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Introduction 
Machine Learning as a service (MLaaS) is a burgeoning field in the digital TV space. Its goal is to create 
AI/ML based revenue generating products. In this study, a novel use case is presented along with machine 
learning based enhancements. TV viewers routinely encounter shows that they dislike, but they are unable 
to avoid seeing them. While the consumer opinions are highly subjective, the end-result is the same: 
flipping the channel, which leads to advertising revenue loss for the programmer. Although retaining 
viewership of the channel is highly desired, technical challenges have precluded a satisfactory solution 
thus far.  

The selected use case is of interest because unappealing content and recommendations contrast each other 
(dissuade vs. persuade). This distinction also manifests in the solution structure. For example, 
Recommender Systems (RS) are based on user ratings of liked content. In contrast, ‘disliked content’ may 
be so averse to a viewer thus it is not even rated. Not having user ratings is a barrier for applying the RS 
model, which uses similarity measures in the latent space to determine affinity. Hence, in this study a 
different metric based on implicit data is used for feature vector creation. The goal is to illustrate the 
challenges and opportunities in developing MLaaS products for carrier-grade video.  

Presented is a distributed solution* applicable to vMVPD service. Enhancements to IP content delivery 
pipeline and Machine learning based automation are key for replacing disliked content. Additional scopes 
for MLaaS applications are also discussed.  
*patent filing (16/167,766) 

Content  
1. Machine Learning Applications in Digital Video 
Machine Learning applications in the video delivery pipeline are ubiquitous. From content ingest to 
transmission to delivery, opportunities abound for applying algorithmic solutions. These would typically  
include ingest quality control, network and storage optimizing and a host of data analytics applications 
upon content delivery. For example, the manual scanning of thousands of  TV ads at ingest can be 
automated with a classification engine [1]. Additional applications in operational and product 
improvement are discussed later.  

Such applications in cable-tech however are internal to the enterprise. The premise of this paper is to 
make the case that the technology is ripe for the next stage of ML revolution. Known as MLaaS or 
Machine Learning as a Service, it is modeled similar to other ‘as a service’ paradigms such as SaaS and 
PaaS. Familiar examples are web-based emails and cloud DVR services. MLaaS goes a step further and 
facilitates machine learning based consumer technology applications.  As an enabling technology it can 
create machine learning based revenue generating services for the cable operators. 

In the ensuing sections we delve deeper into the problem.  First, we review the functioning of general 
recommender systems. Then, to illustrate MLaaS, a novel application is presented along with machine 
learning enhancements. The selected use case is advertising revenue loss due to channel surfing. The 
recommender systems algorithms are applied with certain caveats. Finally, other MLaaS applications are 
briefly discussed.   
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2. Recommender Systems 
Consumers are overwhelmed by the broad array of choices in product availability. Personalized 
recommendations are thus vital for a more satisfying  user experience. Recommendation and Search are 
both similar in that they attempt to filter relevant information from a deluge of data. In the case of search, 
the user knows what (s)he is looking for. Recommender Systems (RS) on the other hand, attempt to 
determine user interests via automated search analytics. The ‘items’ in this context can be books, movies 
etc. Machine learning algorithms enable learning from the data and building predictive models.  

Recommender Systems generally fall into two broad categories: Content-Based filtering (CB) and 
Collaborative-Filtering (CF). The CB approach is based on the attributes of each item and the user’s 
affinity (rating) for similar items. Content may consist of movie genre, actors, theme etc. Based on the 
users previous ratings, movies that have similar content are recommended.   

Unlike CB, the CF recommendations are based on multiple users’ ratings. The assumption is that similar 
users share the same interest.  Sometimes called ‘neighborhood methods’, they are categorized as user-
based or item-based. The user-based CF make recommendations based on the ratings given by other users 
with similar profiles. In item-based CF, the neighborhood items are those with similar user ratings. The 
similarity is determined by first forming vectors (rows of ratings matrix) per each user, and computing 
similarity measures such as Euclidean distance or Cosine similarity between vectors in a multi-
dimensional space. Mathematically, users in the same ‘neighborhood’ would have Cosine of angle close 
to 1. Dissimilarity is denoted by 90° separation. 

 
Figure 1 – Cosine Similarity between multi-dimensional vectors 

(Technically there is a difference between Cosine Similarity and Cosine Distance due to Schwartz 
inequality.  In this paper however, we follow the conventional definition and use inner angle as the 
similarity measure between the vectors.  

2.1. Matrix Factorization 

Among the algorithmic approaches to solve RS, matrix factorization is a well-known technique. The basic 
premise of matrix factorization is that there are latent factors that determine the user ratings of items. 
These latent factors are not measured directly, but their impact is reflected in the user ratings (observed 
variable). In the case of movies, those could range from obvious features such as action, romance and 
comedy to more complex psychological emotions. Such nuances may not have simple labels to describe 
them. The beauty of the matrix factorization method is that it can handle such complexity with poise via a 
multi-dimensional vector model.  

The starting point is the user-item ‘rating matrix’ (utility matrix), which in practice may have millions of 
entries. Note that some cells are empty (user ratings not available).  
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 Movie 1 Movie 2 Movie 3 . . . . . Movie n 
User 1 5 N/A 2  3 
User 2 1 3 N/A  N/A 
User 3 N/A 4 1  4 
. . . . .      
. . . . .       

User m N/A 4 1  N/A 

Figure 2 – User-Item Rating Matrix 

Matrix factorization decomposes the user ratings matrix based on latent factors that contribute to user 
preferences and item attributes. It then predicts the unknown ratings through the scalar/inner/dot product 
of the latent features of users and items. 

For example, if Bob is an action movie aficionado, his profile may consist of: 
 Bob =  60% Action + 30% Comedy + 10% Romance+ 0% Historical  
Similarly, the profile for movie could be:  
 Titanic = 30% Action + 0% Comedy + 60% Romance + 10% Historical 

The dot product of these vectors would determine Bob’s affinity for the movie Titanic. The larger the dot 
product between a user vector and an item vector, the item is better suited for user’s taste and can be 
recommended. 

The rating matrix of Figure 2 has many empty cells (sparse), as only a fraction of movies are watched by 
users, let alone rated. The goal of recommender system is to fill these gaps. In Figure 3, the sparse matrix 
is expressed in terms of two latent factor matrices (one for user and the other for item attributes). The 
missing values are approximated by the dot product of the two latent factor matrices via optimization.  
 

 
Figure 3 – Matrix Factorization 

2.2. Singular Value Decomposition (SVD) 

A prominent technique for matrix factorization is singular value decomposition. The  SVD algorithm 
received wide recognition for its critical role in the $1 million Netflix prize competition [2].  The singular 
value decomposition (SVD) factorizes a given matrix ‘X’ into constituent arrays of feature vectors.   
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Figure 4 – SVD Decomposition 

   A = UΣVT 

- A is the given data matrix (m x n) of rank r  
- U is an orthonormal m x r matrix 
- Σ is a diagonal r x r matrix  
- V is an orthonormal n x r matrix 

The diagonal matrix ‘Σ’ contains the singular values in descending order. The higher values represent the 
dominant features or latent factors of the given matrix. We consider the reduced form with small Sigma 
values set to zero as shown in the Figure 4.  

Collaborative filtering (CF) based recommender systems perform poorly when dimensions in data 
increases (sometimes called ‘curse of dimensionality’). Reducing the extra dimensions while keeping the 
salient features is the function of a dimensionality reduction algorithm. SVD filters the dominant features 
from the data (Sigma matrix) and identify hidden correlations in the singular vectors U and VT. 

SVD helps find a lower rank matrix approximation to the original matrix. Mathematically this means 
picking only the top singular values from the sigma matrix and discarding others. Each singular value 
defines the ‘strength’ of the concept. e.g. a high value may indicate the genre of the movie cluster such as 
action or comedy.   

 
Figure 5 – SVD Decomposition in Elements Form 

An alternate way to perform matrix factorization is to calculate eigenvalues of the covariance matrix 
(ATA). Both approaches are consistent in that the square roots of eigenvalues are equal to singular values. 
The Eigen vectors of the covariance matrix indicate ‘principal components’ of the matrix. Eigen method 
(sometimes called spectral decomposition), is computationally more involved, hence in this paper we 
explore SVD.   
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As mentioned, the main challenge with the matrix factorization methods is that the rating matrix is mostly 
sparse. This problem is addressed by iteratively calculating each cell value and updating them (using 
Gradient Descent and Alternate Least Square techniques). The error is minimized by applying Frobenius 
norm to data matrices. These steps are well-known in the literature and as such not discussed further.   

We revisit the recommender systems in Section 4, in reference to disliked content. 

3. Supplanting Unappealing TV Programs 
In this section we change gears and review the technical aspects of the selected use case. Then, the 
machine learning enhancements are discussed for creating an MLaaS product.  

Almost all TV viewers have their favorite shows, as well as the ones they dislike. The latter (unappealing 
content) is the focus of this study. When confronted with disliked content the normal user behavior is to 
flip the channel, which leads to advertising revenue loss for the programmer. IP based digital TV 
streaming has made it possible to supply alternate content on per user basis. 

While IP streaming offers such  capability, the requirements cannot be met by changing just one end of 
the content stream. The contractual obligations between Programmer and Content Distributer must remain 
intact as well.  A distributed solution is presented, requiring enhancements on multiple components: 
Alternate content is supplied by the programmer, assembled and stored at the Content Distributor. The 
disliked content is replaced automatically.  

3.1. Alternate Content Usage 

A customer identifies a TV program/show/series that is unappealing to her, and would prefer to have it 
replaced with alternate content. Her choices can be supplied via a web portal/API or a clickable icon 
added to the TV Guide. The Content Provider establishes Alternate content channels for selected regular 
channels. The Alternate content could be programs that aired earlier in the day and stored in the CDN. 
Once the setup is complete, whenever the consumer tunes to an unappealing program content, it will 
trigger content replacement automatically and seamlessly. In this context, ‘tuned to the channel’ could 
also mean accessing a web page, such as in a social-media based network.  

Table 1 – Alt Content Examples (names slightly changed) 
Supplanting a Program by Alt Content (Traveler Channel) 

Original Program Alt content-1 Alt content-2 Alt content-3 
Ghoul Adventures Bizarre Feasts Museum Mysteries Nay Reservations 
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3.2. Content Replacement – Process Steps 
 

 

Figure 6 – Process Flow for Alt Content Usage in Program Replacement 

1. Assume a previously identified ‘disliked program’ is on the air (e.g. Table 2 - Ghoul Adventures of 
Traveler Channel).  

2. Program content and alternate content are stored on the CDN headend. The Alt. content could be 
previously aired shows or specifically targeted content. 

 (In a typical streaming scenario - The broadcasted TV/media content stream from Programmer is 
received by the content distributor. The Encoder/Transcoder may perform any format changes. The 
Packager/Segmenter will splice the content into many chunks. The video/audio segments (along with an 
Index file (Manifest) for segment identification), are placed for storage on a CDN Origin server).  

3. Assume the previously identified ‘disliked program’ is on the air. The end-user tunes to the channel. 

4. Alternate Content Generator (ACG) interfaces with TV guide to obtain program start end times. It 
queries the ‘Disliked content database’ for any matches. 

5. If a match is found that information is passed back to the Manifest Manipulator.  (Note – These 
messages are in addition to the regular manifest requests issued by a Client device during IP streaming)  

6. Noting that there is a ‘Dislikes’ request, the Manifest Manipulator communicates with the Alternate 
Content Service (ACS) database. ACS module binds Customer Device ID to Program Alt cont. selection 
and returns to the Manifest Manipulator.  
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                     Customer Device Identifier  Disliked content  Alt. content    

7. Manifest Manipulator modifies the index/manifest file, accordingly, replacing regular content with 
alternate content. The updated manifest is sent to the customer device (Client).  

8. The Customer Device now retrieves corresponding alternate content from the CDN and send to the 
display device. 

9. The original content is supplanted with alternate content and supplied to the display device for user 
consumption.  

4. Replacing Disliked Content – ML Automation 

4.1. Challenges in Applying Recommender Systems to Disliked content 

In the movie recommendations example described earlier, the viewer inputs were explicitly supplied (e.g. 
one through five stars). In the case of disked content however, there is no explicit metric. The content is 
so averse, the viewer simply changes the channel. Not having user ratings is a barrier for applying the RS 
model, which uses similarity measures in the latent space to determine affinity. Hence, in this study a 
different metric is used for feature vector creation.  

Another constraint is the sheer number of channels in a TV subscription. Most users have never even 
tuned to the hundreds of channels offered. It would be incorrect to categorize those as disliked content. 
Note that the present analysis applies to channels containing a mix of liked-content and disliked-content. 
The goal is to keep the viewer in the same channel. If there are no liked programs at all (i.e. customer 
never tunes to the channel), then the issue of ad revenue loss is moot.  

4.2. Implicit Identification of Disliked content 

The method adopted was to collect viewership data over time and apply data analytics to identify disliked 
content indirectly. One peculiarity with the viewership data is the vast difference in the time scale. For 
‘disliked content’, the channel surfing times are about one to two seconds. But for ‘liked content’ (regular 
viewing), the durations could vary from several minutes per channel to hours. This disparity was  
addressed via a change of scale adjustment. 

The wide range of the time scale is also a barrier for applying machine learning algorithms.  This is 
illustrated below with reference to two algorithmic scenarios.  

a) Cosine Similarity 
Cosine similarity is easy to visualize in two dimensions, but its application in the present context is for a 
multi-dimensional space.  Due to the large disparity in the time scales (few seconds for disliked content 
vs. thousands of seconds for liked content), the user/item vectors in the latent space will not be an  
accurate depiction. The impact of disliked-content will be hard to quantify. On the other hand, simply 
inverting the scale (e.g. assigning 5 stars for disliked and 1 for liked), will not capture the nuances.    
 

b) Singular Value Decomposition (SVD)  
Note that in the Singular values matrix, the dominant values are at the top left and decreases down the 
diagonal.  
    Sigma 1  ≥ Sigma 2 ≥ Sigma 3… 
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The quantities of interest (disliked content with 1-2 seconds), are at the lower end of the time-scale and 
their impact is washed out by much larger terms in the matrix (thousands of seconds for liked content).  
As such, the dominant Sigma values do not reflect the impact of disliked-content, and skew the results. It 
is therefore necessary to rescale the data so that the disliked content reflect the dominant terms in the 
utility matrix. 

4.3. Data Rescaling 
The metric adopted for this task is the log reciprocal of channel surf time.  Since the channel change time 
could vary from 1 second to several hours (thousands of seconds), we use the following formula: 

Disliked Content Measure = Log10  (104/T) = 4  – Log10
 T 

 

Table 2 – Disliked Content Rescaling 

                                  Disliked Content                              Liked Content  
Duration 1 sec 10 sec 15 min 2 hours 
Log10 (104/T) 4 3 1.045 0.143  

 
The logarithmic scale converts the wide range of channel view time values to a more manageable 
compact scale.  The original span of 1 second to over 2 hours, is now rescaled to the more compact range 
from zero to four (Table 2). The Log scale captures 1–5 star ratings implicitly. It is also in line with 
behavior based algorithms due to the continuity of scale. Conversely, simply assigning 5 stars to shorter 
times would not be granular. Also, the user response times for channel surfing are subjective. 

4.4. Enhancements to Recommender Systems 
The result of applying RS is the creation of a disliked content matrix. This complements the more 
common liked-content matrix created by RS. The disliked-content analysis supplies additional data about 
user preferences to enhance the recommender system. This would be useful since a major issue with RS is 
the sparsity of the input data matrix.   
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Figure 7 – Disliked Content Usage to Enhance Consumer Profile 

 

 

5. Machine Learning in Digital Video – Additional Examples 
Additional instances of potential usage are listed below for reference;  not all are revenue related.  

5.1. Enhanced Rating System for Movies 

Current TV/Movie ratings are confusing (TV-Y7-FV, PG-13, TV-14…), as the restricted content 
definition is subjective. Parents would appreciate if they could know beforehand the type and placement 
of restricted content.  
 

a) Scan videos in the repository and tag restricted content per pre-defined criteria, with time stamps.  
b) Develop an API for one-click access for the ‘Enhanced Ratings’ from the program guide. 

 

5.2. Video Content Analysis - VOD Storage and Ingest 
a) Scan videos and generate descriptive metadata.  Identify sentiments, underlying topics as well as 

any anomalies in the media content. Create a searchable catalog of videos based on tagged data.  
b) Thematic advertising – Given an Ad-campaign theme (e.g. eco-tourism), find matching videos 

from the collection.  Find effectiveness of ads by different demographics/audiences. 
c) Celebrities - Find videos of a given actor, including duration/time stamps, from a collection.  
d) Closed captions – Translate speech to text for assets that currently do not have captions.  
e) Skipping content on VOD – User is presented with the option to auto-skip parts of a video based 

on pre-defined content identifiers. ML can tag content based on heuristics.   

Demographic Data Viewership 
Data

Liked-content
(from Recommender)

Disliked-content 
(new)

Customer Data 

Enhanced Profile for Analytics
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5.3. Personalized Ads - Combine Demographic and Viewing data  

[Scenario – Demographic data may suggest that 3 people live in a household, but it cannot answer 
questions such as, “Of the 3 inhabitants, which one was watching TV at 4 PM)?”  Data analytics based on 
viewing patterns can be used to enhance targeted advertising]   
  

a) Develop individual user profiles for each household based on multiple data sources – customer 
demographics, online viewing history and navigation data.  

b) Make recommendations for personalized ads based on time-of-day viewership characteristics.   
c) Predict ad completion rates based on past viewing behavior and make ad recommendations.  

 

5.4. Codec Quantization Parameter (QP) settings   
In a video codec the DCT coefficients are quantized per Quantization Parameter (QP) settings.  Coarse 
QP values mean high compression and lower quality. QPs are also proportional to the Lagrangian 
multipliers of Rate optimization.   

The Neural Network based auto-encoders on the other hand, map the data to a lower dimensional latent 
space and then reconstruct it during decoding.  It can predict pixel values fairly accurately and provide 
optimum QP values. The encode-decode pair is trained as a single unit in unsupervised learning. The 
adaptively tuned QP values will yield improved PSNR.   

6. Benefits to Service Providers and Programmers 
 
Machine learning enables identifying and auto-replacing of disliked content. MLaaS based novel offering 
(“Don’t Like, Don’t Watch!”) would be a new revenue opportunity for programmers and content 
distributors. The disliked content could even be faces and voices based on pre-defined signatures. 
 
Another improvement is in targeted advertising. Ad campaigns are generally based on consumer 
demographic data obtained from data brokers.  The aggregated data can be refined by comparing with 
viewership patterns (e.g. time-of-day), garnered from liked and disliked content (Figure 7).       
 
Recommender systems based on explicit data can be improved by combining with disliked-content 
analysis. 

Conclusion 
Cable-tech is ripe for disruption and transformation with MLaaS based consumer technologies. Service 
providers will reap the benefits of new revenue generating opportunities. To illustrate the point, a novel 
use case was presented along with MLaaS enhancements. To circumvent the challenges with general 
recommender system model, a new metric was proposed based on implicit user data.  The auto-discovery 
and replacement of disliked content would prevent revenue loss for programmers due to channel surfing.  
Additional benefits include enhancements to recommender systems and targeted ad-campaigns.   

 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 13 

Abbreviations 
 

AI/ML  Artificial Intelligence/Machine Learning 
MLaaS Machine learning as a service 
vMVPD Virtual Multi-Channel Video Programming Distributor  (Internet based TV) 
SVD Singular Value Decomposition 
MF Matrix Factorization 
CB Content Based Filtering 
CF Collaborative Filtering 
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