

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 1

Session Overhead Reduction in Adaptive Streaming

A Technical Paper prepared for SCTE•ISBE by

Alexander Giladi
Fellow

Comcast
1899 Wynkoop St., Denver CO

+1 (215) 581-7118
alex_giladi@comcast.com

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Session overhead and HTTP compression .. 4
3. Reducing traffic overhead ... 5

3.1. MPD patch .. 6
3.2. Segment Gap Signaling ... 7
3.3. Efficient multi-DRM signaling ... 8

4. Reducing the number of HTTP requests .. 9
4.1. Asynchronous MPD updates.. 9
4.2. Predictive templates ... 10
4.3. Timeline extension ... 10

5. Conclusion ... 11

Abbreviations .. 12
Bibliography & References.. 12

List of Figures

Title Page Number
Figure 1: Anatomy of DASH-based streaming application[2] ... 4
Figure 2: MPD Patch example .. 7

List of Tables
Title Page Number
Table 1: MPD overhead .. 5
Table 2: MPD size (in bytes) with and without HTTP compression .. 5
Table 3: Traffic overhead in megabytes for 1-hr session .. 6
Table 4: MPD size (in bytes) with referencing and HTTP compression ... 9
Table 5: Request and traffic overhead of a 1-hr session with asynchronous updates 11

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 3

1. Introduction
In typical linear adaptive streaming deployments, much thought is given to bitrate optimization, in order
to maximize a viewer’s quality of experience. The non-negligible overhead of the manifest traffic is,
however, typically overlooked. A manifest contains information essential for streaming a video asset,
identifying the contents of the stream and the location of where constituent components, like URLs, can
be found. A manifest which is frequently refreshed can significantly impact bandwidth consumption and
number of requests made to Content Delivery Networks (CDNs). This is true for both Apple® HLS and
MPEG DASH streaming systems. While the “manifest bloat” problem is endemic for both systems, this
paper concentrates on MPEG DASH and DASH-specific tools. In the case of MPEG DASH, there are
several major sources contributing to manifest growth, such as the number of included content periods
and the sheer volume of DRM license information. Frequent requests further compound the burden of
what is essentially “manifest bloat.” Altogether the manifest overhead can easily reach 250Kbps and go
past 2Mbps in some pathologic cases. These numbers are well beyond the typical low-rate video bitrate.

There are several different approaches to minimizing the manifest overhead. Some are as simple as using
HTTP lossless compression algorithms, such as gzip, or the more exotic Brotli [11]. Current DASH
practices, such as predictive templates, events, and the timeline extension process, provide an orthogonal
approach. Operational experience with large-scale, DASH-based linear programming resulted in a set of
new manifest reduction tools that were consequently added into the recent version of MPEG DASH. For
example, a recently introduced MPD patching mechanism dramatically reduces the manifest overhead by
only sending updates when possible. Several other additions reduce the size of the DASH manifest, by
reducing the “bloat” due to license acquisition information in multi-DRM content and segment losses.

Adaptive streaming over HTTP emerged as the mainstream method of delivering video IP-based
networks roughly a decade ago as a response to the challenges of network unpredictability and device
heterogeneity. Adaptive streaming technology is what powers over-the-top (OTT) services such as
Netflix, YouTube, Hulu, Disney+, Peacock, and HBO Max, among others. In aggregate, adaptive
streaming techniques reach hundreds of millions of viewers on a dizzying variety of devices.

Adaptive streaming is by no means a new technology. C. Gonkin et. al. [1] wrote the one of the earliest
papers on adaptive streaming describing the Real Networks implementation of the approach. The
technology became mainstream much later, after the introduction of the first version of Apple HTTP Live
Streaming [6] (HLS) in 2009. Several additional streaming systems, such as Microsoft’s HTTP Smooth
Streaming (HSS) and Adobe’s HTTP Dynamic Streaming (HDS) emerged at around the same time and
became viable alternatives. Two years later, MPEG Dynamic Adaptive Streaming over HTTP [2]
(DASH) became an international standard. Today, HLS and DASH are responsible for the vast majority
of adaptive streaming deployments. DASH also made its way into broadcast as a part of Advanced
Television System Committee (ATSC) 3.0 and Europe’s Hybrid Broadcast Broadband TV (HbbTV).

As opposed to traditional broadcast, cable, and IPTV systems, which push content to receivers, adaptive
streaming is a “pull” system, where a streaming client makes an autonomous decision about what to
download based on current network conditions and device capabilities. The content is encoded in multiple
bitrates referred to as representations. Each representation is encoded as series of short segments
(playable pieces of video, typically 2-10 seconds each). Representations which have the same media
content (e.g. video at different bitrates) and have aligned segment boundaries are grouped into adaptation
sets. The complete asset (e.g. a movie, a pre-recorded or live show) is broken into one or more
independent periods, which cover a uniform period of time within a presentation. While video on demand
(VOD) assets without advertisements consist of a single period, linear channels typically contain multiple
periods. An example of such a multi-period asset can be a linear channel where the first period covers

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 4

entertainment content, the next three cover three different advertisements, and the fifth covers the
continuation of the entertainment content.

HLS is similar. Its manifest is a collection of media playlists listing segment URLs, and a master playlist
that references the media playlists and lists their properties. The media playlists are conceptually identical
to representations, while the master playlist combines the roles of both period and adaptation sets.

Figure 1: Anatomy of DASH-based streaming application[2]

A DASH streaming session starts with downloading a Media Presentation Description (MPD), which is
an XML document containing information about media segments, their timing, and the inter-relationships
between them. After parsing the MPD, the client selects the representations it sees fit, given its
capabilities and network conditions. It starts downloading the media segments from the selected
representations. The segments are typically kept in a player buffer, and eventually decoded and rendered.
The client also continuously estimates available bandwidth and monitors buffer fullness, and given these
it re-evaluates its representation selection.

A. C. Begen et al [8] provide an excellent introduction to the concepts of adaptive streaming. A much
later work by A. Bentaleb et al. [9] provides an overview of modern rate adaptation techniques.

2. Session overhead and HTTP compression
Any streaming session starts with downloading the manifest. In cases of linear content, this manifest is
periodically updated. HLS downloads the master playlist at the beginning of the session, and refreshes the
media playlists per each segment [6]. While DASH has several tools for avoiding unnecessary MPD
requests, many naïve implementations do not use them, and end up implementing an HLS-like client,
where new MPD is requested prior to each segment request.

MPDs can be quite “chatty”. Table 1 below lists linear channel streaming bitrate overheads as measured
with several production-grade MPDs, and quantifies the corresponding bandwidth overhead associated
with 2-sec segment durations. This 2-sec duration implies an MPD request every 2 seconds (i.e. per each
segment).. Two-second segment durations are both a common practice and a recommendation (see e.g. S.
Lederer [10]).

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 5

Table 1: MPD overhead
MPD MPD Size (bytes) Bandwidth (kbps)

A 61904 247.62
B 326933 1307.73
C 425867 1703.468
D 552219 2208.88

We are seeing nearly 250Kbps of overhead with a single-period MPD A, and quickly exceed 1 Mbps as
the number of periods in the MPD grows. Using the HLS bitrate ladder described in [7], a 1.3 Mbps
overhead translates into the difference between 360p and 540p resolutions. This is hardly negligible.
Beyond pure traffic, the size of the MPD also translates into parsing time and memory footprint, both
functions of number of XML elements.

HTTP/1.1 allows compression of the body of the HTTP response. This is achieved using transfer coding
and happens between the endpoints of the protocol, thus it is mostly transparent to the application. Gzip
compression is mandatory in HTTP/1.1, while the newer and widely supported Brotli compression [11]
provides noticeably better results. Session-related traffic overhead shrinks dramatically – up to 98% – if
HTTP compression is used. – this is illustrated in Table 2 . Even with the most efficient Brotli
compression, however, the bitrate overhead is still 50 Kbps for an 18-period MPD D, and nearly 250
Kbps with the ubiquitously supported gzip.

Table 2: MPD size (in bytes) with and without HTTP compression
MPD Uncompressed Gzip Brotli

A 61904 7096 5598
B 326933 37322 5589
C 425867 17266 6583
D 552219 16885 10975

We can see that application of HTTP compression is essential to make MPD traffic overhead manageable
and reduce the start-up time (due to a much faster MPD download).

The HTTP compression approach only addresses the size of the MPD in bytes on the wire and on the
CDN. There are additional aspects which depend on the number of XML elements in the MPD: the
memory footprint and the MPD parsing time. These need to be addressed using DASH-specific
techniques, which are described in the next section.

3. Reducing traffic overhead
This section reviews DASH-specific approaches which can be used to reduce the MPD size, number of
XML elements, and parsing time. First we discuss MPD patching, a very powerful tool introduced in the
latest amendment to MPEG DASH. Patches provide an extremely significant improvement in traffic
overhead. Other techniques are needed to remove unneeded XML elements from the actual XML
document, and are instrumental in reducing MPD parsing time and its memory footprint.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 6

3.1. MPD patch

In the vast majority of cases the change between the previous and the current MPD is minimal. For
example, a new segment may have been added in all representations, and the oldest segment may have
been removed. This means that the change affects a minimal number of XML elements. Sending only the
difference across consecutive MPDs, as updates, is undoubtedly more efficient than downloading full
MPDs. This technique can be far more efficient than the generic application of HTTP compression.

The MPD patching framework was first introduced in 3GP-DASH [13] as MPD Delta. The delta format
was line oriented, where operands (insert, remove, replace) applied to lines of text. This approach has a
major weakness – it implicitly assumes existence of an actual MPD file on the client. This is often not the
case, as clients often store the MPD in an in-memory structure, which may be Document Object Model
(DOM) or a custom data structure. Secondly, line-oriented syntax is ill-suited for the case where XML
document can be regenerated by different entities – whitespace differences can result in patch application
errors. Lastly, the MPD Delta syntax ignored version mismatches – e.g. when a modification made to an
MPD which differs from the one used for the creation of the delta file, which may render the MPD
constructed in the client memory invalid.

The more recent MPEG DASH patching framework takes a slightly different approach: it operates on
XML elements and not lines, and addresses elements using XPath as opposed to line numbers. The syntax
of the MPD patch is a very restricted subset of the IETF XML patch framework [15]. The restricted
syntax creates a system where there typically is only one way of addressing each specific element, and a
mandatory check for the client MPD version precedes each patch application. Amendment 1 [3] to the 4th
edition of MPEG DASH allows explicit requests for MPD patches as an alternative to requesting a full
MPD.

MPD patches change the way the client operates: instead of a simple repeated request to an MPD URL,
the client alternates between full MPD and patch requests. When the client starts the streaming session, it
downloads an MPD. This downloaded MPD provides URLs for both the next MPD and the next MPD
patch. If the client decides to download the patch, the patch process will first validate the MPD version, in
order to avoid a mismatch. If the download is unsuccessful, or the patch process fails, the client will
request the full MPD as an update.

The results of patch application are strikingly better than those achieved by plain HTTP compression: a
single patch for the MPDs listed in Table 2 is 944 bytes uncompressed, and only 349 bytes if Brotli
compression is applied.

Table 3: Traffic overhead in megabytes for 1-hr session
MPD Naïve Naïve + Brotli Patch Patch + Brotli

A 106.26 9.61 1.34 0.678
B 561.22 9.59 1.59 0.678
C 731.05 11.30 1.10 0.630
D 947.95 18.84 1.81 0.683

Table 3 shows the impact of using patch updates during a 1-hr streaming session. It assumes 2-sec
segments and a period being added every 5 minutes. We can see that the effect of patching is more
pronounced than the one of the most efficient HTTP compression alone. For example, in case of MPD A
Brotli compression resulted in 90.96% reduction in traffic, while patching alone resulted in a 98.74%
reduction. Combining both tools is most efficient, as also reduces the first MPD download by the same
90.96%, which results in a shorter start-up time.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 7

Figure 2 below shows an example MPD which adds 7 new segments. As we can see, it contains the MPD
identifier and its version information (publication time) in order to ensure the validity of the patching
operation. Another method of ensuring the right patch is downloaded is embedding the version on the
new (post-patch) MPD in the URL for the next patch. This example is adopted from [3].

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Patch
 xmlns="urn:mpeg:dash:schema:mpd-patch:2020"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:mpeg:dash:schema:mpd-patch:2020 DASH-MPD-
PATCH.xsd"
 mpdId="42"
 originalPublishTime="2020-05-13T05:34:06+00:00"
 publishTime="2020-05-13T05:34:28.601Z">

 <replace sel="/MPD/@publishTime">2020-05-13T05:34:28.601Z</replace>

 <replace sel="/MPD/PatchLocation[0]">
 <PatchLocation ttl="60">live-stream/patch.mpd?publishTime=2020-05-
13T05%3A34%3A28.601Z</PatchLocation>
 </replace>

 <add sel="/MPD/Period[@id='1']/AdaptationSet[@id='1']
 /SegmentTemplate/SegmentTimeline">
 <S d="360360" r="6" t="5494659049"/>
 </add>

 <add sel="/MPD/Period[@id='1']/AdaptationSet[@id='2']/
 SegmentTemplate/SegmentTimeline">
 <S d="360960" t="5494660288"/>
 <S d="359040"/>
 <S d="360960" r="1"/>
 <S d="359040"/>
 <S d="360960" r="1"/>
 </add>

</Patch>

Figure 2: MPD Patch example

3.2. Segment Gap Signaling

There is no such a thing as 100% reliability in a complex content origination system. Encoders may fail,
packagers may fail, networks may fail. As a result, having ideal continuous sequence of segments is hard
to achieve over a long enough period of time. There will always be segment gaps – short periods where a
segment was not generated by the transcoder.

Many things can go wrong. For example, when the encoder output is a MPEG-2 TS over UDP and a
datagram is lost en route to the packager, the segment is lost as well. If the encoder output is a multicast
per representation (a very common configuration), occasional packet loss will affect a single
representation at a time.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 8

Another example is an encoder failure – if an encoder fails, for some reason, and a redundant encoder is
started and starts outputting segments, there may be a gap of one or more segments, between the last
segment written to origin by the primary encoder, and the first segment written by the redundant encoder.
When different representations are generated by different encoders, and an encoder fails, there is a gap
only for a subset of the representations, and there will be a segment in one or more representations.

One of the advantages offered by DASH periods is that they are independent, and it is possible to vary the
number or character of representations across periods. The main driver behind this design was advanced
advertising. For example, the entertainment content may carry audio in English, French, and Spanish
languages as well as an English narration (video description) audio track. Moreover, some languages will
be available as both stereo and multichannel audio. An ad inserted into this content may only have
English stereo. This ad will be represented as a separate period in DASH; pre-ad and post-ad periods
would also be periods on their own.

In case a segment from a representation is missing, many implementations assume that the representation
no longer exists in the presentation. This triggers creation of a new period without that “lost”
representation. At some point in time the packager will again start generating segments for the “lost”
representations, which will, in turn, trigger creation of a new period.

In the author’s experience, occasional segment gaps resulted in MPDs with 100-300 periods, which made
them both exceptionally large and non-trivial for a player. An alternative to this would be using the
SegmentTimeline element, which allows gaps in presentation time. With that said, the use of
SegmentTimeline in the case of per-representation gaps is also inefficient, as it will need to appear in
every single representation -- as opposed to the common practice of including them only at the adaptation
set level. For example, in the case of an unencrypted, 12-representation HLS bitrate ladder [7], and a 2-
min MPD, the MPD size increased nearly ten-fold, form 11KB to 105KB.

All of this can be avoided at a low cost if a missing segment is explicitly identified. Both DASH and HLS
recently allowed such signaling. In DASH this is achieved using a FailoverContent element, which
indicates time gaps for which the representation has no segments. This translates to just a few of lines,
with a single gap (i.e., one or more consecutive missing segment) corresponding to a single XML
element. This has very little impact on either the MPD size or the number of XML elements it contains.

3.3. Efficient multi-DRM signaling

The overhead of DRM license inlining traffic can be significant, especially in context of linear channels
with multi-period, multi-DRM MPDs and multiple video and audio options. The Common Encryption
standard [4] and several DRMs define a way of including license acquisition information in the MPD.
This is needed in order to start the license acquisition in parallel with the download of an initialization
segment, as opposed to waiting for it and parsing this information out of a box contained in it. This
inevitably grows the MPD size.

For example, consider a single-period MPD with stereo and multi-channel adaptation sets for both
English and Spanish, video, and trick modes has 6 cenc:pssh elements. The number is multiplied by the
number of DRMs – meaning that the same single-period MPD service with 3 DRMs contains 18
cenc:pssh elements, but only 3 of them are unique.

What makes the problem acute is that these elements are fairly large. For example, the 18-period 320Kb
MPD B contains 171Kb worth of license acquisition data embedded in its ContentProtection element. The
vast majority of this data is redundant.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 9

The recent amendment to the 4th edition of MPEG DASH [3] introduced a referencing mechanism for
ContentProtection elements. Unique ContentProtection elements (one for each DRM) are placed once, at
the MPD level, and given unique IDs. They are then referenced by ContentProtection descriptors at
adaptation set level, which results in 3 unique elements in the reference ContentProtection descriptors and
18 one-line dependent ContentProtection elements. This on its own dramatically reduces the MPD size.
For example, the 320Kb MPD B is reduced to 86Kb.

Table 4 illustrates the results of referencing in MPDs A, B, and D, which have 3 DRMs. We can see that
referencing results in a very significant reduction in uncompressed size of an MPD. As opposed to HTTP
compression, this result translates directly into reduction in memory footprint. With that said, the result of
applying lossless Brotli compression to an MPD with referencing is near-identical to applying same Brotli
compression to the original MPD.

Table 4: MPD size (in bytes) with referencing and HTTP compression
MPD Periods Original ContentProtection Referencing

Uncompressed Gzip Brotli
A 1 61904 18170 6447 5596
B 10 326933 88010 7350 5568
D 18 552219 155650 16128 11051

Referencing can also be used to reduce the size of an MPD patch carrying a new period, as the license
acquisition information would be a significant part of the patch, and it typically does not change every
period.

4. Reducing the number of HTTP requests
A naïve HLS-like implementation also implies that MPD traffic is responsible for a third of CDN
requests. The number of CDN cache misses is lower for the MPDs, but the number of actual requests is
still quite large – a third of the requests for an asset containing video and audio. The sheer number of
HTTP GET requests is taxing the edge caches.

Several tools in the MPEG DASH specification are intended to reduce the number of HTTP requests for
linear content.

4.1. Asynchronous MPD updates

DASH has an inband event mechanism largely modeled after SCTE 35 cue messages in MPEG-2 TS.
DASH inband events are timed “blobs” of metadata embedded in an Event Message (`emsg`) box. This
box resides in the beginning of an ISO-BMFF media segment, before the Movie Fragment (`moof`) box.
In order to ensure that the event is received regardless of the representation, all representations within an
adaptation set carry the same inband events. A client is expected to parse the very beginning of the
incoming media segment, and in case it finds an `emsg` box, it is expected to pass it to the application or
process itself.

One key event type defined in the DASH specification is the MPD Validity Expiration event. It lets the
client know the time at which its MPD is going to expire. If the presence MPD Validity Expiration event
is signaled in the MPD, the client does not need refresh the MPD until explicitly instructed by the MPD
Validity Expiration embedded in a media segment. This is a very powerful feature when coupled with the
features described in the next two sections – predictive templates and timeline extension.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 10

4.2. Predictive templates

Templates are one of the major differences between DASH and HLS. In DASH, templates are mandatory
for all DASH Live profiles intended for linear channels and events. A template is a string similar to the
one used in printf functions in the C programming language. The template string has several predefined
variables, two of which, $Number$ and $Time$, are of particular interest.

$Number$ stands for the number of the requested segment. This number is incremented for every
segment, and URLs for every segment are derived by inserting the value of $Number$ into the template
string. This way, given a more or less constant segment duration, there is no need to update the MPD,
because future segment URLs can be derived along with an approximation of their availability window.
The DASH-IF guidelines [5] allow segment duration to vary within ±50% of the target segment duration,
however they limit the accumulated drift of any number of consecutive segments to the same 50% of a
segment duration. For example, if we assume 2-sec segment duration, each segment can be between 1 and
3 seconds, but the cumulative duration of 1000 segments has to be between 1999 and 2001 seconds.

The $Time$ variable leverages the precise value of the start time of the segment. It is used with the
SegmentTimeline element, which contains one or more S elements. Each S element represents a sequence
of one or more consecutive segments of equal duration, and does this using the principle of run-length
coding. For example, a single S element describes 42 consecutive 2-sec segments as a run of 42 segments
with length (duration) of 2 seconds each. The start time of the first segment of the run, the run, and the
common duration of the segments are all indicated in the S element. Note that the durations are precise --
if the 43rd segment is even one frame shorter or longer than that, it will be described in a separate S
element.

A special run value (i.e., the value of the S@r attribute) of “-1” means “until further notice”. This way
there is no need for an MPD update as long as the segments are precisely identical – start time and
duration allow calculation of the value of $Time$ and hence the derivation of a segment URL for a
segment which has not yet been encoded. This has the same effect as the $Number$-based approach, but
is easier to use and validate, since the times are precise and not an approximation with a ±50% tolerance.

Templates using the autoincrementing $Number$ or $Time$ with run of -1 let us predict URLs of future
segments. This way no MPD update is required as long as segments are being made available in time –
their URL and the time at which they can be requested can be calculated way before these segments are
even created. This works fine if there is no change in the MPD beyond adding and removing new
segments.

The likelihood of not having any other changes in a linear manifest is nil – for example, due to advanced
advertising which adds new periods and new SCTE 35 events. This commonly leads to an HLS-like
implementation where MPD request is issued for every segment. However, the MPD Validity Expiration
event can be used to trigger an MPD update before a material change in the MPD, such as a new
upcoming period. This approach reduces the number of MPD requests to the bare minimum – potentially,
once per every period as opposed to once every 2-second segment. For example, an hour long MPD with
an entertainment period, followed by an ad period, followed by the next entertainment period, may
require just one MPD update (prior to the start of the ad period) as opposed to 1,800 requests for the
traditional per-segment polling.

4.3. Timeline extension

The SegmentTimeline predictive mode is based on an assumption of frame-identical segment durations.
Given US fractional frame rates, this is not always possible, because there is no reasonably short segment

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 11

duration to align a 1024-sample AAC frames, 1536-sample E-AC-3 frames, and 29.97 fps video. As a
result, audio segments typically have a duration pattern where periodically adding one longer or shorter
segment prevents a drift from forming. This reduces the efficiency of $Time$-based addressing by
limiting run values in audio adaptation sets.

A more efficient mode, commonly referred to as “timeline extension,” is documented in DASH-IF IOP
[5] as “MPD and Segment-based Live Service Offering”. Given that each S element provides a time
precisely matching the time in the Track Fragment Decode Time (`tfdt`) box of the media segment, it is
possible to predict the URL of the next segment, having parsed the beginning of the current segment. This
approach allows a reliance on event-driven, asynchronous MPD updates and results in the same
performance as in the $Number$-based case, but with much higher precision.

Table 5: Request and traffic overhead of a 1-hr session with asynchronous updates
MPD Naïve Asynchronous updates

 Traffic (MB) GET requests Uncompressed
(MB)

Brotli (MB) GET requests

A 106.26 1800 0.71 0.064 12
B 561.22 1800 3.74 0.064 12
C 731.05 1800 4.87 0.075 12
D 947.95 1800 6.32 0.126 12

Table 5 shows the effect of using asynchronous MPD updates (without any of the traffic-reducing
techniques from section 3) in a scenario we used in Table 3 above: 1-hr session with 5-min periods and 2-
sec segments. We further assume that an MPD Validity Expiration event is sent before the start of the
period. This scenario results in a 99.33% reduction in HTTP GET requests and shows the best result in
traffic reduction. With that said, the numbers below represent a “happy path”, and every missing segment
in each currently playing representation will trigger an extra MPD request. DASH allows a “missing
content segment” – a segment which contains no media data and only provides segment timing
information. In case of timeline extension, such a segment will prevent unneeded MPD requests.

Note that asynchronous updates can be combined with MPD patches to get to even greater efficiencies.

5. Conclusion
In this paper we quantified the impact of “manifest bloat” specific to DASH and its MPD traffic and
reviewed several methods of reducing it. While application of brotli compression reduces the traffic on its
own by at least 90%, we recommend a combination of the proposed measures. Note that both the timeline
extension and the

Measures such as ContentProtection referencing and gap signaling reduce the memory footprint and
improve parsing performance by eliminating redundant elements in the MPD.

From a pragmatic standpoint, HTTP compression is the ultimate “low hanging fruit,” in that it carries a
significant traffic impact at a fairly low cost. Gap signaling and ContentProtection referencing are
relatively easy to implement and operate. MPD patches are also a new feature and requires an
implementation effort on both the client and the packager side, with that said its benefits are significant
enough to justify those efforts.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 12

Abbreviations

3GP Third Generation Partnership
AAC Advanced Audio Coding
ATSC Advanced Television Systems Committee
CDN Content Delivery Network
DASH Dynamic Adaptive Streaming over HTTP
DASH-IF DASH Industry Forum
DOM Document Object Model
DRM Digital Rights Management
FPS Frames per Second
HbbTV Hybrid Broadcast Broadband TV
HDS HTTP Dynamic Streaming (HDS) (Adobe)
HLS HTTP Live Streaming (Apple)
HTTP Hypertext Transfer Protocol
ISO-BMFF ISO Base Media File Format (a.k.a. mp4)
IETF Internet Engineering Task Force
MPD Media Presentation Description
MPEG Moving Pictures Experts Group
URL Uniform Resource Locator
VOD Video On Demand
XML Extensible Markup Language

Bibliography & References

[1] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman and Y. A. Reznik, "Video coding for streaming

media delivery on the Internet," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 11,
no. 3, pp. 269-281, March 2001, doi: 10.1109/76.911155.

[2] ISO/IEC 23009-1:2019, Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1:
Media presentation description and segment formats, 4th edition.

[3] ISO/IEC SC29 WG11, Text of ISO/IEC 23009-1 4th edition Draft Amendment 1, CMAF support, events
processing model and other extensions, available online at
https://wg11.sc29.org/doc_end_user/current_document.php?id=74740&id_meeting=182

[4] ISO/IEC 23001-7:2016, Information technology — MPEG systems technologies — Part 7: Common encryption
in ISO base media file format files, 3rd edition

[5] DASH-IF Guidelines for Implementation: DASH-IF Interoperability Points, November 2018, available online
at https://dashif.org/docs/DASH-IF-IOP-v4.3.pdf

[6] R. Pantos, HTTP Live Streaming 2nd Edition, IETF I-D, available online at
https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-07

[7] Apple Inc., “HLS Authoring Specification for Apple Devices”, available online at
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices

[8] Ali C. Begen, Tankut Akgul and Mark Baugher, “Watching video over the Web, part 1: streaming protocols,”
IEEE Internet Comput., vol. 15/2, pp. 54-63, Mar./Apr. 2011.

https://wg11.sc29.org/doc_end_user/current_document.php?id=74740&id_meeting=182
https://datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis-07
https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_for_apple_devices

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 13

[9] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer and R. Zimmermann, "A Survey on Bitrate Adaptation Schemes
for Streaming Media Over HTTP," in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 562-585,
Firstquarter 2019, doi: 10.1109/COMST.2018.2862938.

[10] S. Lederer, Optimal Adaptive Streaming Formats MPEG-DASH & HLS Segment Length, November 2015,
available online at https://bitmovin.com/mpeg-dash-hls-segment-length/

[11] IETF RFC 7932, Brotli Compressed Data Format, July 2016
[12] IETF RFC 7232, Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests, June 2014
[13] 3GPP TS 26.247 'Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH) v. 2.0.0

(Release 10), June 2011.
[14] Zachary Cava, Scaling Live OTT with DASH: Techniques and Lessons Learned, Mile-High Video 2019, Denver

CO, available at http://mile-high.video/files/mhv2019/pdf/day2/2_16_Cava.pdf
[15] IETF RFC 5261, An Extensible Markup Language (XML) Patch Operations Framework Utilizing XML Path

Language (XPath) Selectors, September 2008

https://bitmovin.com/mpeg-dash-hls-segment-length/
http://mile-high.video/files/mhv2019/pdf/day2/2_16_Cava.pdf

	1. Introduction
	2. Session overhead and HTTP compression
	3. Reducing traffic overhead
	3.1. MPD patch
	3.2. Segment Gap Signaling
	3.3. Efficient multi-DRM signaling

	4. Reducing the number of HTTP requests
	4.1. Asynchronous MPD updates
	4.2. Predictive templates
	4.3. Timeline extension

	5. Conclusion
	Abbreviations
	Bibliography & References

