

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 1

Operationalizing Streaming Telemetry and Machine

Learning Model Serving

Customer Experience Automation

An Operational Practice prepared for SCTE•ISBE by

Nick Pinckernell
Distinguished Engineer

Comcast
183 Inverness Dr W, Englewood CO 80112

nicholas_pinckernell@comcast.com

Scott Rome
Principle Researcher

Comcast
1800 Arch St, Philadelphia, PA 19103

scott_rome@comcast.com

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 4
2. History ... 4
3. Customer Experience as it relates to ML .. 5

3.1. Use Case .. 5
4. Telemetry ... 5

4.1. Attributes ... 6
4.2. Usefullness .. 6

5. Platform ... 7
5.1. General Architecture .. 7
5.2. Implementation .. 9

5.2.1. Technology choice ... 9
5.2.2. Architectural differences ... 9
5.2.3. Message bus performance ... 10
5.2.4. Container orchestration .. 11

5.3. Feature engineering performance and guidelines ... 12
5.3.1. Min-Max normalization ... 12
5.3.2. Sum or counts .. 13
5.3.3. Mean ... 15
5.3.4. Other operations .. 15

6. Model Serving .. 16
6.1. Requirements .. 16
6.2. End-to-end flow ... 16

7. Scale ... 17
8. Model ... 17

8.1. Feature Engineering .. 19
9. Results .. 20
10. Looking Ahead ... 20
11. Conclusion ... 21

Abbreviations... 21
Bibliography & References .. 22

List of Figures

Title Page Number
Figure 1 - Telemetry collection flow .. 7
Figure 2 - Feature engineering and model invocation flow .. 8
Figure 3 - End-to-end telemetry and ML processing flow .. 8
Figure 4 – Message bus parallelism ... 10
Figure 5 – Message bus consumer scale matching .. 11
Figure 6 – Container parallelism .. 12
Figure 7 – Container isolation .. 12
Figure 8 – Inference graph example... 16
Figure 9 – End-to-end platform flow ... 17
Figure 10 – Model flow .. 18
Figure 11 – Model architecture .. 19

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 3

List of Tables

Title Page Number
Table 1 – Sample telemetry ... 10
Table 2 – Message bus consumer scaling ... 11

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 4

1. Introduction
Customer Experience, Telco, Machine Learning, Automation… all sounds a bit dry, no? If not, this
should help shed light on a specific use case, but also provide details and lessoned learned while building
the solution. If so, read on to perhaps find some surprising details. Many are aware of the impact from
Machine Learning but may not be aware just how many portions of the enterprise it is now altering -- or
the magnitude of those changes.

With building an ML platform in mind, specifically to improve and automate the customer experience,
this paper will illustrate how we accomplished this. It will also detail lessons learned and insights not
only on the data itself, but on the architecture and thinking behind it.

Another focus is the challenges and differences of scaling and maintaining the Machine Learning
components of the architecture. The highlight here is that while Proactive Network Management (PNM)
[1] has laid out a number of excellent methods on how to collect and analyze network telemetry from
CPE and other headend equipment, it has not covered the aspects of what to do or how to handle the data
with respect to utilizing ML models.

This paper will begin with the Customer Experience use case, and work from that point through to the end
solution. A number of open source technologies are referenced as possible implementations for
components. Other components can certainly be used.

The desire to share this information stems from the fact that some of these solutions are not easy. They
require not only multiple resources to develop the front-end user interface, but the back-end platform as
well. After the ML models have been trained, the task of building the platform, scaling, testing specific
tools and gluing everything together is still rather manual and prone to performance and optimization
challenges. With those things in mind, the details throughout this paper should aid the reader in
determining directions to go when considering, building and scaling such a system.

2. History
Telemetry collection and polling have been widely covered in the industry with both positives and
negatives. The positives almost always outweigh the negatives, in terms of providing the ability to
determine outages quickly, gain insights on which partitions and elements in the network require
maintenance and many other useful applications. Using telemetry with machine learning is also fairly
old, just not commonly referred to as “machine learning”. Take adaptive equalization in digital
communications as an example. The parallels are many between parts of adaptive equalization and how
machine learning algorithms work. Or, take the DOCSIS upstream pre-equalization process as another
example. For each burst of data in a transmission, the preamble is used just like a training set for a
supervised ML algorithm, but for the CMTS’s upstream adaptive equalizer. Likewise for the
downstream, with a blind-equalizer -- it is the same as an unsupervised ML algorithm. Overall, there are
inputs, derived coefficients and an optimization problem – which is to minimize the mean square error of
the outputs.

Applying ML algorithms to other telemetry angles is simply considering different shapes. With polling
or collection systems, gathering telemetry from CPE, headend or data center equipment, and funneling
that into distributed computing environments to do essentially the same thing the CMTS was doing with
adaptive equalization, is a larger scale scenario with potentially more complex models. This method of
analyzing telemetry is just the next evolution, after analyzing telemetry for outages or full spectrum data

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 5

for various distortions -- but now using more complicated methods such as ML models to tease out new
artifacts and correlations in determining network health.

3. Customer Experience as it relates to ML
What is customer experience? According to customer experience futurist Blake Morgan, it “really boils
down to the perception the customer has of your brand” [2]. In the use case laid out, it is the perception
of the self-service customer experience.

3.1. Use Case

The outcome of the project is to automate simple common customer service questions and return
immediately useful feedback or solutions to the posited issue or question. The goal here was two-fold:
one, to improve the customer experience by knowing their issue before they do and if possible remedy it,
and two, to reduce the number of calls to customer service.

When left open-ended, the outcome is intractable, given the large problem scope of all possible issues
customers may face while going through all the various customer service avenues available to them.
Therefore the scope and requirements of the outcome were reduced to answer a few basic questions, then
continue to build out the capability to handle more queries from there. These initial questions were:

• Is there an issue with my internet service?
• Is there an issue with my video service?
• I have a billing or account inquiry?

All of the problems require use of machine learning. The first two require telemetry data and additional
machine learning as well. For the third question, the goal was to handle simple questions initially, such as
“why is my bill different than last month?” or “how much does my TV package cost?” and has since been
expanded to handle more questions.

With the goals and outcome clearly defined, the solution required thinking on how to accomplish this,
given the large number of telemetry and other data sources available.

4. Telemetry
The breadth of telemetry for most telecommunications companies and network operators is vast. Data
comes from a number of sources which generally are customer devices, headend or data center equipment
or public devices. Customer devices or CPE (Customer Premises Equipment) are usually comprised of
cable modems, Wi-Fi Access points, cable boxes and the ever growing list of IoT devices. Central
locations such as the headend, Point of Presence (POP) and data centers tend to be the geographic source
for equipment such as CMTSs, access networks, video sources and more.

The correlation between our initial questions and data sources were fairly straightforward:
• Internet service problem: telemetry from the cable modems and CMTSs
• Video service problem: errors from our Video Backend Service (VBS)
• Billing / account inquiry: billing data system

During the exploration of datasets, a single dataset was found that provided attributes for both the internet
and video service questions, which was errors from the OS that runs on both cable modems and STBs.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 6

The informational and error messages from devices built on the Reference Design Kit (RDK) [3] turned
out to be very valuable, as both the Set-top Box (STB) and Cable Modem (CM) use the same
transmission medium from the premise to the headend or hub site.

4.1. Attributes

Telemetry from the RDK consists of a number of attributes useful to determine if there are issues from the
CM side, STB side or both. It contains general information about the CPE:

• CPU utilization
• Memory utilization
• System load
• Wi-Fi signal strength
• Etc.

Perhaps the most useful data from RDK, however, are error codes and counts. These errors relate to
dropped packets, firmware errors, signal errors, etc. The specific attributes which were the most
impactful as part of the machine learning model were “rf_error_erouter_ip_loss”,
“rf_error_ipv6pingfailed”, and “rebootreason=unknown”. These attributes increase the accuracy of the
models in determining whether or not the issue is related to internet service / high speed data (HSD).

While the RDK telemetry provided beneficial information for both HSD and video, the VBS data
provided the majority of telemetry needed to determine if the customer issue was video-related. The VBS
data contains such telemetry as:

• User interactions with their TV via the remote
• Errors displayed on-screen to the customer
• Errors with satisfying a request to the customer
• Etc.

For the billing questions, having data about the customer billing history, specific elements on the bill and
differences between those elements over time provided the majority of features needed to satisfy the
initial use-case.

4.2. Usefullness

In “Observing home wireless experience through wifi APs” [14], it was shown that many in-home Wi-Fi
markers were able to characterize wireless experience. In our work, the definition of telemetry includes
error and system logs produced by RDK, which is unique to our use case compared to the literature. We
will detail a few examples in this section to give the reader a picture of their utility.

The telemetry includes readings of Wi-Fi signal strength (known as RSSI, for Received Signal Strength
Indicator) and channel utilization. RSSI is a negative value (-100,0) and a value below –80 is considered
poor signal strength. Therefore, it is clear that this telemetry feature can be useful in identifying devices
that have an impacted customer experience. Likewise, channel utilization data can indicate when a given
Wi-Fi channel frequency is saturated from too many devices or too much traffic. High utilization is an
indication that one may need to change the Wi-Fi channel the router is using for signal transmission.

The RDK logs are another source of events which may impact a customer’s service. For example, if a
reboot occurs, there are multiple keys that indicate the event has taken place, and in some cases, why the
reboot occurred. Unscheduled reboots are generally strong indicators of a customer experience issue.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 7

Moreover, there are system logs when processes on the box restart, which can also impact service,
depending on the process. (Such processes are programs running on the thin version of Linux on the
gateways). There are other markers like “system_uptime”, which gives the time since a last reboot, and
“rf_error_ipv6pingfailed”, which indicates a count of pings to a fixed IPv6 server address that have failed
since the last log. In total, there are over 750 unique keys which appear in RDK and more are added over
each release.

5. Platform

5.1. General Architecture

All of the features learned from exploratory data analysis need to be processed, parsed and transformed so
they can be passed into the model. During offline training of the model, the researchers perform these
tasks but usually at smaller scales. Or, if full-scale, it usually doesn’t run constantly. Also in the research
environments, the lack of introspection, scaling (depending on the researchers’ environment), monitoring
and alerting is unacceptable for running a supported product. These are among the goals of an ML
platform.

The basic components of the platform, in order of data flow, are:
• Data producer
• Raw data consumer
• Feature engineering
• Model invocation
• Inference storage or action

This typically involves one or more teams and one or more platforms to handle the data. It is common for
the platform responsible for polling or collecting data from the CPE to be handled by one team, while a
different team is responsible for the ML platform.

When greatly simplified, data collection can be boiled down as seen in Figure 1. Here, some process
(usually many parallel processes) is responsible for connecting or listening to the CPE and other devices
to collect, format and aggregate telemetry. JSON is typically used for data formatting, though other
formats are becoming more common, such as Protocol Buffers and Apache Arrow objects. After the data
is formatted, the telemetry collection system will publish the messages to a message bus for consumption
from other teams within the organization. For our systems, we use Apache Kafka, as it is stable and
scales well.

Figure 1 - Telemetry collection flow

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 8

Once the data has been published to the message bus, it is decoupled from the data collection platform
and available to be used by the ML platform. A simple flow for processing the telemetry events from the
message bus is detailed in Figure 2. Here a message bus consumer process will listen to the stream for
new messages. Next the message will be parsed, and various transformation and/or normalization steps
will be performed on the data to prepare the dataset to be passed into the ML model. Before or after
parsing and feature engineering, it is common to store features into a database so they can be later
retrieved. This is useful when building aggregate feature sets (such as time windows, feature enrichment,
etc.) so the model may be passed a richer and potentially more useful set of features. Once the features
are ready, the model is invoked, which produces an inference or prediction. This output is then handled
by possibly storing that in another database, distributed filesystem or even published to another message
bus to do something with that model output.

Figure 2 - Feature engineering and model invocation flow

While these two systems are usually logically separated and loosely coupled, thanks to the message bus
architecture, they do need to combine as shown in Figure 3. Here the full picture is seen with both the
telemetry collection platform and the machine learning platform receiving telemetry.

Figure 3 - End-to-end telemetry and ML processing flow

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 9

5.2. Implementation

5.2.1. Technology choice

The end architecture contains the same components and flow as shown in Figure 3, but there are
differences in how those components look after scaling and with specific technology choices. For the
flexibility to run programs of any type, Docker was chosen to contain some of these complex
applications. For scalability, a container orchestration layer is required to dynamically scale resources to
match the needs of the incoming telemetry – in our case, Kubernetes was chosen here. For a scalable
message bus, the choice was Kafka, as previously mentioned. Depending on the rate of operations and
type of data in the features, a range of database technologies and types can satisfy that requirement. For
example, if you have relational data, a more traditional SQL database such as MySQL or PostgreSQL
might be chosen. For a NoSQL database, perhaps Apache Cassandra or MongoDB. For a NoSQL cache
layer, CouchDB, Redis, or if SQL, then MemSQL. This is by no means a comprehensive list of database
technologies but do represent a few options to investigate, should you have a specific set of requirements
for your feature store. For our solution, Redis was chosen primarily for performance reasons and data
retention. The research team determined that the largest useful window of data was 24 hours and older
historical data beyond that was less impactful. It is also relatively quick to repopulate, as well, in the case
of catastrophic cluster issues.

Kubeflow was chosen for model serving not only because it works well with Kubernetes but contains a
number of require features as well. More specifically, a sub-component of Kubeflow called Seldon Core
was chosen due to its flexible inference graphs, monitoring and A/B testing capabilities. Finally, Python
is the language of choice for deploying models due to the fact that the models will require little or no code
changes to be deployed. Also, many Python specific packages such as NumPy are very performant and
don’t have great equivalents in other languages. This also allows the model owner or team less familiar
with production operations to maintain and re-deploy their model as needed. Other scientific languages,
such as R, have far less library and performance support for writing and running general components.

5.2.2. Architectural differences

The differences between our general architecture in Figure 3 change when we consider Kafka and
Kubernetes. Starting with Kafka, it is important to understand a bit about how Kafka works so that we can
scale appropriately. Without getting too deep into Kafka’s architecture, there are three basic components:
the topic (which consumers and producers use), the broker (a node in the Kafka cluster that handles
topics) and partitions (a sharded piece of the topic). When we have high volume topics, those usually
need to be partitioned out so we can scale throughput horizontally. In Figure 4, the telemetry polling
architecture would publish messages to a specific Kafka topic with 𝑏𝑏𝑛𝑛 brokers and 𝑃𝑃𝑚𝑚 partitions.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 10

Figure 4 – Message bus parallelism

To calculate 𝑛𝑛 and 𝑚𝑚, the volume and message size need to be determined. For this example X,Y and Z
are just example features. Actual features used in the system are Signal-to-Noise Ratio (SNR), RSSI and
others. Take the following row as an example:

Table 1 – Sample telemetry
MAC address Customer ID X Y Z
aa:bb:cc:dd:ee:fa 123456780 2.156 True 3
aa:bb:cc:dd:ee:fb 123456781 3.211 False 7

If each of these records were represented as individual messages, then they might look like this in JSON.
{"mac":"aa:bb:cc:dd:ee:fa", "customerid": "123456780", "x": 2.156, "y": true, "z": 3}

However, the data is usually far from optimal, introducing additional parsing overhead or unnecessary
extra data. Such as an unnecessary element as shown below “pollresult” or perhaps elements represented
as strings instead of their actual datatype.

{"pollresult":

{"mac":"aa:bb:cc:dd:ee:fa", "customerid": "123456780", "x": "2.156", "y":
"True", "z": 3}}

5.2.3. Message bus performance

Using this less than perfect data, we can now calculate the volume and size of the messages to determine
the correct number of brokers and partitions for the Kafka topic. Using our system as a more realistic
example for the message size, the mean message size of 1.4 kilobytes is used. Assuming there are ten
million devices being polled every minute and the JSON is raw (uncompressed) on average 1.4kB, and
the message above, the throughput would be 1𝑒𝑒7∗1400

10002
∗ 1
60

= 233. 3�/MBs. Using 50MB/s per broker as a
rule from Dropbox’s Kafka Throughput limit post [9], rounding up we would require 5 brokers at 50MB/s
each, giving us a reasonable 250MB/s throughput. To determine the number of partitions, multiply the
number of brokers by 10, which yields 5 brokers with a single topic of 50 partitions. Of course, this is
just an example, and situations are different based on hardware type, network throughput and many other
factors.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 11

Figure 5 – Message bus consumer scale matching

The reason partition counts per topic are important relates to the performance gain of matching consumer
processes or as a multiple of the number of partitions. Here, with 50 partitions, you may need to scale the
message bus consumers as shown in Table 2.

Table 2 – Message bus consumer scaling
Consumer count Multiple Comment
5 10 If message processing is very fast, single consumer

may be able to handle multiple partitions each.
25 2 Many more consumers handling partitions. If

message processing is more computationally
intensive, each consumer might only handle two
partitions.

50 1 A single consumer per partition is required if the
code is not only parsing, but performing some
action or invoking a ML model inline as shown in
Figure 5.

Final thoughts on consumers and messaging or streaming systems: There are many combinations of great
open source projects which can be used instead of writing the consumer logic manually. For example,
systems like Apache Flink and Apache Beam, as well as offerings from the various cloud providers, can
perform many of the functions described here.

5.2.4. Container orchestration

Once the number of consumers has been determined, a scalable, fault-tolerant environment is needed to
run the consumers and models. The flexibility of the runtime environment is crucial to operating and
maintaining ML models and pipelines, which made Kubernetes and Docker a natural choice. Kubernetes
also allows elastic horizontal scaling, to scale up for spikes and scale down for dips in processing.

Zooming in on the general architecture in Figure 3, the message consumption and feature handling, as
well as the model invocation components -- all translate to Kubernetes pods. Once the engineer or
researcher creates the model, it is pushed to a container repository, then pulled down in Kubernetes to run
and monitor, as shown in Figure 6, until there is a change. Kubernetes can scale up and down by adding
and removing replicas of a particular pod corresponding to the addition and removal of worker nodes.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 12

Figure 6 – Container parallelism

A benefit of Kubernetes is that pods of any type can be run together on the same cluster. If the consumer
pods for example are written in Java, and the model code is written in Python, then both can run
simultaneously on the same worker nodes, thanks to Docker, and shown in Figure 7.

Figure 7 – Container isolation

5.3. Feature engineering performance and guidelines

Just before the model can be invoked, the raw features from the polling architecture require parsing and
some manipulation specific to the ML model. Many types of manipulations exist, such as min-max
normalization and standardization. For specific ML domains such as Natural Language Processing (NLP)
or Deep Neural Networks (DNN), the data may need to be tokenized or one-hot encoded. Three of these
normalizations are common, so it is necessary to look at them with the corresponding features and how
those features get changed.

5.3.1. Min-Max normalization

To rescale features between 0 and 1, the formula is 𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

. However, this requires that the
maximum and minimum values of the features are available. Many systems may only contain partial
feature sets from which the minimum and maximum value cannot be derived. Note that the term “feature
set” is just a series or list of features, and order may be important. Also common is to scale features to a
particular range [𝑎𝑎, 𝑏𝑏]. For this, the formula is slightly different 𝑥𝑥′ = 𝑎𝑎 + (𝑥𝑥−min(𝑥𝑥))(𝑏𝑏−𝑎𝑎)

max(𝑥𝑥)−min (𝑥𝑥)
. If the features

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 13

require these normalizations, the minimum and maximum may be provided, or the telemetry will need to
be collected for an acceptable period of time to derive acceptable values.

5.3.2. Sum or counts

Adding or counting features for a particular time window or sample is a common normalization.
However, the computational complexity when performing feature engineering at scale here can be
deceiving – especially when referring back to the example of ten million devices polled every minute.
Take a hypothetical situation where the desired prediction is a usage pattern spike given two features,
bytes in and bytes out. Assume that research has found 30 minute windows to be optimal for predicting if
there will be a spike. The total feature size for all devices would be 1𝑒𝑒7 ∗ 30 = 300𝑒𝑒6 or 300 million. If
the features were simply a MAC address, bytes in, bytes out, and timestamp, the JSON representation
might look like

{"mac": "aa:bb:cc:dd:ee:fa", "bytesin": 1287630, "bytesout": 58360, "timestamp":
"2020-07-01 02:31:05"}

The feature set size for all ten million MAC addresses would be ~103 𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏
10242

 ∗ 10𝑒𝑒6 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 ∗
30 𝑚𝑚𝑑𝑑𝑛𝑛𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑. While this is only ~29.3GB worth of features which is relatively small, the compute time
may be large. Consider another example: Python code as pseudo-code. There are a number of details left
out, such as actual timestamp calculation, and data structure details:

 # iterate through current polled messages from the kafka topic for each device

 for features in current_features_from_kafka:

 # get history

 history = get_history_for_mac(features['mac'])

 history.append(features)

 # iterate through history

 summed_features = {'bytesin': 0, 'bytesout': 0}

 for history_features in history:

 # expire old items

 if history_features['timestamp'] > thirty_minutes_ago:

 # iterate through features

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 14

 summed_features['bytesin'] += history_features['bytesin']

 summed_features['bytesout'] += history_features['bytesout']

Say there are 50,000 messages from Kafka, each having 30 minutes of history, with the computational
complexity of 𝑂𝑂(𝑛𝑛2) (where 𝑛𝑛 is the number of steps), which results in 50000 ∗ 30 = 1,500,000
iterations. If all ten million are polled every minute, that is 300 million iterations per minute. All of this
requires more replicas to scale or, some simple tuning of the algorithm. If the math is commutative, it can
be parallelized out of order, and for a simple count, it is. However, here the values may contain
negatives, which means it is non-commutative and must be executed in order, serially. However, these
can certainly be parallelized as the only requirement is that each device needs its feature sets to be
computed in order. By changing the algorithm to remove iterating through the entire history set for each
new message, we can reduce the second loop from 30 iterations to just two operations when storing the
summed features as well in a database. There are obviously a few more steps here, such as the back and
forth from the database and type conversion (if necessary), but it can all add up -- which can, in some
cases, dramatically increase costs. With the improvement, for the 50,000 messages from Kafka we’re
now only doing 50,000 iterations instead of 1,500,000 and a time complexity of 𝑂𝑂(𝑛𝑛).

 # iterate through current polled messages from the kafka topic for each device

 for features in current_features_from_kafka:

 # get history from feature store

 history = get_history_for_mac(features['mac'])

 summed_features = get_summed_features_for_mac(features['mac'])

 # remove the first (oldest) and decrement from summed_features

 oldest_history = get_expired_feature_from_history(history)

 summed_features['bytesin'] -= oldest_history['bytesin']

 summed_features['bytesout'] -= oldest_history['bytesout']

 # add the current features

 summed_features['bytesin'] += features['bytesin']

 summed_features['bytesout'] += features['bytesout']

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 15

Said another way, we can look at it as a sum of series, where those series may contain negatives. Let 𝑛𝑛
equal the number of historical feature sets for the series 𝑎𝑎, and m equal the number of features within each
historical feature set 𝑎𝑎𝑖𝑖. The total sum 𝑆𝑆𝑚𝑚 is the series of all historical feature sets:

𝑆𝑆𝑚𝑚 = � � 𝑎𝑎𝑖𝑖𝑖𝑖

𝑚𝑚−1

𝑖𝑖=0

𝑛𝑛−1

𝑖𝑖=0

Now let 𝑑𝑑 equal the current message being processed with 𝑝𝑝 features. Then the historical features sum the
current features:

𝑆𝑆𝑚𝑚 = �𝑆𝑆𝑘𝑘 + 𝑑𝑑𝑘𝑘

𝑝𝑝−1

𝑘𝑘=0

If the previous sum of the historical feature sets is known, then let ℎ equal that series, and the original
operation can be rewritten more efficiently as a single sum. This does not take into account the
subtraction or decrementing of historical feature sets that expired from the desired time window (30
minutes for this example):

𝑆𝑆𝑚𝑚 = �ℎ𝑘𝑘 + 𝑑𝑑𝑘𝑘

𝑝𝑝−1

𝑘𝑘=0

Keep in mind that this assumes the series and elements are the same between series. In real-world data,
the elements for each piece of telemetry may be different, resulting in sparse data structures which require
different thinking to process efficiently.

5.3.3. Mean

The mean here is a bit more complicated because without iterating through the entire history an actual
mean 1

𝑛𝑛
∑ 𝑎𝑎𝑖𝑖𝑛𝑛
𝑖𝑖=1 can’t be derived. To get around this and get a “good enough” mean, we turn to a simple

moving average, so we don’t have to iterate through the entire historical time window of features. With a
simple moving average 1

𝑛𝑛
∑ 𝑝𝑝𝑀𝑀−𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 is used as we have the historical features in the database and the

code is similar to the sum example.

5.3.4. Other operations

For operations such as standard deviation, minimum or maximum values are more complicated to process
given a single value. There are potential ways to calculate these things given more values, such as
minimum or maximum, if you know the top or bottom 5 for a particular feature. This requires keeping
those lists and can be cumbersome -- which may defeat the purpose of computational efficiencies, unless
the historical time window or number of messages therein is large.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 16

6. Model Serving
The last component of the system is the model, and how it gets exposed to users or other parts of the
organization. This is perhaps the most straightforward piece of the system, not considering what happens
to the output (prediction or inference) from the model. The simplicity comes from a project called Seldon
Core which allows almost any type of ML model to be invoked with Python and served from Kubernetes.
In Figure 7, not only is the model potentially running alongside the feature engineering on the same node,
but in separate containers, it is also able to scale horizontally by simply changing the number of replicas.
This can also be performed automatically with elastic scaling. All the major cloud providers support
some kind of model serving and each has their own benefits and drawbacks depending on the situation.
Running your own Kubernetes allows you to also run Prometheus or tie it into an existing monitoring
solution within the organization, such as to leverage metrics and alarming for the operations support side
of these platforms.

6.1. Requirements

Given the large number of components in the model, a system which supported core requirements such as
multi-armed bandits, A/B testing and advanced inference graphs was required. Seldon Core was chosen
as it satisfied all of these requirements and integrated well with Kubernetes and production monitoring
systems. Seldon can support a user-defined inference graph, which allows custom configuration and
combinations of models and components. It also allows for percentages of traffic to be handled by each,
thus allowing for more complicated implementations such as A/B testing. As part of the user request
flow to the model, it was important to ensure that customer HTTP sessions are sticky to a particular A/B
model. In order to accomplish this, a custom Seldon router, which takes a seed value can be written to
route requests to the same components in the inference graph depending on values in the payload (such as
a customer identifier.

Figure 8 – Inference graph example

6.2. End-to-end flow

While the entire flow is shown in Figure 3, there is a critical piece missing. Figure 9 depicts the end-to-
end flow, including customer interaction with the system to request predictions from the model.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 17

Figure 9 – End-to-end platform flow

In the second flow with the thick blue lines, the customer interacts with the customer service application
on their device or web browser. This invokes the model service and returns the prediction back to the
application, then the user, about whether or not it believes they are experiencing an issue based on the
telemetry and output from the application. If there is an issue, it attempts to specify a recommended fix
action, or, as a last resort, refer the customer to customer service. This system has been successful at
handling millions of customer requests quickly and accurately, improving the customer experience.

7. Scale
In our customer experience ML platform, we’re generally handling 100k+ messages per second and
executing 300-500k+ operations per second to our Redis clusters. As previously mentioned, this is
accomplished with horizontal scaling from Kubernetes. In many of our platforms, we’re handling more
than just the RDK datasets, as our models require engineered features from many varying datasets to
produce the unique outputs to improve the customer experience.

Our Kubernetes clusters generally run with 10 or more nodes at 16 CPU cores per node and 128GB
RAM. The Redis cluster nodes have far fewer CPU cores (4) as the Redis process is single-threaded, yet
they have much more memory, generally 256GB RAM. Our Redis nodes as well as the Kafka broker
nodes have secondary 1TB drives for disk-based persistence, replication and retention.

8. Model
Our goal is to prompt a user to troubleshoot one of their services in order to increase engagement and
troubleshooting inside the chat bot. Thus, our data is generated based on both customer feedback and the
decision to show a prompt to a user. In this way, the model will impact the data generating process, which
is different from standard classification or regression use cases, where the data generation is assumed to

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 18

be independent of the model’s output. For example, in image classification, if a model incorrectly labels a
picture of a cat as a dog, there is no impact to the ground-truth label—that the photo is of a cat. In our
case, we will have feedback based on the action we select, but we have no information on if the model
took a different action. Our problem can be formalized in the framework of contextual bandits.

Contextual bandits algorithms extend the traditional multi-armed bandits problems by giving the agent a
state to aid in decision making. Each data point can be thought of as a “round” of a game, where the state
is the features of the model (“agent/policy”) , the action is chosen by the agent, and the reward is the
label. Contextual bandits problems are a special case of Reinforcement Learning, where the length of a
round is 1. The goal of the agent is the learn to play the game in order to maximize the expected reward
when following the agent’s action recommendations.

Figure 10 – Model flow

One drawback to reinforcement learning and contextual bandits in industry is that the algorithms are
traditionally trained online. In the case of reinforcement learning, agents typically have access to a
simulator of the environment (i.e. a game) and they learn as they play (c.f. “Playing Atari with Deep
Reinforcement Learning” [17]). For contextual bandits algorithms, they often need to be deployed into
production and learn as they serve customers [15], [16]. This is because the data distribution changes as
the agent learns, as the agent will select new actions based on new information. This is different from the
static training set found in classic supervised learning. Because of this, a suite of theoretical techniques
has been developed to evaluate and train agents offline, namely “off-policy” techniques [18], [19]. Off-
policy techniques have been employed in a variety of industrial applications successfully, including [20],
[21]. This approach utilizes data from a production logging policy with sufficient randomization for
training and evaluation of offline policies.

One of the large benefits of off-policy evaluation is the ability to estimate the true online performance of a
contextual bandits model without deploying it into an A/B test. This allows the researcher to rapidly
prototype many candidate models and choose the best model for an A/B test which impacts customers.

With that said, our model is a linear model which predicts the reward for each action (prompt) that we
may show the user given the state, i.e. telemetry features defined above. After predicting the expected

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 19

reward for each action, we take the action with the highest reward and output that action to the production
system. We train the model using various off-policy approaches [22] and select the model which performs
the best on the off-policy evaluations of our metrics for production. Crafting reward functions is an art
more than a science, and generally are designed by experts to maximize not only the business metric of
interest but also downstream metrics. In our case, our reward function is a proxy for the click-through rate
of the prompt, where we have a negative reward if a card was shown and not clicked. We scaled reward
functions to be between [-1,1], as it makes the training process more stable through smaller gradient
updates.

All analysis was done in Jupyter Notebooks, including training. Models were defined and trained using
Keras, a popular abstraction of neural network operations that sits on top of libraries like Tensorflow. In
production, the model is invoked to select a card for the user upon application start.

Figure 11 – Model architecture

8.1. Feature Engineering

The telemetry we utilize comes in several forms: snapshots of physical characteristics of the Wi-Fi signal;
device performance indicators usually expressed as a percent; and application logs which count the
occurrences of different system messages, including error codes. We pass each of these types of features
through a different pipeline to create appropriate features. All of our features are aggregations over
window of time t, where it depends on the feature type.

For continuous features, we utilize statistical aggregations over the time window. Many of the continuous
features are related to devices connected to the gateway, and so we will have multiple devices for a given
customer. We take an aggregation of statistics calculated on each device as our final feature. For example,
consider the RSSI: we calculate the mean, median, the standard deviation, and other statistics for each
device, and then we aggregate these statistics again for a single value for each customer account. Time
aggregations are used so that the model has is able to learn a sense of what’s “normal” and can identify
deviations from those norms. More significant deviations could imply impact to a customer.

For count valued features, we base our approach on common natural language processing (NLP)
techniques. The counts of the more common errors/logs over a time window can indicate the intensity of a
problem, and the existence of rare keys can indicate a complete service impairment. Thus, common NLP
techniques are applicable to our use case and provide a framework for creating features (embeddings)
from which a model may learn. Each error code or system message indicator is treated as a “word” and

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 20

passes this context to our feature pipeline as a “bag of words”. The data is then transformed via a pre-
trained TF-IDF pipeline before using it in the model.

Our feature processing pipelines use classes from sci-kit learn. For example, all features are normalized
before training using preprocessing classes. Continuous features are standardized and (sparse) count
features are scaled by their maximum absolute value. In addition, the TF-IDF embeddings are
implemented using the corresponding classes found in scikit-learn for this purpose.

9. Results
By utilizing the machine learning model, we achieved a 40% improvement in customer engagement, as
measured by the abandon rate of sessions (when a customer opens the application and leaves without
clicking or asking a question). This was measured through an A/B test where all customers selected to get
a card were split into two groups: the treatment group who were shown the card and a control group
where we held back the card. This business impact was accompanied by a measurable increase (~42%) in
the click-through rate of cards when compared to simple card display rules based on telemetry cutoffs.
This improvement was calculated by comparing each approach to a baseline over their respective time
periods in production to control for temporal differences. The final number is the relative difference
between the two statistics after controlling for the baseline.

Using the general architecture depicted in Figure 8, with simple horizontal scaling, the platform can
process very large amounts of incoming telemetry data. When converted to feature sets, the production
systems are handling 100k transformations per second. This is using feature windows that vary between
6 and 24 hours based on the dataset and requirements for the model. This scaling is nearly seamless if the
code is written with good microservice design principles in mind, and the ease of increasing replicas for
an application is handled. Kubernetes also supports elastic scaling based on certain metrics, which is
useful for processing spikes or bursts in traffic.

Scale aside, researchers and ML engineers have the ability to deploy models and feature pipelines as
needed. This reduces code rewrite from POC or research code to production code as the production
systems support many languages, ML model types and complex pipelines. Additionally, troubleshooting
and operations (MLOps) is greatly aided by Prometheus integration with thresholding from Grafana and
other tools to ensure problematic components are dealt with quickly. System availability is high due to
the redundant nature of Kubernetes and requiring all components have a minimum of two replicas and
dual components when they lie in the critical path.

10. Looking Ahead
These sorts of open source platforms and architectures are simply the beginning of a sweeping change
coming to not only telecommunications, but every other industry. Big telcos certainly have an advantage
now, given the vast datasets being collected now or in the future. While the physical properties of
components and systems are well understood, there is always room to identify new correlations in failure
or impairment types. With new hardware, more optical components and higher speeds -- and the fact that
connectivity is so vital to everyone -- this shift to self-identifying and self-healing networks will become
more critical. While ML models are not specifically required for every problem, the collection and
analysis platforms are, because the data is required to work towards more data-driven decision making.
Also, in the future, the platform output itself will be fed through various anomaly detection model types
to determine if system performance has deviated sufficiently to warrant human interaction. Platform
failures and other behaviors can be modeled to increase self-healing, predictive scaling (as opposed to
reactive) and automated root-cause analysis -- down to the specific component.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 21

These platforms will need to adapt in the coming years, to leverage FPGA or GPU hardware to handle
increasingly more complex analysis and ML workflows. Many companies are already seeing the benefits
from GPU, though TPUs and other hardware will be available to further drive down these large costs.

11. Conclusion
Again, the core problem here is that customer service and many other applications may require ML to
make a measurable impact in customer experience. As we have shown, not only were many open source
technologies instrumental in building the solution, they were not the only important pieces. These
systems may need to scale which will require deep dives into some of the core components that get
executed many times over, and those should be optimized as much as possible. While choosing Python
(the same language as is common for research) initially proved troublesome, performance has increased
dramatically and new avenues to optimize these functions, such as GPU offload have come a long way.

When thinking about the model, effort is required to determine if ML is necessary at all and how it can
make a positive impact on the problem. For this problem, a contextual bandits approach was chosen but
that does not mean is it the correct solution for other similar problems.

By now, after reviewing the problem, solution and challenges to solving this problem at large scale, it is
hoped that this information is not only helpful but the start of a change in thinking about how problems
will be solved going forward into the next decade. ML is not beginning but continuing to alter many
parts of our organizations and this will only accelerate. The information presented here may be somewhat
specific to telco telemetry data, but in fact it can be applied to most any similar dataset.

Our customers are the core of what we do and drive us to strive to do better in terms of not only providing
services but help when those services become impaired. This solution and others not only aids in our
graceful and accurate handling of these, but the hope is for all of us to continue to think about these
problems from the customers perspective.

Abbreviations

CM cable modem
CMTS cable modem termination system
CPE customer premise equipment
DNN deep neural network
FPGA field programmable gate array
GPU graphics processing unit
HSD high speed data (internet service)
IoT internet of Things
JSON JavaScript object notation
OS operating system
MAC media access control address
ML machine learning
MLOps machine learning operations

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 22

NLP natural language processing
POC proof of concept
POP point of presence
RDK Reference Design Kit
RSSI received signal strength indicator
STB set-top box
TF-IDF term frequency, inverse document frequency
TPU tensor processing unit
VBS video backend services

Bibliography & References

[1] Data Over Cable Service Interface Specification Proactive Network Maintenance, PNM Best
Practices Primer: HFC Networks (DOCSIS® 3.1) CM-GL-PNM-3.1-V01-200506, 05/06/2020,
https://www.cablelabs.com/specifications/CM-GL-PNM-3.1

[2] What is Customer Experience, Blake Morgan; Apr 20, 2017,
https://www.forbes.com/sites/blakemorgan/2017/04/20/what-is-customer-experience-
2/#8b5958170c2b

[3] Reference Design Kit (RDK), https://rdkcentral.com
[4] Protocol Buffers, https://developers.google.com/protocol-buffers
[5] Apache Arrow, https://arrow.apache.org
[6] Apache Kafka, https://kafka.apache.org
[7] Docker, Inc. https://www.docker.com
[8] Kubernetes, Linux Foundation, https://kubernetes.io
[9] Peng Kang, Finding Kafka’s throughput limit in Dropbox infrastructure, Jan 30, 2019,

https://dropbox.tech/infrastructure/finding-kafkas-throughput-limit-in-dropbox-
infrastructure#:~:text=This%20result%20provides%20guidelines%20for,throughput%20of%20fu
ture%20use%20cases.

[10] Apache Flink, https://flink.apache.org
[11] Apache Beam, https://beam.apache.org
[12] Seldon Core, Seldon Technologies Ltd, https://docs.seldon.io/projects/seldon-core/en/v1.1.0/
[13] Feature Scaling, https://en.wikipedia.org/wiki/Feature_scaling
[14] CITE-WIFI Observing home wireless expe- rience through wifi aps. Ashish Patro, Srinivas

Govindan, and Suman Banerjee; In Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking, MobiCom ’13, page 339–350, New York, NY, USA, 2013.
Association for Computing Machinery.

[15] CITEA The nonstochastic multiarmed bandit problem. Auer, Peter, Bianchi, Nicol`o C., Freund,
Yoav, and Schapire, Robert E.; SIAM Journal on Computing, 32(1):48–77, 2002.

[16] CITEB The epoch-greedy algorithm for multi-armed bandits with side information, Langford,
John and Zhang, Tong; In Advances in Neural Information Processing Systems 20, pp. 817–824,
2008.

[17] CITEC Playing Atari with Deep Reinforcement Learning, Volodymyr Mnih, Koray
Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin
Riedmiller; https://arxiv.org/abs/1312.5602

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 23

[18] CITED Learning from Logged Implicit Exploration Data, Alex Strehl, John Langford, Sham
Kakade; 14 Jun 2010, https://arxiv.org/pdf/1003.0120.pdf

[19] CITEE Batch Learning from Logged Bandit Feedback through Counterfactual Risk
Minimization, Adith Swaminathan, Thorsten Joachims; 2015
https://www.cs.cornell.edu/people/tj/publications/swaminathan_joachims_15c.pdf

[20] CITEF A Contextual-Bandit Approach to Personalized News Article Recommendation, Lihong
Li, Wei Chu, John Langford, Robert E. Schapire; 1 Mar 2012, https://arxiv.org/pdf/1003.0146.pdf

[21] CITEG Top-K Off-Policy Correction for a REINFORCE Recommender System, Minmin Chen,
Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, Ed H. Chi., 6 Dec 2018
https://arxiv.org/pdf/1812.02353.pdf

[22] CITEH Tutorial on Counterfactual Evaluation and Learning for Search, Recommendation and
Ad Placement, Thorsten Joachims, Adith Swaminathan; SIGIR 2016, 17.07.2016,
http://www.cs.cornell.edu/~adith/CfactSIGIR2016/

	1. Introduction
	2. History
	3. Customer Experience as it relates to ML
	3.1. Use Case

	4. Telemetry
	4.1. Attributes
	4.2. Usefullness

	5. Platform
	5.1. General Architecture
	5.2. Implementation
	5.2.1. Technology choice
	5.2.2. Architectural differences
	5.2.3. Message bus performance
	5.2.4. Container orchestration

	5.3. Feature engineering performance and guidelines
	5.3.1. Min-Max normalization
	5.3.2. Sum or counts
	5.3.3. Mean
	5.3.4. Other operations

	6. Model Serving
	6.1. Requirements
	6.2. End-to-end flow

	7. Scale
	8. Model
	8.1. Feature Engineering

	9. Results
	10. Looking Ahead
	11. Conclusion
	Abbreviations
	Bibliography & References

