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1. Introduction 
Customer Experience, Telco, Machine Learning, Automation… all sounds a bit dry, no?  If not, this 
should help shed light on a specific use case, but also provide details and lessoned learned while building 
the solution.  If so, read on to perhaps find some surprising details.  Many are aware of the impact from 
Machine Learning but may not be aware just how many portions of the enterprise it is now altering -- or 
the magnitude of those changes. 

With building an ML platform in mind, specifically to improve and automate the customer experience, 
this paper will illustrate how we accomplished this.  It will also detail lessons learned and insights not 
only on the data itself, but on the architecture and thinking behind it. 

Another focus is the challenges and differences of scaling and maintaining the Machine Learning 
components of the architecture.  The highlight here is that while Proactive Network Management (PNM) 
[1] has laid out a number of excellent methods on how to collect and analyze network telemetry from 
CPE and other headend equipment, it has not covered the aspects of what to do or how to handle the data 
with respect to utilizing ML models. 

This paper will begin with the Customer Experience use case, and work from that point through to the end 
solution.  A number of open source technologies are referenced as possible implementations for 
components.  Other components can certainly be used.  

The desire to share this information stems from the fact that some of these solutions are not easy.  They 
require not only multiple resources to develop the front-end user interface, but the back-end platform as 
well.  After the ML models have been trained, the task of building the platform, scaling, testing specific 
tools and gluing everything together is still rather manual and prone to performance and optimization 
challenges.  With those things in mind, the details throughout this paper should aid the reader in 
determining directions to go when considering, building and scaling such a system. 

2. History 
Telemetry collection and polling have been widely covered in the industry with both positives and 
negatives.  The positives almost always outweigh the negatives, in terms of providing the ability to 
determine outages quickly, gain insights on which partitions and elements in the network require 
maintenance and many other useful applications.  Using telemetry with machine learning is also fairly 
old, just not commonly referred to as “machine learning”.  Take adaptive equalization in digital 
communications as an example.  The parallels are  many between parts of adaptive equalization and how 
machine learning algorithms work.  Or, take the DOCSIS upstream pre-equalization process as another 
example.  For each burst of data in a transmission, the preamble is used just like a training set for a 
supervised ML algorithm, but for the CMTS’s upstream adaptive equalizer.  Likewise for the 
downstream, with a blind-equalizer -- it is the same as an unsupervised ML algorithm.  Overall, there are 
inputs, derived coefficients and an optimization problem – which is to minimize the mean square error of 
the outputs. 

Applying ML algorithms to other telemetry angles is simply considering different shapes.   With polling 
or collection systems, gathering telemetry from CPE, headend or data center equipment, and funneling 
that into distributed computing environments to do essentially the same thing the CMTS was doing with 
adaptive equalization, is a larger scale scenario with potentially more complex models.  This method of 
analyzing telemetry is just the next evolution, after analyzing telemetry for outages or full spectrum data 
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for various distortions -- but now using more complicated methods such as ML models to tease out new 
artifacts and correlations in determining network health. 

 

3. Customer Experience as it relates to ML 
What is customer experience?  According to customer experience futurist Blake Morgan, it “really boils 
down to the perception the customer has of your brand” [2].  In the use case laid out, it is the perception 
of the self-service customer experience.   

3.1. Use Case 

The outcome of the project is to automate simple common customer service questions and return 
immediately useful feedback or solutions to the posited issue or question.  The goal here was two-fold: 
one, to improve the customer experience by knowing their issue before they do and if possible remedy it, 
and two, to reduce the number of calls to customer service.   

When left open-ended, the outcome is intractable, given the large problem scope of all possible issues 
customers may face while going through all the various customer service avenues available to them.  
Therefore the scope and requirements of the outcome were reduced to answer a few basic questions, then 
continue to build out the capability to handle more queries from there.  These initial questions were: 

• Is there an issue with my internet service? 
• Is there an issue with my video service? 
• I have a billing or account inquiry? 

All of the problems require use of machine learning. The first two require telemetry data and additional 
machine learning as well.  For the third question, the goal was to handle simple questions initially, such as 
“why is my bill different than last month?” or “how much does my TV package cost?” and has since been 
expanded to handle more questions. 

With the goals and outcome clearly defined, the solution required thinking on how to accomplish this, 
given the large number of telemetry and other data sources available. 

4. Telemetry 
The breadth of telemetry for most telecommunications companies and network operators is vast.  Data 
comes from a number of sources which generally are customer devices, headend or data center equipment 
or public devices.  Customer devices or CPE (Customer Premises Equipment) are usually comprised of 
cable modems, Wi-Fi Access points, cable boxes and the ever growing list of IoT devices.  Central 
locations such as the headend, Point of Presence (POP) and data centers tend to be the geographic source 
for equipment such as CMTSs, access networks, video sources and more. 

The correlation between our initial questions and data sources were fairly straightforward: 
• Internet service problem: telemetry from the cable modems and CMTSs 
• Video service problem: errors from our Video Backend Service (VBS) 
• Billing / account inquiry: billing data system 

During the exploration of datasets, a single dataset was found that provided attributes for both the internet 
and video service questions, which was errors from the OS that runs on both cable modems and STBs.  
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The informational and error messages from devices built on the Reference Design Kit (RDK) [3] turned 
out to be very valuable, as both the Set-top Box (STB) and Cable Modem (CM) use the same 
transmission medium from the premise to the headend or hub site. 

4.1. Attributes 

Telemetry from the RDK consists of a number of attributes useful to determine if there are issues from the 
CM side, STB side or both.  It contains general information about the CPE: 

• CPU utilization 
• Memory utilization 
• System load 
• Wi-Fi signal strength 
• Etc. 

Perhaps the most useful data from RDK, however, are error codes and counts.  These errors relate to 
dropped packets, firmware errors, signal errors, etc.  The specific attributes which were the most 
impactful as part of the machine learning model were “rf_error_erouter_ip_loss”, 
“rf_error_ipv6pingfailed”, and “rebootreason=unknown”.  These attributes increase the accuracy of the 
models in determining whether or not the issue is related to internet service / high speed data (HSD). 

While the RDK telemetry provided beneficial information for both HSD and video, the VBS data 
provided the majority of telemetry needed to determine if the customer issue was video-related.  The VBS 
data contains such telemetry as: 

• User interactions with their TV via the remote 
• Errors displayed on-screen to the customer 
• Errors with satisfying a request to the customer 
• Etc. 

For the billing questions, having data about the customer billing history, specific elements on the bill and 
differences between those elements over time provided the majority of features needed to satisfy the 
initial use-case. 

4.2. Usefullness 

In “Observing home wireless experience through wifi APs” [14], it was shown that many in-home Wi-Fi 
markers were able to characterize wireless experience. In our work, the definition of telemetry includes 
error and system logs produced by RDK, which is unique to our use case compared to the literature.  We 
will detail a few examples in this section to give the reader a picture of their utility. 

The telemetry includes readings of Wi-Fi signal strength (known as RSSI, for Received Signal Strength 
Indicator) and channel utilization. RSSI is a negative value (-100,0) and a value below –80 is considered 
poor signal strength. Therefore, it is clear that this telemetry feature can be useful in identifying devices 
that have an impacted customer experience. Likewise, channel utilization data can indicate when a given 
Wi-Fi channel frequency is saturated from too many devices or too much traffic. High utilization is an 
indication that one may need to change the Wi-Fi channel the router is using for signal transmission. 

The RDK logs are another source of events which may impact a customer’s service. For example, if a 
reboot occurs, there are multiple keys that indicate the event has taken place, and in some cases, why the 
reboot occurred. Unscheduled reboots are generally strong indicators of a customer experience issue. 
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Moreover, there are system logs when processes on the box restart, which can also impact service, 
depending on the process. (Such processes are programs running on the thin version of Linux on the 
gateways). There are other markers like “system_uptime”, which gives the time since a last reboot, and 
“rf_error_ipv6pingfailed”, which indicates a count of pings to a fixed IPv6 server address that have failed 
since the last log. In total, there are over 750 unique keys which appear in RDK and more are added over 
each release.  

5. Platform 

5.1. General Architecture 

All of the features learned from exploratory data analysis need to be processed, parsed and transformed so 
they can be passed into the model.  During offline training of the model, the researchers perform these 
tasks but usually at smaller scales. Or, if full-scale, it usually doesn’t run constantly.  Also in the research 
environments, the lack of introspection, scaling (depending on the researchers’ environment), monitoring 
and alerting is unacceptable for running a supported product.  These are among the goals of an ML 
platform. 

The basic components of the platform, in order of data flow, are: 
• Data producer 
• Raw data consumer 
• Feature engineering  
• Model invocation 
• Inference storage or action 

This typically involves one or more teams and one or more platforms to handle the data.  It is common for 
the platform responsible for polling or collecting data from the CPE to be handled by one team, while a 
different team is responsible for the ML platform.   

When greatly simplified, data collection can be boiled down as seen in Figure 1.  Here, some process 
(usually many parallel processes) is responsible for connecting or listening to the CPE and other devices 
to collect, format and aggregate telemetry.  JSON is typically used for data formatting, though other 
formats are becoming more common, such as Protocol Buffers and Apache Arrow objects.  After the data 
is formatted, the telemetry collection system will publish the messages to a message bus for consumption 
from other teams within the organization.  For our systems, we use Apache Kafka, as it is stable and 
scales well. 

 
Figure 1 - Telemetry collection flow 
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Once the data has been published to the message bus, it is decoupled from the data collection platform 
and available to be used by the ML platform.  A simple flow for processing the telemetry events from the 
message bus is detailed in Figure 2.  Here a message bus consumer process will listen to the stream for 
new messages.  Next the message will be parsed, and various transformation and/or normalization steps 
will be performed on the data to prepare the dataset to be passed into the ML model.  Before or after 
parsing and feature engineering, it is common to store features into a database so they can be later 
retrieved.  This is useful when building aggregate feature sets (such as time windows, feature enrichment, 
etc.) so the model may be passed a richer and potentially more useful set of features.  Once the features 
are ready, the model is invoked, which produces an inference or prediction.  This output is then handled 
by possibly storing that in another database, distributed filesystem or even published to another message 
bus to do something with that model output. 

 

Figure 2 - Feature engineering and model invocation flow 

While these two systems are usually logically separated and loosely coupled, thanks to the message bus 
architecture, they do need to combine as shown in Figure 3.  Here the full picture is seen with both the 
telemetry collection platform and the machine learning platform receiving telemetry. 

 
Figure 3 - End-to-end telemetry and ML processing flow 
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5.2. Implementation 

5.2.1. Technology choice 

The end architecture contains the same components and flow as shown in Figure 3, but there are 
differences in how those components look after scaling and with specific technology choices.  For the 
flexibility to run programs of any type, Docker was chosen to contain some of these complex 
applications.  For scalability, a container orchestration layer is required to dynamically scale resources to 
match the needs of the incoming telemetry – in our case, Kubernetes was chosen here.  For a scalable 
message bus, the choice was Kafka, as previously mentioned.  Depending on the rate of operations and 
type of data in the features, a range of database technologies and types can satisfy that requirement.  For 
example, if you have relational data, a more traditional SQL database such as MySQL or PostgreSQL 
might be chosen.  For a NoSQL database, perhaps Apache Cassandra or MongoDB.  For a NoSQL cache 
layer, CouchDB, Redis, or if SQL, then MemSQL.  This is by no means a comprehensive list of database 
technologies but do represent a few options to investigate, should you have a specific set of requirements 
for your feature store.  For our solution, Redis was chosen primarily for performance reasons and data 
retention.  The research team determined that the largest useful window of data was 24 hours and older 
historical data beyond that was less impactful.  It is also relatively quick to repopulate, as well, in the case 
of catastrophic cluster issues. 

Kubeflow was chosen for model serving not only because it works well with Kubernetes but contains a 
number of require features as well.  More specifically, a sub-component of Kubeflow called Seldon Core 
was chosen due to its flexible inference graphs, monitoring and A/B testing capabilities.  Finally, Python 
is the language of choice for deploying models due to the fact that the models will require little or no code 
changes to be deployed.  Also, many Python specific packages such as NumPy are very performant and 
don’t have great equivalents in other languages.  This also allows the model owner or team less familiar 
with production operations to maintain and re-deploy their model as needed.  Other scientific languages, 
such as R, have far less library and performance support for writing and running general components. 

5.2.2. Architectural differences 

The differences between our general architecture in Figure 3 change when we consider Kafka and 
Kubernetes. Starting with Kafka, it is important to understand a bit about how Kafka works so that we can 
scale appropriately.  Without getting too deep into Kafka’s architecture, there are three basic components: 
the topic (which consumers and producers use), the broker (a node in the Kafka cluster that handles 
topics) and partitions (a sharded piece of the topic).  When we have high volume topics, those usually 
need to be partitioned out so we can scale throughput horizontally. In Figure 4, the telemetry polling 
architecture would publish messages to a specific Kafka topic with 𝑏𝑏𝑛𝑛 brokers and 𝑃𝑃𝑚𝑚 partitions. 
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Figure 4 – Message bus parallelism 

 

To calculate 𝑛𝑛 and 𝑚𝑚, the volume and message size need to be determined.  For this example X,Y and Z 
are just example features.  Actual features used in the system are Signal-to-Noise Ratio (SNR), RSSI and 
others.  Take the following row as an example:  

Table 1 – Sample telemetry  
MAC address Customer ID X Y Z 
aa:bb:cc:dd:ee:fa 123456780 2.156 True 3 
aa:bb:cc:dd:ee:fb 123456781 3.211 False 7 

If each of these records were represented as individual messages, then they might look like this in JSON. 
{"mac":"aa:bb:cc:dd:ee:fa", "customerid": "123456780", "x": 2.156, "y": true, "z": 3} 

However, the data is usually far from optimal, introducing additional parsing overhead or unnecessary 
extra data.  Such as an unnecessary element as shown below “pollresult” or perhaps elements represented 
as strings instead of their actual datatype. 

{"pollresult":  

{"mac":"aa:bb:cc:dd:ee:fa", "customerid": "123456780", "x": "2.156", "y": 
"True", "z": 3}} 

5.2.3. Message bus performance 

Using this less than perfect data, we can now calculate the volume and size of the messages to determine 
the correct number of brokers and partitions for the Kafka topic.  Using our system as a more realistic 
example for the message size, the mean message size of 1.4 kilobytes is used.  Assuming there are ten 
million devices being polled every minute and the JSON is raw (uncompressed) on average 1.4kB, and 
the message above, the throughput would be 1𝑒𝑒7∗1400

10002
∗ 1
60

= 233. 3�/MBs.  Using 50MB/s per broker as a 
rule from Dropbox’s Kafka Throughput limit post [9], rounding up we would require 5 brokers at 50MB/s 
each, giving us a reasonable 250MB/s throughput.   To determine the number of partitions, multiply the 
number of brokers by 10, which yields 5 brokers with a single topic of 50 partitions.  Of course, this is 
just an example, and situations are different based on hardware type, network throughput and many other 
factors. 
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Figure 5 – Message bus consumer scale matching 

 

The reason partition counts per topic are important relates to the performance gain of matching consumer 
processes or as a multiple of the number of partitions.  Here, with 50 partitions, you may need to scale the 
message bus consumers as shown in Table 2. 

Table 2 – Message bus consumer scaling 
Consumer count Multiple Comment 
5 10 If message processing is very fast, single consumer 

may be able to handle multiple partitions each. 
25 2 Many more consumers handling partitions.  If 

message processing is more computationally 
intensive, each consumer might only handle two 
partitions.  

50 1 A single consumer per partition is required if the 
code is not only parsing, but performing some 
action or invoking a ML model inline as shown in 
Figure 5. 

Final thoughts on consumers and messaging or streaming systems: There are many combinations of great 
open source projects which can be used instead of writing the consumer logic manually.  For example, 
systems like Apache Flink and Apache Beam, as well as offerings from the various cloud providers, can 
perform many of the functions described here. 

5.2.4. Container orchestration 

Once the number of consumers has been determined, a scalable, fault-tolerant environment is needed to 
run the consumers and models.  The flexibility of the runtime environment is crucial to operating and 
maintaining ML models and pipelines, which made Kubernetes and Docker a natural choice.  Kubernetes 
also allows elastic horizontal scaling, to scale up for spikes and scale down for dips in processing. 

Zooming in on the general architecture in Figure 3, the message consumption and feature handling, as 
well as the model invocation components -- all translate to Kubernetes pods.  Once the engineer or 
researcher creates the model, it is pushed to a container repository, then pulled down in Kubernetes to run 
and monitor, as shown in Figure 6, until there is a change.  Kubernetes can scale up and down by adding 
and removing replicas of a particular pod corresponding to the addition and removal of worker nodes. 
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Figure 6 – Container parallelism 

A benefit of Kubernetes is that pods of any type can be run together on the same cluster.  If the consumer 
pods for example are written in Java, and the model code is written in Python, then both can run 
simultaneously on the same worker nodes, thanks to Docker, and shown in Figure 7. 

 
Figure 7 – Container isolation 

5.3. Feature engineering performance and guidelines 

Just before the model can be invoked, the raw features from the polling architecture require parsing and 
some manipulation specific to the ML model.  Many types of manipulations exist, such as min-max 
normalization and standardization.  For specific ML domains such as Natural Language Processing (NLP) 
or Deep Neural Networks (DNN), the data may need to be tokenized or one-hot encoded.   Three of these 
normalizations are common, so it is necessary to look at them with the corresponding features and how 
those features get changed. 

5.3.1. Min-Max normalization 

To rescale features between 0 and 1, the formula is 𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

.  However, this requires that the 
maximum and minimum values of the features are available.  Many systems may only contain partial 
feature sets from which the minimum and maximum value cannot be derived. Note that the term “feature 
set” is just a series or list of features, and order may be important. Also common is to scale features to a 
particular range [𝑎𝑎, 𝑏𝑏].  For this, the formula is slightly different 𝑥𝑥′ = 𝑎𝑎 + (𝑥𝑥−min(𝑥𝑥))(𝑏𝑏−𝑎𝑎)

max(𝑥𝑥)−min (𝑥𝑥)
. If the features 
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require these normalizations, the minimum and maximum may be provided, or the telemetry will need to 
be collected for an acceptable period of time to derive acceptable values. 

 

5.3.2. Sum or counts 

Adding or counting features for a particular time window or sample is a common normalization.  
However, the computational complexity when performing feature engineering at scale here can be 
deceiving – especially when referring back to the example of ten million devices polled every minute.  
Take a hypothetical situation where the desired prediction is a usage pattern spike given two features, 
bytes in and bytes out.  Assume that research has found 30 minute windows to be optimal for predicting if 
there will be a spike.  The total feature size for all devices would be 1𝑒𝑒7 ∗ 30 = 300𝑒𝑒6 or 300 million.  If 
the features were simply a MAC address, bytes in, bytes out, and timestamp, the JSON representation 
might look like  

{"mac": "aa:bb:cc:dd:ee:fa", "bytesin": 1287630, "bytesout": 58360, "timestamp": 
"2020-07-01 02:31:05"} 

The feature set size for all ten million MAC addresses would be ~103 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏
10242

 ∗ 10𝑒𝑒6 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 ∗
30 𝑚𝑚𝑑𝑑𝑛𝑛𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑.  While this is only ~29.3GB worth of features which is relatively small, the compute time 
may be large.  Consider another example: Python code as pseudo-code.  There are a number of details left 
out, such as actual timestamp calculation, and data structure details: 

  # iterate through current polled messages from the kafka topic for each device 

  for features in current_features_from_kafka: 

    # get history 

    history = get_history_for_mac(features['mac']) 

    history.append(features) 

    # iterate through history 

    summed_features = {'bytesin': 0, 'bytesout': 0} 

    for history_features in history: 

      # expire old items 

      if history_features['timestamp'] > thirty_minutes_ago: 

        # iterate through features 
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        summed_features['bytesin'] += history_features['bytesin'] 

        summed_features['bytesout'] += history_features['bytesout'] 

 

Say there are 50,000 messages from Kafka, each having 30 minutes of history, with the computational 
complexity of 𝑂𝑂(𝑛𝑛2) (where 𝑛𝑛 is the number of steps), which results in 50000 ∗ 30 = 1,500,000 
iterations.  If all ten million are polled every minute, that is 300 million iterations per minute.  All of this 
requires more replicas to scale or, some simple tuning of the algorithm. If the math is commutative, it can 
be parallelized out of order, and for a simple count, it is.  However, here the values may contain 
negatives, which means it is non-commutative and must be executed in order, serially.  However, these 
can certainly be parallelized as the only requirement is that each device needs its feature sets to be 
computed in order.  By changing the algorithm to remove iterating through the entire history set for each 
new message, we can reduce the second loop from 30 iterations to just two operations when storing the 
summed features as well in a database.  There are obviously a few more steps here, such as the back and 
forth from the database and type conversion (if necessary), but it can all add up -- which can, in some 
cases, dramatically increase costs.  With the improvement, for the 50,000 messages from Kafka we’re 
now only doing 50,000 iterations instead of 1,500,000 and a time complexity of 𝑂𝑂(𝑛𝑛). 

  # iterate through current polled messages from the kafka topic for each device 

  for features in current_features_from_kafka: 

    # get history from feature store 

    history = get_history_for_mac(features['mac']) 

    summed_features = get_summed_features_for_mac(features['mac']) 

    # remove the first (oldest) and decrement from summed_features 

    oldest_history = get_expired_feature_from_history(history) 

    summed_features['bytesin'] -= oldest_history['bytesin'] 

    summed_features['bytesout'] -= oldest_history['bytesout'] 

    # add the current features 

    summed_features['bytesin'] += features['bytesin'] 

    summed_features['bytesout'] += features['bytesout'] 
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Said another way, we can look at it as a sum of series, where those series may contain negatives. Let 𝑛𝑛 
equal the number of historical feature sets for the series 𝑎𝑎, and m equal the number of features within each 
historical feature set 𝑎𝑎𝑖𝑖.  The total sum 𝑆𝑆𝑚𝑚 is the series of all historical feature sets: 

𝑆𝑆𝑚𝑚 = � � 𝑎𝑎𝑖𝑖𝑖𝑖

𝑚𝑚−1

𝑖𝑖=0

𝑛𝑛−1

𝑖𝑖=0

 

Now let 𝑑𝑑 equal the current message being processed with 𝑝𝑝 features.  Then the historical features sum the 
current features:  

𝑆𝑆𝑚𝑚 = �𝑆𝑆𝑘𝑘 + 𝑑𝑑𝑘𝑘

𝑝𝑝−1

𝑘𝑘=0

 

If the previous sum of the historical feature sets is known, then let ℎ equal that series, and the original 
operation can be rewritten more efficiently as a single sum.  This does not take into account the 
subtraction or decrementing of historical feature sets that expired from the desired time window (30 
minutes for this example): 

𝑆𝑆𝑚𝑚 = �ℎ𝑘𝑘 + 𝑑𝑑𝑘𝑘

𝑝𝑝−1

𝑘𝑘=0

 

Keep in mind that this assumes the series and elements are the same between series.  In real-world data, 
the elements for each piece of telemetry may be different, resulting in sparse data structures which require 
different thinking to process efficiently.  

 

5.3.3. Mean 

The mean here is a bit more complicated because without iterating through the entire history an actual 
mean 1

𝑛𝑛
∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1  can’t be derived.  To get around this and get a “good enough” mean, we turn to a simple 

moving average, so we don’t have to iterate through the entire historical time window of features.  With a 
simple moving average 1

𝑛𝑛
∑ 𝑝𝑝𝑀𝑀−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0  is used as we have the historical features in the database and the 

code is similar to the sum example.  

 

5.3.4. Other operations 

For operations such as standard deviation, minimum or maximum values are more complicated to process 
given a single value.  There are potential ways to calculate these things given more values, such as 
minimum or maximum, if you know the top or bottom 5 for a particular feature.  This requires keeping 
those lists and can be cumbersome -- which may defeat the purpose of computational efficiencies, unless 
the historical time window or number of messages therein is large. 
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6. Model Serving 
The last component of the system is the model, and how it gets exposed to users or other parts of the 
organization.  This is perhaps the most straightforward piece of the system, not considering what happens 
to the output (prediction or inference) from the model.  The simplicity comes from a project called Seldon 
Core which allows almost any type of ML model to be invoked with Python and served from Kubernetes.  
In Figure 7, not only is the model potentially running alongside the feature engineering on the same node, 
but in separate containers, it is also able to scale horizontally by simply changing the number of replicas.  
This can also be performed automatically with elastic scaling.  All the major cloud providers support 
some kind of model serving and each has their own benefits and drawbacks depending on the situation.  
Running your own Kubernetes allows you to also run Prometheus or tie it into an existing monitoring 
solution within the organization, such as to leverage metrics and alarming for the operations support side 
of these platforms. 

6.1. Requirements 

Given the large number of components in the model, a system which supported core requirements such as 
multi-armed bandits, A/B testing and advanced inference graphs was required.  Seldon Core was chosen 
as it satisfied all of these requirements and integrated well with Kubernetes and production monitoring 
systems.  Seldon can support a user-defined inference graph, which allows custom configuration and 
combinations of models and components.  It also allows for percentages of traffic to be handled by each, 
thus allowing for more complicated implementations such as A/B testing.  As part of the user request 
flow to the model, it was important to ensure that customer HTTP sessions are sticky to a particular A/B 
model.  In order to accomplish this, a custom Seldon router, which takes a seed value can be written to 
route requests to the same components in the inference graph depending on values in the payload (such as 
a customer identifier. 

 

 
Figure 8 – Inference graph example 

 

6.2. End-to-end flow 

While the entire flow is shown in Figure 3, there is a critical piece missing. Figure 9 depicts the end-to-
end flow, including customer interaction with the system to request predictions from the model. 
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Figure 9 – End-to-end platform flow 

 

In the second flow with the thick blue lines, the customer interacts with the customer service application 
on their device or web browser. This invokes the model service and returns the prediction back to the 
application, then the user, about whether or not it believes they are experiencing an issue based on the 
telemetry and output from the application.  If there is an issue, it attempts to specify a recommended fix 
action, or, as a last resort, refer the customer to customer service.  This system has been successful at 
handling millions of customer requests quickly and accurately, improving the customer experience. 

7. Scale 
In our customer experience ML platform, we’re generally handling 100k+ messages per second and 
executing 300-500k+ operations per second to our Redis clusters.  As previously mentioned, this is 
accomplished with horizontal scaling from Kubernetes.  In many of our platforms, we’re handling more 
than just the RDK datasets, as our models require engineered features from many varying datasets to 
produce the unique outputs to improve the customer experience. 

Our Kubernetes clusters generally run with 10 or more nodes at 16 CPU cores per node and 128GB 
RAM.  The Redis cluster nodes have far fewer CPU cores (4) as the Redis process is single-threaded, yet 
they have much more memory, generally 256GB RAM.  Our Redis nodes as well as the Kafka broker 
nodes have secondary 1TB drives for disk-based persistence, replication and retention. 

8. Model 
Our goal is to prompt a user to troubleshoot one of their services in order to increase engagement and 
troubleshooting inside the chat bot. Thus, our data is generated based on both customer feedback and the 
decision to show a prompt to a user. In this way, the model will impact the data generating process, which 
is different from standard classification or regression use cases, where the data generation is assumed to 
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be independent of the model’s output. For example, in image classification, if a model incorrectly labels a 
picture of a cat as a dog, there is no impact to the ground-truth label—that the photo is of a cat. In our 
case, we will have feedback based on the action we select, but we have no information on if the model 
took a different action. Our problem can be formalized in the framework of contextual bandits.  

Contextual bandits algorithms extend the traditional multi-armed bandits problems by giving the agent a 
state to aid in decision making. Each data point can be thought of as a “round” of a game, where the state 
is the features of the model (“agent/policy”) , the action is chosen by the agent, and the reward is the 
label. Contextual bandits problems are a special case of Reinforcement Learning, where the length of a 
round is 1. The goal of the agent is the learn to play the game in order to maximize the expected reward 
when following the agent’s action recommendations. 

 
Figure 10 – Model flow 

One drawback to reinforcement learning and contextual bandits in industry is that the algorithms are 
traditionally trained online. In the case of reinforcement learning, agents typically have access to a 
simulator of the environment (i.e. a game) and they learn as they play (c.f. “Playing Atari with Deep 
Reinforcement Learning” [17]). For contextual bandits algorithms, they often need to be deployed into 
production and learn as they serve customers [15], [16]. This is because the data distribution changes as 
the agent learns, as the agent will select new actions based on new information. This is different from the 
static training set found in classic supervised learning. Because of this, a suite of theoretical techniques 
has been developed to evaluate and train agents offline, namely “off-policy” techniques [18], [19]. Off-
policy techniques have been employed in a variety of industrial applications successfully, including [20], 
[21]. This approach utilizes data from a production logging policy with sufficient randomization for 
training and evaluation of offline policies. 

One of the large benefits of off-policy evaluation is the ability to estimate the true online performance of a 
contextual bandits model without deploying it into an A/B test. This allows the researcher to rapidly 
prototype many candidate models and choose the best model for an A/B test which impacts customers. 

With that said, our model is a linear model which predicts the reward for each action (prompt) that we 
may show the user given the state, i.e. telemetry features defined above. After predicting the expected 
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reward for each action, we take the action with the highest reward and output that action to the production 
system. We train the model using various off-policy approaches [22] and select the model which performs 
the best on the off-policy evaluations of our metrics for production. Crafting reward functions is an art 
more than a science, and generally are designed by experts to maximize not only the business metric of 
interest but also downstream metrics. In our case, our reward function is a proxy for the click-through rate 
of the prompt, where we have a negative reward if a card was shown and not clicked. We scaled reward 
functions to be between [-1,1], as it makes the training process more stable through smaller gradient 
updates.   

All analysis was done in Jupyter Notebooks, including training. Models were defined and trained using 
Keras, a popular abstraction of neural network operations that sits on top of libraries like Tensorflow. In 
production, the model is invoked to select a card for the user upon application start. 

 
Figure 11 – Model architecture 

 

8.1. Feature Engineering 

The telemetry we utilize comes in several forms: snapshots of physical characteristics of the Wi-Fi signal; 
device performance indicators usually expressed as a percent; and application logs which count the 
occurrences of different system messages, including error codes. We pass each of these types of features 
through a different pipeline to create appropriate features. All of our features are aggregations over 
window of time t, where it depends on the feature type. 

For continuous features, we utilize statistical aggregations over the time window. Many of the continuous 
features are related to devices connected to the gateway, and so we will have multiple devices for a given 
customer. We take an aggregation of statistics calculated on each device as our final feature. For example, 
consider the RSSI: we calculate the mean, median, the standard deviation, and other statistics for each 
device, and then we aggregate these statistics again for a single value for each customer account. Time 
aggregations are used so that the model has is able to learn a sense of what’s “normal” and can identify 
deviations from those norms. More significant deviations could imply impact to a customer.  

For count valued features, we base our approach on common natural language processing (NLP) 
techniques. The counts of the more common errors/logs over a time window can indicate the intensity of a 
problem, and the existence of rare keys can indicate a complete service impairment. Thus, common NLP 
techniques are applicable to our use case and provide a framework for creating features (embeddings) 
from which a model may learn. Each error code or system message indicator is treated as a “word” and 
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passes this context to our feature pipeline as a “bag of words”. The data is then transformed via a pre-
trained TF-IDF pipeline before using it in the model.  

Our feature processing pipelines use classes from sci-kit learn. For example, all features are normalized 
before training using preprocessing classes. Continuous features are standardized and (sparse) count 
features are scaled by their maximum absolute value. In addition, the TF-IDF embeddings are 
implemented using the corresponding classes found in scikit-learn for this purpose.  

9. Results 
By utilizing the machine learning model, we achieved a 40% improvement in customer engagement, as 
measured by the abandon rate of sessions (when a customer opens the application and leaves without 
clicking or asking a question). This was measured through an A/B test where all customers selected to get 
a card were split into two groups: the treatment group who were shown the card and a control group 
where we held back the card. This business impact was accompanied by a measurable increase (~42%) in 
the click-through rate of cards when compared to simple card display rules based on telemetry cutoffs. 
This improvement was calculated by comparing each approach to a baseline over their respective time 
periods in production to control for temporal differences. The final number is the relative difference 
between the two statistics after controlling for the baseline. 

Using the general architecture depicted in Figure 8, with simple horizontal scaling, the platform can 
process very large amounts of incoming telemetry data.  When converted to feature sets, the production 
systems are handling 100k transformations per second.  This is using feature windows that vary between 
6 and 24 hours based on the dataset and requirements for the model.  This scaling is nearly seamless if the 
code is written with good microservice design principles in mind, and the ease of increasing replicas for 
an application is handled.  Kubernetes also supports elastic scaling based on certain metrics, which is 
useful for processing spikes or bursts in traffic. 

Scale aside, researchers and ML engineers have the ability to deploy models and feature pipelines as 
needed.  This reduces code rewrite from POC or research code to production code as the production 
systems support many languages, ML model types and complex pipelines.  Additionally, troubleshooting 
and operations (MLOps) is greatly aided by Prometheus integration with thresholding from Grafana and 
other tools to ensure problematic components are dealt with quickly.  System availability is high due to 
the redundant nature of Kubernetes and requiring all components have a minimum of two replicas and 
dual components when they lie in the critical path. 

10. Looking Ahead 
These sorts of open source platforms and architectures are simply the beginning of a sweeping change 
coming to not only telecommunications, but every other industry.  Big telcos certainly have an advantage 
now, given the vast datasets being collected now or in the future.  While the physical properties of 
components and systems are well understood, there is always room to identify new correlations in failure 
or impairment types.  With new hardware, more optical components and higher speeds -- and the fact that 
connectivity is so vital to everyone -- this shift to self-identifying and self-healing networks will become 
more critical.  While ML models are not specifically required for every problem, the collection and 
analysis platforms are, because the data is required to work towards more data-driven decision making.  
Also, in the future, the platform output itself will be fed through various anomaly detection model types 
to determine if system performance has deviated sufficiently to warrant human interaction.  Platform 
failures and other behaviors can be modeled to increase self-healing, predictive scaling (as opposed to 
reactive) and automated root-cause analysis -- down to the specific component. 
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These platforms will need to adapt in the coming years, to leverage FPGA or GPU hardware to handle 
increasingly more complex analysis and ML workflows.  Many companies are already seeing the benefits 
from GPU, though TPUs and other hardware will be available to further drive down these large costs. 

11. Conclusion 
Again, the core problem here is that customer service and many other applications may require ML to 
make a measurable impact in customer experience. As we have shown, not only were many open source 
technologies instrumental in building the solution, they were not the only important pieces.  These 
systems may need to scale which will require deep dives into some of the core components that get 
executed many times over, and those should be optimized as much as possible.  While choosing Python 
(the same language as is common for research) initially proved troublesome, performance has increased 
dramatically and new avenues to optimize these functions, such as GPU offload have come a long way. 

When thinking about the model, effort is required to determine if ML is necessary at all and how it can 
make a positive impact on the problem.  For this problem, a contextual bandits approach was chosen but 
that does not mean is it the correct solution for other similar problems. 

By now, after reviewing the problem, solution and challenges to solving this problem at large scale, it is 
hoped that this information is not only helpful but the start of a change in thinking about how problems 
will be solved going forward into the next decade.  ML is not beginning but continuing to alter many 
parts of our organizations and this will only accelerate.  The information presented here may be somewhat 
specific to telco telemetry data, but in fact it can be applied to most any similar dataset. 

Our customers are the core of what we do and drive us to strive to do better in terms of not only providing 
services but help when those services become impaired.  This solution and others not only aids in our 
graceful and accurate handling of these, but the hope is for all of us to continue to think about these 
problems from the customers perspective. 

 

Abbreviations 
 

CM cable modem  
CMTS cable modem termination system 
CPE customer premise equipment 
DNN deep neural network 
FPGA field programmable gate array 
GPU graphics processing unit 
HSD high speed data (internet service) 
IoT internet of Things 
JSON JavaScript object notation 
OS operating system 
MAC media access control address 
ML machine learning 
MLOps machine learning operations 
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NLP natural language processing 
POC proof of concept 
POP point of presence 
RDK Reference Design Kit 
RSSI received signal strength indicator 
STB set-top box 
TF-IDF term frequency, inverse document frequency 
TPU tensor processing unit 
VBS video backend services 
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