multiple uses. A virtual version of the RPD can be used for
automated integration testing in the build environment. Additionally, initial development testing for some
features can be started with the virtual RPD, reducing the time spent on lab resources.

Overall, the roadmap may be similar to other RPD software programs. The big benefit with this program
is that the fruits are shared by all.

9. Conclusion
Managing a large deployment of Remote PHY devices is a challenging task. Problems will arise in any
large network. Troubleshooting these issues become more complex when the devices differ in behavior,
debug capabilities, and supported features. Moving to a common software base certainly will not solve
all issues typically seen in deployments, but standardizing the implementation of the management
interface will simplify the configuration, monitoring and troubleshooting of RPDs by reducing the
supplier-specific behavior. Accomplishing this goal is possible with a software architecture and
development environment that supports multi-supplier collaboration.

Abbreviations
RPD remote PHY device
RPHY remote PHY
DOCSIS data-over-cable service interface specifications
API application programming interface
PHY physical layer
SoC system on a chip

	1. Introduction
	2. Typical Cable Access Network
	3. Benefits of DAA
	4. Common Issues Faced with RPD Deployments
	5. Solutions Attempted To Date
	6. Collaborating on a Single Software Solution
	6.1. Chosing the Target Hardware
	6.2. RPD Software Architecture

	7. Managing the Software
	7.1. Deciding on the Build Framework
	7.2. The Yocto Project: Layers and Recipes
	7.3. Organization of Layers in the RPD Project
	7.4. Managing the Layers

	8. What Comes Next?
	9. Conclusion
	Abbreviations

