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1. Introduction 
The telecommunications industry is well underway to moving to virtualizing network functions, 
and the cable industry is no exception. This paper focuses on providing understanding of 
virtualized solutions and technology, by analyzing design aspects, capacity planning and 
architecture evolutions of a CCAP virtual function. 
Initially, different virtualization technologies such as virtual machines vs containers are 
compared, together with continuous integration and deployment as a key element for the required 
agility to deploy new services and network functions. It is important to mention how the 
evolution to a distributed computing model and particularly how Mobile Edge Computing 
(MEC) and network slicing will shape future networks.  
Next, a network architecture design is presented focusing on the evolution to separate control 
and user planes and the impact on network traffic, how they align with distributed access 
architectures in two flavors, Remote PHY and Remote MAC PHY, and how the vCCAP function 
could split in two new logical functions in the near future. 
Lastly, a set of conclusions is presented to help cable operators better understand the 
requirements, design options and tradeoffs of vCCAP and DAA deployments in general for the 
next two to three years and how this decision will impact on the deployment of other related 
VNFs such as BNG (Broadband Network Gateway) or an EPC (Evolved Packet Core).   
 
2. Virtualization 

2.1. Virtualization Introduction 
Generally speaking, Virtualization is defined as running one or multiple instances of a computer 
system on a layer which is abstracted from the hardware. Each abstracted instance is called a 
virtual instance. Over the year’s virtualization evolved from being just a way of running more 
than one operating system on a desktop computer at the same time, at the expense of noticeable 
performance degradation to now being a ubiquitous technology in the server world. 
Virtualization offered the ability to run different operating systems, and multiple instances of 
each. This concept allowed a large system to be split into multiple smaller ones, and hence  
where now a server could be used to run multiple applications or services while allowing each of 
them to run completely isolated of the other like it was running in its own dedicated server 
(Morabito, Cozzolino, Ding, Beijar, & Ott, 2018) - Figure 1.  
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Figure 1 – Virtual Machines 

2.2. The Hypervisor 
 
As seen in Figure 1, in order to run multiple virtual machines in physical hardware, a software 
component is required. This software component is called a hypervisor, a program which takes 
care of allocating the available resources to each of the virtual machines. Any program run under 
the hypervisor should exhibit an effect identical with that demonstrated if the program had been 
run on the original machine directly (Popek & Goldberg, 1974). There are two types of 
hypervisors as seen in Figure 2. Type one hypervisors are operating systems themselves and run 
the guest virtual machines directly. Type two hypervisors need to run on a pre-installed operating 
system and run as application that can be stopped or started. 
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Figure 2 - Hypervisor Types 

 
Some examples of commercial and open source hypervisors are listed in Table 1. 

Table 1 - Hypervisor Examples 
Type 1 Type 2 

VMware ESX and ESXi VMware Workstation 
Microsoft Hyper-V Oracle VM VirtualBox 
Citrix XenServer (Xen Based) Red Hat Enterprise Virtualization (kvm 

Based) 
Oracle VM (Xen Based)  

 
2.3. Virtual Machines 

 
A virtual machine is a term that dates back to 1974 and is defined as an efficient and isolated 
duplicate of a real machine, where a piece of software provides an environment which is 
essentially identical to the original machine and programs can run with only minor decreases in 
speed (Popek & Goldberg, 1974). Virtual machines or guests can have access to the resources 
available on the host system. The host system can provide computing power, memory, disk space 
and access to the network interface cards. In the early days of x86 virtualization, hypervisors 
needed to fully emulate the behavior of the virtual machine including the CPU instruction set, 
causing a big overhead of computing power and significantly affecting performance of the whole 
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virtualized system. In 2006, Intel and AMD introduced hardware implemented virtualization 
extensions (VT and SVM) which allowed the hypervisors to directly access the CPU instructions 
thus making x86 virtualization possible in terms of performance (Adams & Agesen, 2006). 
Depending on the expected quality of service, sometimes those resources could or could not be 
oversubscribed.   
 

2.4. Network Function Virtualization 
In 2013 ETSI coined the term Network Function Virtualization (NFV). At that time 
telecommunications operators’ networks were populated with a large and increasing variety of 
proprietary hardware appliances. Launching a new service required even more hardware and the 
space and power requirements to integrate those boxes was becoming a real challenge. At the 
same time energy costs were increasing and also hardware obsolescence cycles were becoming 
shorter, increasing CAPEX costs (European Telecommunications Standards Institute, 2012). At 
the same time off-the-shelf server computing power was increasing with the costs of those 
servers being reduced. 
Network Functions Virtualization’s goal is to address these problems by providing 
standardization to the virtualization technology in order to consolidate different network 
equipment types into industry standard off the shelves servers, switches and storage (European 
Telecommunications Standards Institute, 2012) as seen in Figure 3.  
 

 
Figure 3 - Network Function Virtualization examples 

2.5. Management and Orchestration 
Network function virtualization (NFV) changes how networks are managed. Hundreds of 
network functions running on a server farm can easily make operations very complex. For that 
reason the European Telecommunications Standards Institute (ETSI) started in 2013, an effort to 
define the framework shown in Figure 4 for NFV management from the initial set-up, to day-to-
day operations, which is called NFV MANO (Management and Network Orchestration). This is 
the framework for the management and orchestration of all resources in a data center for 
virtualized functions, those resources include: compute, networking, storage, and virtual 
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machines (VM) as seen in Figure 5. The main goal of MANO is to allow flexible on-boarding. 
(European Telecommunications Standards Institute, 2012) 
 

 
Figure 4 - NFV Paradigm 

 

 

Figure 5 - NFV MANO Framework 

3. Containers 

As VMs were deployed, organizations started to run applications on separate virtual machines in 
order to dedicate their own resources (CPU, memory, storage). However, each application had to 
have a separate operating system running in each virtual machine.  
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At scale virtual machines may take up a lot of system resources, and a base operating system 
installation may take several gigabytes of storage. For example, running a single webserver on a 
virtual machine may require several gigabytes of operating system and libraries, while the 
application itself only takes a few megabytes of storage and memory. Multiply that by a big 
number of webservers and other applications, and the overhead of virtualization becomes very 
noticeable. 

At the same time, with the wide adoption of Linux as an operating system, and a big share of 
network applications using it as its underlying platform, an interesting idea was born: Why can’t 
applications share the same operating system and be virtualized at the operating system level 
instead of at the hardware level? 

A container is an isolated environment from the operating system host that runs an application by 
virtualizing it. This allows it to create multiple application workloads on a single OS instance. 
The kernel of the host operating system provides the required components for running the 
different functions of an application, separated into containers as shown in Figure 6. Containers 
run isolated tasks from each other, and an application cannot harm the host machine nor come in 
conflict with other apps running in other containers. (Simic, 2019) 

 
Retrieved from: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 

Figure 6 - Containers Architecture 

Docker is the most common container engine now in the market, however there are several other 
options for container engines shown in Table 2.  

Table 2 - Container Engines 
Docker 
Mesos 
LXC 

OpenVZ 
Java Container 

Windows Server Containers 
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3.1 – Containers and Microservices 

Applications are easy to develop using a monolithic approach, but as the size of the application 
and its user base grows it becomes very complex to scale up. Monolithic applications can have 
up to hundreds of different services tightly coupled, which makes it very complex for different 
development teams to handle their coordination. This is the reason why most of the software 
industry is moving to a new paradigm, known as microservice architecture (Yu, Silveira, & 
Sundaram, 2016).  
In a microservice approach, an application consists of several services, each independent of the 
other. Each service does a specific function which is developed and deployed independently 
from the others. Services transfer data or information to other services using a standardized 
communication protocol as seen in Figure 7. 
Some of the benefits of microservices are easier automated testing, flexible deployment models 
and increased overall resiliency; however all this comes at the expense of careful planning of the 
architecture and increased R&D investment, mainly given to the following factors: 
 

1) Since everything is an independent service, careful handling of requests traveling 
between the modules is required. This generates the need of designing in advance the 
APIs that the microservices will use to communicate between them its maintenance 
across version changes. 

2) Testing a microservices based application can be complex. In a monolithic approach, 
the application just needs to be launched and validate its connectivity with the 
underlying services such as database or webserver. With microservices, each service 
needs to be confirmed to be working properly in advance before integration testing of 
all the microservices as an application can occur. 
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Figure 7 - Monolitic vs Microservices Architectures 

As has been shown before, a container is just a way of deploying and running a program or 
process isolated from others sharing a common operating system. One could have one big 
monolithic application running as a container and in the other side there could be a big number 
of microservices running on a bare operating system. However, in the real world these 
independent approaches have been very complementary, as containers are the portable code 
envelope and big applications could be decomposed into many microservices that can be 
independently deployed. 
DevOps processes are the pillar of modern applications, and support running multiple parts of 
applications independently in different microservices, with much greater control over their life 
cycles. 
 
 

3.2 – Containers Orchestration 
Container orchestration is the process of automating the deployment, management and scaling of 
containers. As mentioned before, service providers will need to deploy hundreds or thousands of 
containers and for that reason an automation process for container orchestration is required. 
Container orchestration can help to deploy the same application across multiple environments 
and microservices in those containers and make it easier to orchestrate different types of services 
such as storage, networking, and security. (Redhat, n.d.) 
 
There are several orchestration tools for managing containers at scale together with its lifecycle 
management. The most popular is called Kubernetes, however Docker Swarm, and Apache 
Mesos are also well-known orchestration tools. 
 
Kubernetes is an open source orchestration tool that was developed by Google. Kubernetes 
orchestration allows the deployment of applications that are supported by multiple containers, 
running those containers in clusters of servers and verifying their health and scale-in or scale-out 
as required by capacity demands. In general, Kubernetes eliminates most of the manual 
processes associated with deploying complex containerized applications. The Kubernetes 
architecture is presented in Figure 8. 
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Retrieved from: https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 

Figure 8 - Kubernetes Architecture 

3.3 – Continuous Integration/Continuous Deployment 
 
Continuous software engineering is an area which refers to the development, deployment and 
feedback from software and customers in a very rapid cycle (Fitzgerald & Stol, 2017). The 
continuous software engineering process can be split into two main areas 
 
Continuous Integration (CI) is a widely established development practice in the software industry 
where teams integrate and merge development code very frequently, for example multiple times 
per day. CI allows software developers to have shorter release cycles and improve software 
quality (Fitzgerald & Stol, 2017). Many of the processes involved in CI are automated. 
 
Continuous Deployment (CD) is a practice that goes a step further and automatically and 
continuously deploys the application to a production environment as seen in  Figure 9. That 
environment can be within the same company or with an external customer. In the latter case, 
Continuous Delivery (CDE) may apply, where the application is only delivered but not 
automatically turned into production and requires some manual intervention before being 
deployed. 
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Retrieved from: https://www.mindtheproduct.com/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/ 

Figure 9 - CI/CD Process 

Two common software tools for this process are GIT as the source code repository, and Jenkins 
as the CI Server. Jenkins builds the application from the code repository, automatically tests, and 
delivers the containers to a container repository. 
  
4. The Clouds 

4.1. Private Cloud 
According to the National Institute of Standards and Technology (NIST), a private cloud is 
defined as infrastructure which is provisioned for exclusive use by a single organization 
comprising multiple consumers (e.g., business units).  It may be owned, managed, and  operated 
by the organization, a third party, or some combination of them, and it may exist on or off 
premises (National Institute of Standards and Technology , 2011). 
The main advantage of a private cloud is that resources are not shared. A private cloud is best for 
businesses with dynamic needs that require direct control over their computing resources, in 
general to meet security or regulatory requirements. 
Private clouds also have a few disadvantages as increased automation and user self-service can 
bring added complexity. These technologies require teams to rearchitect data centers and use 
extra management tools and can result in increased staff and capital expenditures to acquire the 
infrastructure to support it. 
When a private cloud is properly architected and implemented, the organization can benefit from 
self-service and scalability, and the ability to launch or optimize computing resources on 
demand. In Table 3 there is a list of the main private cloud platforms in the market. It is 
important to mention that Openstack-based platforms are provided by several mainstream 
vendors. 
 

Table 3 - Private Cloud Platforms 
Openstack 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 14 

VMware vCloud 
 

4.2. Public Cloud 
According to the National Institute of Standards and Technology (NIST), a public cloud is the 
cloud infrastructure that is provisioned for open use by the general public. It may be owned, 
managed, and operated by a business, academic, or government organization, or some 
combination of them. (National Institute of Standards and Technology , 2011) 
From a service provider standpoint, a public cloud is a platform in which a third-party service 
provider makes available computing resources which can be software applications, virtual 
machines (VMs) and complete enterprise-grade infrastructures over the public Internet. This 
public cloud service provider owns the data centers where customers’ services run. Service 
providers take care of all the infrastructure maintenance and provide connectivity access to 
applications and data. (IBM, 2020) 
There are four main models of cloud services as shown in Table 4 together with examples of 
cloud providers for each. Each cloud service model has a different management complexity 
compared to the other, as shown in Figure 10. 
 

Table 4 - Cloud Service Models 
Software as a Service (SaaS) Google Apps, Dropbox, Salesforce, Cisco, 

Concur, GoToMeeting, Slack 
Platform as a Service (PaaS) Google App Engine, Force.com, Redhat 

Openshift 
Infrastructure as a Service (IaaS) Amazon Web Services (AWS), Microsoft 

Azure, Google Compute Engine, 
Rackspace 

Metal as a Service (MaaS) Amazon Web Services Bare Metal, 
Microsoft Azure Bare Metal Servers, 
Google Bare Metal  

 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 15 

 
Figure 10 - Cloud Services Models 

4.3. Hybrid Cloud 
According to the National Institute of Standards and Technology (NIST), a hybrid cloud 
infrastructure is a composition of two or more distinct cloud infrastructures (private, community, 
or public) that remain unique entities, but are bound together by standardized or proprietary 
technology that enables data and application portability (e.g., cloud bursting for load balancing 
between clouds) (National Institute of Standards and Technology , 2011). 

 
4.4. Platform as a Services (PaaS) 

There are several common core microservices which could be shared in either a private or public 
cloud, without having to replicate them in each application. It may be desirable that service 
providers have them as a shared PaaS services. Some of them are listed below. 

 
• Message Queue. Responsible for delivering messages from one service instance to 

another. The message queue will support different messaging patterns including 
request/response, broadcast, pub/sub model. 

• Session Database. Responsible for storing session state in a common place, which 
enables stateless processing. 

• Service Discovery. Responsible for service registration, service heath monitoring and 
service state notification. Note some platforms like Kubernetes provide built-in service 
discovery. 

• Configuration store.  Responsible for maintaining persistent configuration for the 
containers. The service configuration will be modeled as a tree structure. Each micro 
service will have its own subtree 
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• Logging. Responsible to collect logs from all micro-service instances. This service 
provides a single access point to view the logs. 

• Analytic and Visualization. Responsible for providing in-depth knowledge of the 
platform status and presents the result in an easy-to-understand graphical form. 

• Management API. Responsible for providing RESTAPI/CLI to configure the platform 
and provide service statistics or session information.    

 
An example implementation of such architecture is shown in Figure 11 with a list of some of the 
most common software packages for them listed in Table 5. 
 

 
Figure 11 - Cloud Native Hybrid Architecture 

Table 5 - PaaS Platforms 

 
Openstack VM Orchestration 

 
Kubernetes micro-service container orchestration 

 
Docker Registry NF micro-service Container image 

 
Helm Application packaging, deployment and 

upgrades 

 
RabbitMQ Intra-NF micro-services message bus 
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ETCD NF micro-service specific configuration 

store 

 
Istio/Envoy Service Mesh 

 
Fluentd/ELK 
Stack/Jaeger Logging/tracing 

 
Prometheus/Grafana Monitoring and Alerting 

 
Redis-DB NF micro-service specific state and stats 

store 

 

Calico/Multus Container Networking 

 
 

5. Virtualizing the CCAP 
5.1. Control and User Plane Separation (CUPS) 

Cable Operators have historically used CMTS as Edge equipment which has several functions 
like per-subscriber session, policy enforcement and data forwarding in the same box. With the 
advent of Control Plane User Plane Separation (CUPS), CMTS functions could be decomposed 
and disaggregated such that the User Plane Function (UPF) could be deployed in a distributed 
manner, and the Control Plane Function (CPF) could be deployed in a centralized manner 
depending on the level of scale and aggregation needed. (Asati & Bernstein, 2019) 
The deployment of new services, such as 4K video, IoT, etc., and increasing numbers of home 
broadband service users present some new challenges for broadband routers such as: 

• Low resource utilization: The traditional CCAP acts as both a gateway for user access 
authentication and an IP network's Layer 3 edge. The nature of the tightly coupled control 
plane and forwarding plane makes it difficult to achieve the optimum performance of 
either of the planes. 

• Complex management and maintenance: Due to the large numbers of traditional CCAP 
instances a network must have, each device must be configured one at a time when 
deploying global service policies. As the network expands and new services are 
introduced, this deployment mode will cease to be feasible as it is unable to manage 
services effectively and rectify faults rapidly. (Hu, et al., 2018) 

 
To address these challenges, a cloud based BNG with CU separation conception is defined in 
(Broadband Forum, 2018) however the same idea is applicable to a CCAP box. The main idea of 
Control-Plane and User-Plane separation is to extract and centralize the user management 
functions of multiple CCAP devices, forming a unified and centralized control plane (CP). The 
traditional router's Control Plane and Forwarding Plane are both preserved on CCAP devices in 
the form of a user plane (UP). Note that the CU separation concept has also be introduced in the 
3GPP 5G architecture. (3GPP, 2018) 
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5.2. Virtual CCAP Core and Remote PHY 
As mentioned in the previous section, the paradigm of separating control and user planes brings 
significant benefits to the table. Traditional integrated CCAP boxes running on dedicated 
hardware were not able to benefit from the approach where control plane, user plane and 
physical modulation were part of the same hardware box. However, with the adoption of 
Distributed Access Architectures the paradigm has shifted so that the modulation function has 
moved to the RPD and now the CCAP core may be an IP-in/IP-out only box. This shift brought 
the possibility of moving CCAP software functions from dedicated hardware onto commercial 
off-the-shelves (COTS) servers and generated the term virtual CCAP as seen in Figure 12 
 

 
Figure 12 - Integrated CCAP vs virtual CCAP Functions 

Two conclusions can also be drawn from Figure 12:  
a) The CCAP’s different software components can be grouped to exploit the benefits of 

microservices which were analyzed in section 2 
b) At the same time, it also makes sense to separate the control and user plane functions, as 

there is an advantage of potentially being able to put them in separate locations. 
 

The above points support using containers for the vCCAP user plane and control plane functions. 
Now one could think that a user plane container can be the equivalent of integrated CCAP MAC 
card which typically serves 6 to 8 HFC serving groups, but in reality, that constraint does not 
exist anymore. A user plane container can serve a single serving group as seen in Figure 13; and 
at the same time scale to manage multiple user plane functions.  
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Figure 13 - vCCAP Node to Container Mapping 

    
No matter how many serving groups per container one decides to use, it is evident that the 
quantity of containers will be significant, so as analyzed in section 2, a container orchestration 
engine would be also mandatory in order to manage the growing number of containers. However 
the benefits of container orchestration are not only related to the onboarding of the containers but 
also how they can handle dynamic scale-in and scale-out of containers based on server utilization 
or network traffic, or even on redundancy management in the case of software or hardware 
failures. 
As an example, architecture, a container farm is shown in Figure 14 using Kubernetes as the 
container orchestrator. Kubernetes relies on control-plane and worker nodes; the control-planes 
take care of the onboarding, deployment and monitoring of the groups containers or PODs which 
are dynamically deployed in the worker nodes on multiple datacenters on the operator’s network. 
 

 
Figure 14 - vCCAP Kubernetes Managed Architecture 

 
As mentioned before, Kubernetes can monitor health status of the running pods. In the example 
in Figure 15, if it detects a failure on the hardware or software of a user plane pod, it can switch 
its operation to a redundant POD.  
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Figure 15 - vCCAP Container Based Redundancy 

Perhaps one of the most important advantages of deploying virtualized CCAP is the flexibility to 
support different types of architectures, going from a totally distributed model where the 
computing power can be in the hubsites (which can be repurposed as data centers) to a totally 
centralized model where the computing power is a main datacenter, to any combination in-
between. Figure 16. 
Each model has its advantages and disadvantages depending on space availability, bandwidth 
consumption and server usage efficiency, however having the ability to mix them and use the 
most efficient model for each case is one of the key highlights of vCCAP.  This is known as a 
Hybrid model. 
 

Centralized vCCAP Distributed vCCAP 

  

Figure 16 - vCCAP Deployments Models 

 
5.3. Multi-access Edge Computing (MEC)  

Multi-access edge computing (MEC) is a cloud environment located at the edge of the network, 
in close proximity to end users and coupled with the service provider's network infrastructure. 
Even before 5G is rolled out, current fixed and mobile networks can already enable support for 
these challenging use cases by using MEC technology. MEC is able to offer low latency and 
high bandwidth, and, in addition allows services to be deployed in different industrial premises 
such as road infrastructure, airports, and factories, bringing computing power where it is needed 
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most. MEC is a key enabler for low latency IoT technology and having this computing power on 
a node in the network can provide a big number of extra benefits apart of the network function 
virtualization (Porambage, Okwuibe, Liyanage, Taleb, & Ylianttila, 2018). ETSI Industry 
Specification Group MEC were the pioneers in creating a standardized computing platform for 
mobile networks applying network edge related use cases. (Giust, et al., 2018) 
 

5.4. Virtual MAC Manager and Remote MAC/PHY 
The Remote MAC-PHY technology moves both the DOCSIS MAC and PHY layers down to the 
Remote/Fiber Node. The link between the Headend and the node is essentially a Layer 2 
connection using Ethernet (Cable Television Laboratories, Inc, 2015). This new device is called 
the Remote MAC Device (RMD), where this device can be integrated with a Remote PHY 
Device (RPD) as in Figure 17 or both functions can be in different devices as in Figure 18. 
 
   

 
Figure 17 - Integrated Remote MAC-PHY Device 

 

 

Figure 18 - Decoupled Remote MAC - Remote PHY Devices 

It is particularly relevant to highlight that as mentioned in section 5.2, the MAC function is the 
user plane of a virtual CCAP, which could be run as a container in a cloud native platform. So, in 
this architecture the Remote MAC Device doesn’t need to be more than a Multi-access Edge 
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Computing server running on a hardened node enclosure, which is automatically managed by 
container orchestration engine such a Kubernetes. 
At this stage the only remnant of the CMTS is the MAC manager which is a centralized software 
function which provides management access such as command line interface and monitoring 
data of the CCAP network function running on the remote devices. 
 
6. Future and Convergent Core Functions 

Cable Operators can use this technology shift to embrace Fixed Mobile Convergence (FMC) by 
putting edge network functions at the hub sites which will become virtualization datacenters. As 
mentioned before, CUPS could enable a common user plane function for cable access, FTTH 
access and mobile access distributed, while the control plane could be located in centralized 
datacenters. This is aligned with the decomposed vCCAP and RPHY trend that the industry is 
following (Asati & Bernstein, 2019). Virtual BNGs and 5G Virtual EPCs can run in the shared 
cloud environment providing a high level of optimization and integration.    

In Figure 19, a potential evolution path for core access networks is presented, where the 
virtualization of the core and densification of the access will be the first step towards a real Fixed 
and mobile converged network. 

 
Figure 19 - Fixed Mobile Convergence Evolution 

7. Conclusion 
This paper described the state of current virtualization and containerization technologies, 
discussing benefits and disadvantages applied to cloud technologies. A review of virtual and 
private cloud was done with a focus on the implementation of virtual network functions and how 
a continuous integration and deployment approach will help in making networks more agile and 
flexible. 
Next, an architecture proposal was presented for deploying a virtual CCAP network function 
leveraging the benefits of cloud native platforms together with the benefits of control and user 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 23 

plane separation. A brief discussion of Multi Access edge computing aligned with the transition 
path to Flexible MAC Architectures and remote MAC-PHY was shown.  
 
Lastly, a vision for future Fixed Mobile Convergence is presented with the evolution through 
virtualization of the network functions and densification of the access network. 
 
As a final conclusion: HFC networks need to evolve into adopting the benefits provided by 
virtualization, containerization and cloud technologies. As reviewed during the paper, those 
technologies provide not only big improvements in efficient usage of the infrastructure but more 
importantly bring the ability to deploy new services in a quick and agile manner, something that 
will be a key factor for cable operators to continue its success in the new world of Fixed Mobile 
Converged networks. 
 

Abbreviations 
 

BNG Broadband Network Gateway 
CAPEX Capital Expenditures 
CCAP Cable Converged Access Platform 
CD Continuous Deployment 
CI Continuous Integration 
CMTS Cable Modem Termination System 
CPF Control Plane Function 
CPU Central Processing Unit 
CUPS Control and User Plane Separation 
DevOps Software Development / IT Operations 
EPC Evolved Packet Core 
ETSI European Telecommunications Standards Institute 
FTTH Fiber to the Home 
IaaS Infrastructure as a Service 
IoT Internet of Things 
IP Internet Protocol 
ISBE International Society of Broadband Experts 
MaaS Metal as a Service 
MAC Media Access Control 
MANO Management and Network Orchestration 
MEC Multi-Access Edge Computing 
NFV Network Function Virtualization 
OS Operating System 
PaaS Platform as a Service 
HFC hybrid fiber-coax 
PHY Physical 
R&D Research and Development 
RMD Remote MAC Device 
RPD Remote PHY Device 
SaaS Software as a Service 
SCTE Society of Cable Telecommunications Engineers 
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UPF User Plane Function 
vCCAP Virtual Cable Converged Access Platform 
VNF Virtual Network Function 
VT Virtualization Technology 
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