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1. Introduction 
 

• >300,000 Nodes 
• ~700,000 Power Supplies 
• ~2,000,000 HFC plant miles 
• >70,000,000 US MSO Internet Consumers 
• >40% CAGR Broadband Consumption 
• Streaming video here and growing, online game-streaming and AR/VR coming 
• Oh, by the way, COVID-19 induced telework and virtual classroom data activity 

There are more than 300,000 HFC nodes in the US currently, and several million more worldwide. The 
additional network traffic triggered by Covid-19 in the spring of 2020 increased the level of HFC capacity 
augments by as much as 300% compared to 2019 volume. Network augmentation techniques such as 
node splits, adding HSI EIA’s (6 MHz channels), service group de-combines, bandwidth expansion, 
Node+0/RPD’s and mid-/high split reverse path expansion require engineering and operations resources 
in both ISP and OSP. 

This paper will examine techniques in which much of this activity can be automated and iteratively 
optimized through Machine Learning (ML). With inputs provided from network mapping systems, 
capacity monitoring platforms, spectrum management applications, and business rules such as preferred 
augmentation hierarchy, expected duration before next augment, balancing of house-counts, municipal 
permitting difficulty, and cost efficiency, the ML environment would rapidly analyze entire geographic 
segments of the network, and provide augmentation planning data including network design changes and 
BOM’s for areas requiring immediate physical layer upgrades.  

As the ML platform iteratively processes network geographies, it will learn from how past predictions 
tracked to current status and continuously adjust to optimize capacity augmentation methods and designs. 
As the ML environment will be analyzing the entire network geography, data to drive Capex planning for 
future years will be derived enabling the operator to more efficiently allocate capital. 

The ML environment would also support “what/if” network topology planning for approaches, such as 
bandwidth expansion to 1.8 GHz vs Node+0 at current bandwidth, and provide data on cost, duration 
before next augment needed, and percentage of network elements requiring replacement or repositioning. 

 

2. Artificial Intelligence (AI) and Machine Learning (ML) 
There is a lot of interest in using advanced computing technology to automate and accelerate processes 
that when done by humans are slow and tedious – facial recognition for example.  

AI and ML are often used interchangeably but as depicted in the figure below ML is a subset of AI – so 
how are they related? 
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Figure 1 – Relationship of Artifical Intelligence and Machine Learning 

 

Artificial Intelligence (AI) can best be understood as developing computer systems to perform tasks that 
humans can typically do better. A mechanical example would be a robotic welder in an auto 
manufacturing plant. A data analytics example would be Recommendations from your online retailer or 
streaming service that takes your past history and analyzes it against current inventory to “Recommend” 
items you may want to purchase or content you may want to watch. 

Machine Learning (ML) is a subset of AI, and in addition to enabling computer systems to perform 
tasks with humans can typically do better, deploys “learning algorithms” that allows the system to 
measure performance and automatically improve outputs from those learnings. Back to one of the 
previous examples, if the robotic welder was coupled with an x-ray or gamma-ray measurement system 
that provided data on weld quality which then would change the parameters of the welding programming 
to improve performance without human intervention would be a good example of ML. 
 

3. Network Capacity Augmentation Methods 
One of the unique benefits of HFC architecture is the many options potentially available to add capacity, 
with more being developed as technology advances. The list below is not exhaustive but notes most of the 
typical options to add capacity without changing the bandwidth or US/DS ratio of the network, organized 
by rough order of difficulty to implement: 

• Activate unused / repurpose EIA’s (channels) 
• Service Group de-combining/recombining 
• Increase modulation density 
• Extend fiber to heavy-use households 
• Node Splits 

o Add transceivers to existing node (segmentation) 
o Add new node – minimum construction, no HHP balancing 
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o Add new node – balance HHP 
o Add new node – balance for peak data utilization 

• Add Remote Phy-Mac/Phy device 

As evaluations are performed to determine the best approach on a node-by-node basis many other 
variables come into play: 

• Municipal Permitting 
• Maintenance Window availability 
• Aerial/Underground  

 
These many methods and variable are further complicated by the situation that most operators have 
separate departments managing ISP (Inside Plant) and OSP (Outside Plant) requiring careful coordination 
for those methods requiring both groups. 

4. Implementing Machine Learning for Node Split Design 

4.1. Programming Environment 

When developing a Machine Learning application there are several fundamental environment decisions 
that must be made: 

• Which programming language? 
• Which IDE? (Integrated Development Environment) 
• Which learning process – Supervised or Unsupervised? 
• Which Decision Tree / Classification Engine? 

4.1.1. Programming Language 

Most common programming languages are capable of being easily used for ML environments, including: 

• Python 
• Java 
• C++ 
• C# 
• R 
• JavaScript 
• Scala 

4.1.2. IDE – Integrated Development Engine 

In order to provider an optimized development and debugging container, an IDE provides numerous tools 
and applications optimized for ML code development and testing. Many IDE’s work with multiple 
programming languages but not with all, so analysis will need to be done to ensure the chosen 
programming language and IDE are compatible. Common IDE’s include: 

• PyCharm 
• RStudio 
• R-Brain 
• Jupyter 
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• Spyder 
• Geany 

4.1.3. Learning Process 

Machine Learning is either Supervised or Unsupervised. Supervised Learning is when the data being 
processed has been labeled and the ML system is taught by example, such as labeling pictures of items 
like a hammer and a banana so give the ML environment information to learn from. If the ML algorithm 
incorrectly identifies a shape, it would be “taught” by human input to improve its accuracy. Unsupervised 
learning is most useful in clustering and identifying similar objects and detecting significant anomalies – 
such as fraud detection identifying an abnormal financial transaction base on your spending history. 

4.1.4 Decision Tree / Classification Engine 

The last area that is needed to support the ML environment is a decision tree or classification engine. 
Common classifiers include: 

• GBM Gradient Boosting Machine 
• Random Forests 
• Logistic Regression 

The Python/Jupyter combination with Supervised Learning via random forest classifier was used for the 
development environment in which to build and test node split design via Machine Learning. 

4.2. Network Data Extract 

To provide data for the ML engine to examine it was necessary to extract every network element, both 
passives and actives, along with the HHP downstream/upstream, from the network map platform. As each 
element was geocoded distance calculations could be made without having to extract strand/cable/conduit 
data simplifying the extraction process. A table showing some of the parameters and results from a design 
iteration is shown below in Figure 2. 

 
Figure 2 – Subset of Network Data Extract 

Each element from the node to a line extender to a terminating tap was assigned a unique ID number and 
as the several performance parameters such as signal level, voltage, current and the ratio of HHP both 

Equipment
Element 

ID
DS HHP

Leg 
Balancing 

DS

DS HHP 
Ratio %

Leg 
Balancing 

US
US HHP

US HHP 
Ratio %

Cascade
Limit

Power 
Supply 

Proximity
Voltage Current

Proper 
Signal 

Strength

Minimal 
Construction

Room at Pole 
or Ped?

  BTD-75SH AGC 5 523 NO 1 NO 0 0 YES YES 50.56 1.5 YES YES YES
      BLE-75SH 6 140 NO 26.8% NO 383 73.2% YES NO 39.53 10.59 YES YES YES

9-TFC-4 133 NO 25.4% NO 390 74.6% YES NO 35.58 9.5 YES YES NO
MB-75SH FD AGC 10 35 NO 6.7% NO 488 93.3% YES NO 31.92 2.91 NO YES YES

    MB-75SH FD 11 19 NO 3.6% NO 504 96.4% NO NO 30.37 1.43 YES YES YES
  BLE-75SH AGC 7 18 NO 3.4% NO 505 96.6% NO NO 32.77 2.45 NO YES YES
    MB-75SH FD 8 8 NO 1.5% NO 515 98.5% NO NO 31.35 1.43 YES YES YES
    MB-75SH FD 9 79 NO 15.1% NO 444 84.9% YES NO 30.24 4.39 NO YES YES
      BLE-75SH 68 47 NO 9.0% NO 476 89.5% NO NO 28.89 0.99 NO YES YES
      BLE-75SH 70 15 NO 2.9% NO 508 95.5% NO NO 26.83 0.99 YES YES YES
      BLE-75SH 69 16 NO 3.1% NO 507 95.3% NO NO 27.32 0.99 YES YES YES
      BLE-75SH 12 121 NO 23.1% NO 401 75.4% NO YES 46.52 4.89 YES YES YES

  BLE-75SH AGC 13 109 NO 20.8% NO 414 79.2% NO NO 41.15 4.15 YES YES YES
    MB-75SH FD 16 53 NO 10.1% NO 470 89.9% NO NO 37.95 1.25 YES YES YES
      BLE-75SH 15 10 NO 1.9% NO 513 98.1% NO NO 38.37 0.86 YES YES YES

    MB-75SH FD 14 34 NO 6.5% NO 489 93.5% NO NO 39.72 1.2 YES YES YES
  BTD-75SH AGC 21 203 YES 38.8% YES 320 61.2% YES YES 51.75 4.59 YES YES YES
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downstream and upstream from the network element were calculated. The node in the example above had 
667 discrete network elements that were loaded into the ML environment. 

4.3. Business Rules / Design Rules 

After the network data was loaded Business or Design rules had to be created to guide the ML engine 
based on customer requirements. For example, an operator might want to design for the absolute least 
amount of activity needed to add capacity – adding another transceiver to segment a node without concern 
about balancing the homes-passed by the old node vs the new node. Another operator (or heck, maybe the 
same operator in another part of the network) might want to design for balancing the homes on the old 
and new node, and provisioning for future nodes. Some of the more than a dozen Rules included in this 
model were: 

• Can the node be segmented? 
• Is the proposed location geographically centered or not? 
• Are homes passed balanced? 
• Is cascade limit exceeded? 
• Is there space on the pole or in the pedestal for the node? 
• Does RF signal meet specifications? 
• Does node meet minimal construction parameters? 
• Is any coax reversing needed? 
• Is Fiber Splice location reachable? 

One of the benefits of creating an ML environment is it is relatively easy to add additional parameters and 
rules as technology changes, for example adding a rule to validate is power ampacity for small cell 
deployment was available, or tying the network data to the capacity monitoring system which could 
enable a split location to be balanced on peak data consumption versus geographic center or balanced 
Homes Passed. 

5. Let’s go split a node….with Machine Learning! 

5.1. Machine Learning Node Split Design Process 

In a standard Node Split design process, a designer looks at the network topology, and applying the 
Busines Rules using his or her experience picks a likely location for the new node. Afterwards, 
calculations have to be completed using a design tool such as Lode Data to verify the location will “work” 
– all signal levels are acceptable, there is appropriate voltage and no excessive current draw, and if those 
tests are passed the design needs to be completed and a BOM created. If the new node location does not 
“work”, the process has to be repeated, each iteration taking 30 minutes or so for an experienced designer. 
The ML environment was developed to automate this process. 

To test the new process several relatively simple node splits were loaded and processed by the ML tool, 
which generated network element relational schematics as shown in Figure 3 below: 
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Figure 3 – ML Network Element Relational Schematic 

The network element schematic is not needed directly by the ML tool but enables a designer to visually 
review the topology without using a network map system. Figure 4 is a close up showing the original 
node location and elements near it. 

 

 
Figure 4 – Network Elements near the original Node 

 

This particular Node was non-segmentable, and the Business Rules required minimal construction with 
no requirement to balance homes passed. The first iteration proposed the new node be placed on the fiber 
path to the existing node using spare fibers to connect it. As the new node location was an existing 
amplifer, there was no coax-resplicing required further complying with the minimal construction 
instruction – Figure 5 below: 
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Figure 5 – New Node Location 

When the households passed were calculated for the Original Node and New Node, there was definitely a 
mis-balance as shown in the table in Figure 6 below, but the operator would be able to provide additional 
capacity with little cost, time, or likely municipal permitting. 

 

 
Figure 6 – HHP after minimal construction Node Split 

 

To “train” the ML environment, a dozen nodes of varying complexity, size and geographic orientation 
were used. Each node was “designed” manually with optimum location and business rule adherence, and 
several deliberately incorrect designs were created for each node configuration. The ML engine “learned” 
by comparing the correctly designed node split to ones that were incorrect. 

After several iterations of supervised feedback, the ML node split algorithm was tested in 200 locations 
and determined the optimum location in 196 – an accuracy rate of 98%! Even more noteworthy was each 
location was processed in seconds versus around a half-hour for a human designer. 

 

HHP Ratio
Original Node 457 100%

Original Node after split 329 72%
New Node after split 128 28%
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Below in Figure 7 is an example of a geographically complex node where the ML business rules required 
HHP balancing, future node segmentation capability, and construction costs and difficulty were not 
considered.  

 
Figure 7 – ML – Designed Node Split with balanced HHP 

This node served 523 HHP before the split, and after the split the ML design determined four legs each of 
which could be segmented into a node in the future with no construction needed, however more than 
2,000 feet of fiber and extensive coax-reversing would be required. The HHP data is in the table in Figure 
8 below: 
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Figure 8 – ML-designed Node Split HHP data 

With good HHP balance and the ability to quickly double capacity via node segmentation this serving 
area will not require significant capacity upgrade activity for several years at nominal HSI bandwidth 
growth rates. 

5.2. Implementing and Scaling Node Split Machine Learning Environment 

The benefits of implementing a Machine Learning Node Split Design Environment are numerous and 
give the operators the analysis capability that would be cost-prohibitive in a standard design environment. 
For example, the nodes that are currently on the high-contention report could be quickly run through the 
ML design tool, under different business rules, and a Capital Expense projection could be created to guide 

Original Node 523

Original Node 
Leg A

Original 
Node Leg B

New Node 
Leg A

New Node 
Leg B

Coax 
Reversing? Fiber Extension Footage

Balanced HHP 111 136 178 98 Yes 2284
HHP % / leg 21% 26% 34% 19%

Homes Passed Data



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 12 

the budgeting process, and to inform the business about the tradeoffs involved where minimal 
construction augments result in more frequent network touches. 

One challenge in implementing is the ML platform requires local data access – if your network is using a 
centralized network map platform such as GE SmallWorld or Synchronoss SpatialNet the maps would 
need to be “checked out” for data extract to the ML environment.  

6. Creating a Holistic Network Capacity Augmentation Environment 
As Machine Learning is integrated into the Network Planning and Operations process and platforms, as 
more systems and data are connected much more comprehensive design and analysis could be 
accomplished.  

The chart in Figure 9 below shows some example inputs that if connected to a ML Prediction Engine 
could provide the network operator with planning information that could be calculated rapidly on a per-
node basis for the entire network without significant human effort.  

 

 
Figure 9 – Possible inputs to holistic HFC Analyis, Design, and Planning Engine 

 

One possibility would be to connect the HSI network capacity platform and provide the ML environment 
data consumption information at a Peak-use-by-household basis. The ML business rules could be 
modified to optimize the node split based on real data usage versus just simply dividing the homes 
passed. A further business rule could identity the top 1% users and design and create BOMs for fiber 
connections to them to remove their data consumption from the HFC network – and cost scenarios could 
be quickly compared. 
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7. Conclusion 
Network planning via Machine Learning is in its infancy but holds exciting promise to provide accurate 
and rapid automation of time-consuming network design activities. Network Operators should consider 
implementing network-based Machine Learning and over time connecting all network management 
platforms to enable comprehensive network design and capital expense planning. 

Abbreviations 
 

AI Artificial Intelligence 
AR Augmented Reality 
BOM Bill of Materials 
CAGR Composite Annual Growth Rate 
DS Downstream 
EIA Electronic Industries Association 
GBM Gradient Boosting Machine 
HFC Hybrid Fiber-Coax 
HHP HouseHolds Passed 
HSI High Speed Internet 
IDE Integrated Development Environment 
ML Machine Learning 
MSO Multiple System Operator 
US Upstream 
VR Virtual Reality 
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