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1. Introduction 
Recent advances in digital communications algorithms and artificial intelligence, coupled with 
the exponential growth of personal computing power, have positioned software-defined radio 
(SDR) technology as a viable tool for RF signal capture and playback, simulation, and testing. 
Popular applications for modern SDR designs include: 
 

• Cellular handsets with programmable digital signal processing (DSP) 
• University research / teaching aids 
• Military and satellite communications platforms that make use of programmable cores for 

intermediate frequency (IF) and baseband signal processing 
• Cognitive radio – a “smart” radio mesh that can adapt to interference adjusting frequency 

or power for example 
• Amateur radio 

 
The goal of this paper is to outline the general architecture and capabilities of a software-defined 
radio, followed by some basic principles of digital signal processing. A familiarity with sampling 
theory and the discrete Fourier transform, for example, will be very helpful for anyone looking to 
get started with SDR. 
 
Finally, two lab applications of software-defined radio will be detailed. Both of these 
applications were used in testing a profile management application implementation, so a section 
on PMA is introduced. After familiarization with PMA, the first test example uses SDR to 
capture long term evolution (LTE) signals, then re-play them back into the RF plant to be 
subsequently detected by pattern recognition software that is a function of PMA. The second 
case recreates plant conditions from a cable modem’s perspective by translating its reported 
receive modulation error ratio (RxMER) values into a waveform to be used as an impairment 
profile applied to an orthogonal frequency division multiplexing (OFDM) channel. Again, this 
impairment can then be analyzed by the analytics engine of PMA, and a custom OFDM profile 
recommendation can be verified. 
 
 
2. Software-Defined Radio General Architecture 
A software-defined radio is a radio that replaces traditional hardware components such as 
mixers, filters, and modulator/demodulators with software implementations, typically running on 
personal computers and driving a minimalistic hardware set. The Wireless Innovation Forum and 
IEEE P1900.1 working group has further simplified the definition down to: 
 
"Radio in which some or all of the physical layer functions are software defined" (1) 
 
There are many advantages to software-defined radio designs. Potentially first among these is the 
low cost. Devices can range from $10 USB-powered dongles, up to $10,000 high performance 
units with multiple transmit/receive (TX/RX) channels, higher maximum sampling rates, and 
greater usable bandwidth. Another primary advantage is flexibility. SDRs are not hardware 
limited to any particular specification standard, modulation type, or operating frequency range, 
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for example. The ability to test new designs in software also aids in the rapid prototyping of 
communication systems. 
 
Conceptually, an ideal software-defined radio would eliminate any analog signal processing 
stages, aside from an antenna, power amplifier, and input/output (I/O) sink or source such as a 
speaker or microphone. In reality, today’s SDRs use an analog frequency conversion stage at the 
receiver, with all signal processing thereafter being digital.  Similarly at the transmitter, the 
digital-to-analog conversion stage is followed by local oscillator/mixer for transmit frequency 
conversion along with power amplification. 
 
To illustrate a typical SDR design, the block diagram in Figure 1 outlines the functional 
components. This was the hardware used in the two practical example sections to follow.  
 

 
Figure 1 – SDR Architecture Block Diagram 

 
The key features of this design include: 
 

• Xilinx Zynq-7100 FPGA SoC 
• Dual-core ARM A9 800 MHz CPU 
• Two RX, two TX in half-wide RU form factor 
• 3 MHz to 6 GHz frequency range 
• Up to 200 MHz of instantaneous bandwidth per channel 
• Sub-octave RX, TX filter bank 
• 14 bit ADC, 16 bit DAC 
• Configurable sample rates: 200, 245.76, 250 MS/s 
• Two SFP+ ports (1 GbE, 10 GbE, Aurora, White Rabbit) 
• One QSFP+ port ( 2x 10 Gb / Aurora ) 
• RJ45 (1 GbE) 
• 10 MHz clock reference 
• PPS time reference 
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• External RX, TX LO input ports 
• Built-in GPSDO 

 
One of the main factors to consider in selecting a radio is usable bandwidth. The specification 
above lists 200 MHz of available bandwidth that will allow us to simulate or impair a full OFDM 
block with 190 MHz of modulated spectrum. Another point to consider is sampling rate. Radios 
range from fixed, to selectable, to fully configurable sampling rates, with the fully configurable 
ones being the most flexible, because in some cases they can eliminate the need for additional 
resampling functions. Many designs use open-source Verilog code for the FPGA that can be 
modified for high performance applications. 
 
 
3. SDR Software: GNU Radio 
GNU Radio is a free open-source development project that implements signal processing blocks 
in software for waveform creation, sampling, and analysis, that supports a variety of software-
defined radio hardware. It is used extensively in academic and commercial environments for 
wireless communications research and real-world radio systems. 
 
GNU Radio consists of software-based signal processing blocks used in conjunction with 
hardware drivers to build applications capable of transmitting or receiving digital data streams. 
These streams can be directed to disk and saved in different file formats, or to a software-defined 
radio sink. GNU Radio resource blocks include equalizers, filters, modulators/demodulators, 
filters, and other common radio elements. These blocks’ inputs and outputs are then connected in 
software to build an end-to-end flow. 
 
Being software based, GNU Radio operates on digital data. It uses complex baseband samples as 
input for receivers and as the output data type for transmitters. Analog mixing hardware can then 
shift the signal to the proper frequency. 
 
One of the biggest advantages to working with GNU Radio is that it is primarily written using 
the Python programming language, with the computationally intensive operations written in 
C++. GNU Radio also incorporates a graphical user interface – creatively named 
 GNU Radio Companion – that offers drag-and-drop software blocks to construct flowgraph 
applications. These GRC flowgraphs present an intuitive approach to thinking about the discrete 
signal processing stages. Once a flowgraph contains a source and sink, the file can be saved and 
executed, and Python code is automatically generated. At this point there is no need to run the 
flow from within GNU Radio Companion, as the Python code can be executed directly from the 
command line or Python shell. 
 
The GRC flowgraph shown in Figure 2 is an example of how a fast Fourier transform (FFT) 
block can be used to reproduce the same output as another GRC provided block: the Qt GUI 
frequency sink. The only difference is that Qt GUI frequency sink has the FFT, stream-to-vector, 
magnitude, and log functions built in. 
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Figure 2 - GNU Radio Flowgraph Example 

In my experience, it is best to compile GNU Radio, SDR drivers, and associated software from 
source code for your specific operating system. GNU Radio can compile on Windows, Mac OS, 
and Linux. Ubuntu 20.04 has been used for the testing contained herein. 
 

 
4. Sampling Theory 
 
When beginning to work with software-defined radio, it may be helpful to review some basic 
principles of signal processing.  
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In digital signal processing, sampling of a continuous-time input signal is performed in an 
analog-to-digital converter (ADC). The output of the converter is a series of data points that 
sample the instantaneous value of the input signal, and are taken at a given sampling rate. These 
discrete samples may be used to perform filtering or other processing in the digital domain using 
a digital signal processor, and then converted back to the analog domain using a digital to analog 
converter (DAC) as needed. Key to the sampling process is the sampling rate, or the number of 
samples taken per second (measured in Hz).  
 
Different sampling rates are specified for different purposes. For example, 44.1 kHz is the 
standard sampling rate used in CDs, and 48 kHz is the recommended sampling rate for many 
other applications, including audio in digital video recordings. If the signal is sampled properly, 
the original analog signal may be reconstructed perfectly from the digital samples. 
 
In order to choose the sampling rate for a specific application, the concept of aliasing is 
important to consider. Aliasing refers to the phenomenon that results in an imperfectly 
reconstructed analog signal from digital samples created when the sampling rate is too low. As 
we can see in the illustration in Figure 3, the blue signal has been reconstructed erroneously from 
the red signal due to the inadequate number of samples taken. 
 

 
Figure 3 – Aliasing Due to Undersampling 

In order to avoid aliasing and accurately reconstruct a signal from its samples, the Nyquist 
condition must be satisfied. This condition requires that the sampling frequency  must be 
greater than or equal to two times the frequency bandwidth  of the input signal  : 

 
 
As long as the Nyquist criterion is met, it is theoretically possible to exactly reconstruct  

 from its discrete samples , where  
 
     

The samples of  are spaced at time , where  is the sampling interval  . 
 
Under the Nyquist sampling condition,  can be reconstructed from its discrete samples  
by using the reconstruction formula: 
 

https://www.codecogs.com/eqnedit.php?latex=f_s#0
https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=N%20%3D%20f_%7Bs%7D%20%5Cgeq%202B#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=f_n#0
https://www.codecogs.com/eqnedit.php?latex=f_n%20%5Cequiv%20f(nT)%2C%20%20-%5Cinfty%20%3C%20n%20%3C%5Cinfty#0
https://www.codecogs.com/eqnedit.php?latex=f_n#0
https://www.codecogs.com/eqnedit.php?latex=%20t%20%3D%20nT#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7Bf_s%7D#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=f_n#0
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The sinc function,  is also known as the interpolating function.  
 
 
 
5. The Discrete Fourier Transform or DFT 
 
Mathematically, the Fourier series is used to represent any periodic function as a sum of sine and 

cosine functions. If we have any  with period , then the Fourier series is  
 

 
 
with the Fourier coefficients 
 

 
 

where Euler’s formula is used to give us our sinusoids:  
 

 
 
where  represents frequency,  represents time, and  represents the imaginary number 

. 
 
To visualize the construction of a 
periodic function as a sum of sines, the 
animation in Figure 4 depicts the 
construction of a square wave that 
becomes closer to the ideal with higher 
frequency resolution: 
 

Figure 4 – Square Wave 
Construction From Sine Waves 

 

https://www.codecogs.com/eqnedit.php?latex=f(t)%20%3D%20%5Csum_%7Bn%7D%20f_n%20sinc(%5Cfrac%7B%5Cpi%20%7D%7BT%7D(t-nT))#0
https://www.codecogs.com/eqnedit.php?latex=sinc(t)%3D%5Cfrac%7Bsin(t)%7D%7Bt%7D#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=T%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega_0%7D#0
https://www.codecogs.com/eqnedit.php?latex=f(t)%3D%20%5Csum_%7Bn%3D%5Cinfty%7D%5E%7B%5Cinfty%7DF_ne%5E%7Bjn%20%5Comega_0%20t%7D#0
https://www.codecogs.com/eqnedit.php?latex=F_n%3D%5Cfrac%7B1%7D%7BT%7D%20%5Cint_%7BT%7D%20f(t)e%5E%7B-jn%20%5Comega_0%20t%7Ddt#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7Bj%20n%20%5Comega_0%20t%7D%3D%20cos(n%5Comega_0%20t)%2B%20jsin(n%5Comega_0%20t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_0#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=j%20%3D%20%5Csqrt%7B-1%7D#0
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If a function is aperiodic, it can still be represented as a sum of sinusoids, but the frequencies of 
the sinusoids are no longer simply harmonics of a fundamental . A general aperiodic signal 
consists of a continuous spectrum of frequencies, so rather than integrating over a single period 
of  as is the case with Fourier series coefficients, we must integrate  over all time to 
derive the exact Fourier transform, which is the equivalent to the Fourier series coefficients but 

in a continuous frequency range. In the limit as the period  approaches infinity in an 
aperiodic signal, then the fundamental frequency  approaches 0, and so we must integrate 
over the entire period of an aperiodic signal, which in other words, means we integrate over all 
time: 
 

 
 
In analog signal processing, the Fourier transform  is used to determine the characteristics 
of the signal  in the frequency domain. We can determine the frequencies or spectral 
content present in  using the Fourier transform, and manipulate or filter the signal as needed 
in the frequency domain.  
 
Then, we can use an inverse Fourier transform to go back to the original time domain function 
from the frequency domain: 
 

 
 
Similarly, in digital signal processing, the discrete-time Fourier transform (DTFT) is used in 
order to convert a continuous discrete-time signal (input sequence) into its counterpart in the 
continuous frequency domain. It is modeled by the equation 
  

 
 
where  represents a discrete-time input signal, and  is an integer. 
 
The inverse DTFT is given by  
 

 
 

https://www.codecogs.com/eqnedit.php?latex=%5Comega_0#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=T%3D%5Cfrac%7B2%5Cpi%7D%7B%5Comega_0%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Comega_0#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=F(%5Comega)%20%3D%20%24%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-j%20%5Comega%20t%7Ddt%24%2C%20%5Comega%20%5Cin%20(-%5Cinfty%2C%20%5Cinfty)%20#0
https://www.codecogs.com/eqnedit.php?latex=F(%5Comega)#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=f(t)%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Comega)e%5E%7Bj%20%5Comega%20t%7Dd%5Comega#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20X(%5Comega)%20%3D%20%20%24%5Csum%5Climits_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20x%5Bn%5De%5E%7B-j%20%5Comega%20n%7D%24%2C%20%5Comega%20%5Cin%20%5B-%5Cpi%2C%20%5Cpi)%20#0
https://www.codecogs.com/eqnedit.php?latex=x%5Bn%5D#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=x%5Bn%5D%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%20%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%20X(%5Comega)e%5E%7Bj%20%5Comega%20n%7D%20d%5Comega%20%2C%5Comega%20%5Cin%20%5B-%5Cpi%2C%20%5Cpi)#0
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Finally, the discrete Fourier transform (DFT) is simply a “sampling” of the DTFT in the 
frequency domain – a finite version of the DTFT taken over a specified interval or number of 
samples. It is modeled by the equation 
 

 
 
where N represents the total number of samples. 
 
And we can also define the inverse DFT by: 
 

 
 
The DFT is a mainstay in the digital signal processing toolbox. It allows us to determine the 
spectral components of a sampled signal and to determine the frequency response of a system 
given the impulse response of the system in a completely digital manner. It uses a finite number 
of samples which can be easily used in computations of all kinds. 
 
The FFT, or fast Fourier transform, is an algorithm that is used to calculate the DFT in a 
mathematically efficient manner. The FFT is employed by mathematicians, engineers, musicians, 
and scientists to rapidly analyze, modify, or utilize sampled signals in the frequency domain for 
myriad applications. 
 
 
6. Introduction to Profile Management Application 
The next two sections of this paper provide examples of using SDR to generate impairments for 
profile management application testing. A brief overview of PMA will demonstrate how highly 
customizable impairment profiles can aid in OFDM profile management testing. 
 
A profile management application system builds an optimized set of OFDM channel modulation 
profiles based on current plant conditions. It does this by collecting receive modulation error 
ratio data from cable modems, analyzing this data to sort modems into impairment groups, and 
finally building the modulation profiles and applying them on the CMTS (see Figure 5). The 
modulation profiles themselves typically contain variable bit-loaded regions ranging from 
excluded regions (0-QAM) for highly impaired subcarriers, to 4096-QAM in the low noise areas 
of the OFDM channel. In this way, the PMA algorithm is able to maximize overall channel 
capacity while maintaining robust profiles that are noise-tolerant. 
 
 
 

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=X%5Bk%5D%20%3D%20%24%5Csum%5Climits_%7Bn%3D0%7D%5E%7BN-1%7D%20x%5Bn%5De%5E%7B%5Cfrac%7B-j%202%20%5Cpi%20kn%7D%7BN%7D%7D%24%2C%20k%20%3D%200%2C%201%2C%20%5Cldots%20%2C%20N-1%20%20#0
https://www.codecogs.com/eqnedit.php?latex=x%5Bn%5D%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum_%7Bk%3D0%7D%5E%7BN-1%7DX%5Bk%5De%5E%7B%20%5Cfrac%7Bj2%5Cpi%20k%20n%7D%7BN%7D%20%7D%2C%20n%20%3D%200%2C%201%2C%20%5Cldots%20%2C%20N-1#0


    

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 11 

 
Figure 5 – The Profile Management Application System 

 
Laboratory RF environments are often very clean, with short cable runs, limited ingress, and few 
taps or active elements such as amplifiers or line extenders. To test profile recommendations 
generated by the PMA algorithm (Figure 6) we will need to introduce impairments with variable 
power levels, widths, and durations. The following sections demonstrate how software-defined 
radio can be used to create these impairments. 
 

 
Figure 6 – PMA In Action: Building Custom OFDM Profiles 
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7. Practical Application Example #1– Capturing LTE Signals For 

Replay as an Impairment Source 
Problem Statement: How can we capture LTE signals and introduce them as ingress interference 
in a laboratory environment? 
 
SDR Solution Outline: 

1. Using a cellular telephone as a signal source, find the LTE band currently in use 
2. Prepare the SDR to capture at the LTE uplink frequency  
3. Start a speed test on the UE to generate traffic 
4. Observe/capture the LTE signal on the SDR 
5. Combine SDR TX into the lab RF plant and playback capture file 
6. Observe effect in the cable modem’s downstream OFDM channel and verify PMA 

OFDM channel profile recommendation  
 

Detailed Steps: 
1. Most modern UE devices include hidden service menu interfaces that can be accessed by 

dialing certain sequences. For example: 
a. Apple iPhone (all): *3001#12345#* 
b. Samsung (Android): *#*#197328640#*#*or *#0011# 
c. Sony (Android): *#*#*386#*#* or *#*#*585*0000#*#*  
d. HTC (Android): *#*#7262626#*#* 

 

 
Figure 7 - Finding LTE Band In Use on iPhone 

 
From the above example, we can determine what uplink frequencies are assigned to Band 66: 
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Table 1 – LTE Frequency Bands (3) 

 
 

2. Osmocom_fft is a simple spectrum analyzer and capture tool that can be used to write 
sampled data directly to a file. Using a command such as: 
osmocom_fft -f 1.89e9 -s 40.96e6  
will launch the application and tune to 1.89 GHz. 
If the Osmocom utilities are not available, a  GNU Radio Companion flowgraph can be 
created to output the data from a UHD:USRP source to a file sink block. 
The RX port of the SDR should be fitted with an antenna capable of receiving the LTE 
frequencies, such as a mini GSM/cellular quad-band antenna with 2 dBi of gain and 50 
ohm impedance. 
 

3. Install Speed test on the UE LTE source, disable Wi-Fi, and begin a speed test. Most 
testing includes a downlink and an uplink speed test portion. If the energy is not seen at 
the expected frequency, the downlink test may not have completed or the UE may have 
changed bands or moved to a neighboring macro cell. 
 

4. The LTE signal should now be see on the analyzer. For live, raw IQ capture, Gqrx is a 
free open-source software-defined radio receiver that supports many popular radios 
including Airspy, rtl-sdr, HackRF, and USRP devices.  
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Figure 8 - Real Time Spectrum Analyzers for IQ Capture (clockwise): 

osmocom_fft, uhd_fft, gqrx SDR 

 
5. Combine the SDR TX Port 1 into the laboratory RF plant as needed to impact the desired 

set of modems. For example: 
 

 
Figure 9 - Combining of Noise Sources in Laboratory Environment 
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7. Through the splitting and combining network, different interference groups can be 
created. In this way the k-means based clustering algorithm that the PMA analytics 
engine implements can be fully tested, as multiple, custom OFDM channel profiles are 
supported. 
 
 

8. Practical Application Example #2 – How SDR Has Aided Profile 
Management Application (PMA) Testing 

Problem Statement: How can we re-create an OFDM channel impairment profile using a cable 
modem’s reported RxMER values? 
 
SDR Solution Outline: 

1. Read in cable modem RxMER data file 
2. Convert the data from ¼ dB values to dB 
3. To create the impairment profile, set all values that are within a threshold (say 6-10 dB) 

of the maximum value to zero. We will be using the values outside of this “good” range 
to create our impairment. 

4. Convert the RxMER value from a ratio of power values to output voltage for the DAC 
5. Normalize the voltage value vector  
6. Use  GNU Radio to stream out the data to an inverse fast Fourier transform block to 

convert from frequency to time domain 
7. Stream the data to either a file to use for later playback, or directly to the software-

defined radio sink 
8. Inject this RF impairment into the lab environment physical plant to re-create the 

impairment seen at the customer premises  
 

Detailed Steps: 
1. The cable modem RxMER values can be obtained either directly from CMTS CLI or via 

TFTP download. The values are reported in quarter-dB, for example: 
 

0x0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

. 

. 

. 
0x0400 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0420 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0440 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0460 00000000 0000B6B7 B9B6BCB6 B5BABAB4 B6B3B4B5 BAB3B8B3 BAB6B8B5 B5BBBBB6 
0x0480 B6BAB5B9 B9B7BBB7 BCB4B4BA B4B6B7B9 B6B8B3BD B7B7B8B5 B8B8B8B6 B7B8B7B9 
0x04A0 BAB3B8B5 B6B7B8B8 BCB7B8BB B8BAB4B8 B7B6B9B3 B6B9B9B8 B7B9B9B9 B4BCBAB5 
0x04C0 B6B8B4B7 B7BAB8B8 B3B8B7B4 B8B6B7B9 B9B4B8B5 B9BAB6B9 B4B6B4B9 B4B6B9BA 
0x04E0 B6B9B3B7 BAB2B5B6 B5B5B4B6 B4B7B7BA B9B7B5BA B9B6B9B4 B6B7B7B7 BDBAB6B3 
0x0500 B6B6B4B7 B6BABBBC B3B8B5B7 B7B7B5BB B6B6B6B8 B7B7B6BA B4B6B8B9 B7B5B8B7 
0x0520 B9B6B5B8 B3B9B7B6 B6BBB7B5 B8B9B4B7 B8B7B4B7 B7B7B8BA B8B7B5B4 B4B4B9B3 

. 

. 

. 
0x0F40 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0F60 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
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0x0F80 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0FA0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0FC0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
0x0FE0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 

 
 

If using the values from the TFTP downloaded RxMER file, the RxMER per subcarrier 
data follows after a header using the specified format: 

Table 2 – RxMER TFTP File Format (4) 

 
The other data such as the subcarrier zero frequency, first active subcarrier index, 
subcarrier spacing, and length in bytes of the RxMER data will all be used to fully 
describe the OFDM channel impairment profile.  
 

2. The RxMER data itself is defined as the ratio of the average power of the ideal QAM 
constellation to the average error-vector power. The error vector is the difference 
between the equalized received pilot or preamble value and the known correct pilot value 
or preamble value. The reported values are represented in hexadecimal values of ¼ dB. 
Multiple each value in the array by ¼ to properly scale.  
 

3. In this step we discard (set to zero) all values that are within a configurable threshold of 
the maximum reported RxMER value. Only the low RxMER values will be used to 
construct the impairment vector. This example used a value of 10 dB. 
 

4. Convert every value in the impairment array to an output voltage value for the DAC 
using the formula: 
 
V = 10 (dB/20) 
 

5. Divide every voltage value by the sum of values (new values will all sum to 1) to avoid 
overloading the SDR output stage. 
 

6. The processing of the RxMER data, along with the streaming to either file or directly to 
the software-define radio sink was achieved through the creation of a  GNU Radio 
Companion flowgraph (Figure 10).  
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Figure 10 - GRC Flowgraph to Contruct and Transmit Custom Impairment 

Waveform 

Flowgraph Details: 
Embedded Python Module- 
The previous six steps were all done in the embedded Python Module block.  GNU Radio 
companion allows you to create and use custom Python code within your flowgraph. In this 
example, all the RxMER data manipulation and plot generation was done within the embedded 
Python block. After reading in the modem’s RxMER data, the values are written to disk as a 
Matplotlib Pyplot (Figure 11): 
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Figure 11 - Graph of RxMER Data Generated by Embedded Python Block 

Vector Source Block - 
This flowgraph begins with the vector source block. This block streams items based on the input 
vector, which in this case is the output of a Python method in our embedded Python block.  
 
Throttle Block - 
This stream feeds a throttle block. This block will be set to “bypass” when using the real SDR 
hardware which will set its own sampling rate. It is used in combination with the software sinks 
or file output, when the sampling rate would only be determined by the host’s CPU clock.  
 
Stream to Vector Block – 
This block converts the stream of items into a stream of vectors containing N number of items. In 
this case the number of items will be the FFT size (4096). The stream-to-vector and vector-to-
stream blocks are special in that the input and output types differ by a decimation or interpolation 
factor. In our example, the stream-to-vector block produces one output vector for every 4096 
input samples. 
 
FFT Block – 
The complex valued output vector from the previous stage feeds the fast Fourier transform block. 
The key parameters of the FFT block are: FFT size (number of samples used in each FFT 
calculation), direction (forward for FFT, reverse for inverse FFT), window, shift (puts DC – 0 Hz 
– in the center of the FFT block for complex input type), and number of threads. 
 
Vector to Stream Block – 
The output of the FFT block will always be complex-valued. This block will convert a stream of 
vectors from the FFT block to a stream of items that can be fed directly to an output file, the 
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SDR hardware, a GUI frequency sink that offers spectrum analyzer functionality, or a Fosphor or 
Waterfall sink for more real-time spectrum analyzer-like output.  
 

 
Figure 12 - Qt GUI Frequency Sink Visualization of Impairment Signal 

 
Figure 13 - Qt Fosphor Sink Visualization of Impairment Signal 
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Rational Resampler Block – 
If trying to stream a file that has been sampled at a rate that is not supported by the SDR 
hardware, the rational resampler block allows us to change the sampling rate (e.g., from the 
DOCSIS standard 204.8 MHz). In this example the default hardware sampling rate is 245.76 
MHz so we could set the interpolation factor to 6 and the decimation factor to 5 to upsample to 
245.76 MHz. 
 

7. If the output is sent to a file, we can replay directly to the SDR sink without continuously 
performing the IFFT calculation repeatedly. The act of streaming 32 bit IQ data at 245.76 
MHz is very I/O intensive and requires a powerful host computer with a 10 gigabit 
interface. As seen in Figure 14 this stream from the host to the SDR hardware averages 
around ~7.8 Gbps: 

 
Figure 14 - Bandwith Monitor of IQ Data Stream 

8. The SDR TX output can then be combined into the laboratory plant, and the effect can 
then be observed in the OFDM channel RxMER data (Figure 15).  
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Figure 15 - Impairment Signal on Spectrum Analyzer 

In this case we were testing the response of our profile management application (a.k.a. 
Octave) to verify that proper bitloading values were being set for the impacted frequency 
ranges. For an example OFDM profile, see Figure 16.   

 
 

 DS    DS  Low-High Freq         Bits/Symbol/  MaxRate 
S/C/CH  Prof Edge (MHz.KHz)   Mod    Subcarrier   Mb/sec 

9/0/48  0   -default-      256qam     8.00    584 
9/0/48  1   -default-      4096qam    11.73    856 
9/0/48  1   702.000-708.000  2048qam      -     - 
9/0/48  1   735.000-737.000  2048qam      -     - 
9/0/48  1   738.000-744.000  2048qam      -     - 
9/0/48  1   745.000-756.000  2048qam      -     - 
9/0/48  2   -default-      4096qam    10.75    785 
9/0/48  2   795.000-801.000  1024qam      -     - 
9/0/48  2   802.000-813.000  512qam       -     - 
9/0/48  2   816.000-828.000  512qam       -     - 
9/0/48  2   831.000-832.000  2048qam      -     - 

. 

. 

. 

Figure 16 - OFDM Profile for SDR Generated Impairment Signal 

 

 



    

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 22 

 
9. Equipment Used  
Software-Defined Radio Hardware: 

1. Ettus Research USRP N320 
2. Ettus Research USRP B210 Mini 
3. Great Scott Gadgets HackRF One 
4. 75 MHz to 1 GHz telescoping antenna 
5. SMA Make Right Angle antenna (850/900/1800/1900/2100 MHz, 2 dBi gain, 50 ohm) 
6. 10 Gb direct-attach copper cables 

 
Software-Define Radio Software: 

1. GNU Radio v3.8.1.0 
2. Ettus Research UHD drivers UHD_3.15.0.HEAD-0-gaea0e2de 
3. GNU C++ v9.3.0 
4. Python 3.8.2 
5. Various libraries including libosmodsr-dev, libhackrf-dev, gr-osmosdr, gr-fosphor,  

 
SDR Controller Host Computer: 

• CPU - AMD Ryzen Threadripper 3970X 
• Motherboard - Asus ROG Zenith II Extreme Alpha 
• RAM – 32 GB Corsair DDR4 3600 
• Storage – Samsung 970 EVO M.2 1 TB (x2) 
• GPU - EVGA GeForce RTX 2080 Ti Xc Hybrid 11 Gb DDR6 
• Network – Asus XG-C100C 10G Network Adapter PCI-E x4 
• Power – Thermaltake 1200 W 80+ Platinum 

 
OS Software: 

1. Ubuntu 20.04 LTS 
2. Windows 10 

 
Spectrum Analyzer: 

• Siglent SSA 3021X Plus (9 kHz to 2.1 GHz) 
 

  



    

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 23 

 
10. Conclusion 
In this paper, we have explored what software-defined radio is and what it offers to engineers, 
students, and designers. We presented a general architecture as well as some needed background 
information on sampling theory and the discrete Fourier transform.  Finally, the hardware, 
software, and drivers used to implement real data flows to sample and/or generate signals were 
detailed, along with two laboratory use cases.  
 
With the abundance of open-source community supported software and low cost hardware, 
software-defined radio is proving be a valuable laboratory and field testing tool. By abstracting 
the functionality from a specific piece of physical hardware, we can transmit and receive various 
modulation methods, perform signal processing and filtering, and customize routines though 
Python extensions all within a common software framework. These advantages, combined with 
the ability to embed Python code for customized signal processing routines, positions software-
defined radio as a valuable laboratory and field testing tool. 
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Abbreviations 
 

ADC analog-to-digital converter 
AWS advanced wireless service 
bps bits per second 
CLI command line interface 
CMTS cable modem termination system 
CPU  central processing unit 
DAC digital-to-analog converter 
dB decibel  
dBi decibel isotropic 
DC direct current 
DFT discrete Fourier transform 
DSP digital signal processing 
DTFT discrete time Fourier transform 
FDD frequency division duplex (or duplexing) 
FFT fast Fourier transform 
FPGA field programmable gate array 
GB gigabyte  
GbE gigabit Ethernet 
Gbps gigabits per second 
GHz gigahertz  
GPSDO Global Positioning System disciplined oscillator 
GRC GNU Radio Companion 
GSM global system for mobile communications (originally groupe spécial 

mobile) 
GUI graphical user interface 
Hz hertz 
IEEE Institute of Electrical and Electronics Engineers 
IF intermediate frequency 
IFFT inverse fast Fourier transform 
I/O input/output 
IQ in-phase/quadrature 
ISBE International Society of Broadband Experts 
kHz kilohertz  
LO local oscillator 
LTE long term evolution 
MHz megahertz  
MS/s megasamples per second 
OFDM orthogonal frequency division multiplexing 
OS operating system 
PCS personal communications service 
PMA profile management application 
PPS pulse per second 
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QAM quadrature amplitude modulation 
QSFP+ quad small form-factor pluggable plus 
RAM random access memory 
RF radio frequency 
RU rack unit 
RX receive (or receiver) 
RxMER receive modulation error ratio 
SCTE Society of Cable Telecommunications Engineers 
SDR software-defined radio 
SFP+ enhanced small form-factor pluggable 
SMA subminiature version A [connector] 
SoC system on a chip 
TFTP Trivial File Transport Protocol  
TX transmit (or transmitter)  
UE user equipment 
UHD USRP hardware driver 
USB universal serial bus 
USRP universal software radio peripheral 
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