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1. Introduction 
Since the early 2000s, the cable television (CATV) industry has been playing its part in the Artificial 
Intelligence (AI) community by deploying equalization technology to enable its digital signals to survive 
varying frequency response conditions within its cable plants.  Simon Haykin describes how the 
perceptron and the adaptive filter using the least mean squares (LMS) algorithm are naturally related [1].  
Equalization has evolved into a powerful tool, enabling the CATV industry to achieve communication 
efficiencies once thought impossible -- but that story is not quite complete.  The limits of equalization 
may extend beyond the linear frequency response, and cancel the nonlinear responses commonly 
associated with nodes and other active devices which use power amplifiers (PAs).  Achieving nonlinear 
equalization requires new equalization methods, like receiver post-distorter equalization, where 
techniques include AI models, such as deep neural networks (DNNs).  Furthermore, researchers have 
been advancing nonlinear distortion cancellation via other methods, including peak-to-average-power-
ratio (PAPR) reduction, and digital pre-distortion (DPD).  These technologies are beginning to show up in 
newer generation devices, where demands for radio frequency (RF) output power is high, while keeping 
power consumption low, like the full duplex DOCSIS (FDX) remote PHY device (RPD) nodes.  DPD 
technologies cancel the contribution of the transmitting device only.  More aggressive nonlinear distortion 
cancellation methods may be accomplished by advanced DNN approaches, such as incorporating input 
features derived from Volterra series models, which has become a popular model for nolinear distortion 
that can be used to describe multiple nonlinearity orders and memory.  Then efficiencies across the 
CATV network could be considered, either by higher node RF output power, or more efficient PA 
architecture/bias within the node, amplifier, and/or customer premise equipment (CPE).  This paper will 
propose how current CATV equalization systems could be enhanced to cancel severe nonlinear distortion 
based on some of these novel approaches to nonlinear equalization. 

2. Artificial Intelligence (AI) 

2.1. Historical Perspective  

AI has existed for a very long time -- close to 80 years.  In 1943, Warren Sturgis McCulloch and Walter 
Pitts published a paper titled “A Logical Calculus of Ideas Immanent in Nervous Activity,” laying the 
foundations for artificial neural networks (ANNs) [1].  Since then, many ideas involving AI have been 
shared, and this community has grown appreciably.  Patrick Winston, who was born in 1943 and later 
became a MIT professor who taught a course in AI, described it as being about algorithms, enabled by 
constraints, exposed by suite of representations, that support the development of models targeted at 
thinking, perception, and action [2].  That definition is inclusive of many things -- in fact, some very 
simple internet searches can yield timelines rich with AI milestones, including events such as when Deep 
Blue defeated World Chess champion Garry Kasparov in 1997, or a more recent milestone, on October 
15th, 2019, when OpenAI enabled a robot to learn how to single-handedly solve Rubik’s Cube with the 
support of two neural networks [3].  

2.2. Common Solutions 

There are many artificially intelligent solutions that we encounter every day, possibly without even 
realizing it.  Comcast, for example, provides multiple products which incorporate AI technology.  Some 
of these solutions include the Voice Remote, that adapts to the uniqueness of how each and every one of 
us speaks, and in turn assists with accessing and enjoying content on Comcast’s X1 platform.  The X1 
recommendation engine detects patterns in the content we consume, and assists users in navigating a 
wealth of available content and offer recommendations.  Internet-based products like xFi Advanced 
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Security protect our home networks against constantly evolving network threats.  Interactive assistants, 
like xFinity Assistant, help customers by leveraging an interactive knowledge base of common solutions. 

2.3. Popular Tools/Models 

There are many available AI tools and frameworks, including TensorFlow, and PyTorch [4].  These 
systems are designed to assist with navigating the vast array of models, each with their unique set of pros 
and cons, when it comes to approximating the functions that couple input and output data patterns 
together.  Some of these tools readers may have already heard of, like DNNs [5].  Others, like support 
vector machines (SVMs), may be less familiar.  Fortunately, finding the right model fit for a particular 
problem has been automated via tools like automated machine learning (Auto ML), which not only selects 
the best function approximation model, but also assists with tuning the parameters of that model to 
optimize its training and generalization properties. 

2.4. Biological Inspiration 

The perceptron model gets its inspiration from the Pyramidal cell shown Figure 1 [1].  One of the key 
characteristics of this model are its synaptic weights, which it applies to each of its input signals.  The 
input signals are summed together and applied to an activation function.  The sigmoid function is a 
popular activation function, which limits the output response to a specific range of continuous values.  An 
Artificial Neural Network (ANN) connects multiple perceptions together in a variety of ways, in parallel, 
and/or in series. In doing so, interesting behaviors begin to emerge -- the most interesting being the 
nonlinear adaptation of the model weights.  This could present interesting opportunities for linear 
adaptive equalization systems used today, where nonlinear adaptation enhancements could enable systems 
to account for both linear and nonlinear distortion present within the communication channel to improve 
the performance of equalization systems overall. 

 
Figure 1 - Biologically Inspired Perceptron Model 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 6 

2.5.  DOCSIS Transmit Pre-Equalization 

Since the early days of the Data Over Cable Service Interface Specifications (DOCSIS), equalization has 
enabled the cable modem termination systems (CMTSs) to adapt and learn the unique frequency response 
shared between it and each of the cable modems (CMs) to which it is connected.  The CMTS shares this 
knowledge with the CM, via a coefficient vector or weights often times referred to as “taps”, asking it to 
either convolve or overwrite its current set of weights, based on how quickly the frequency response was 
changing.  The CM applies these weights to future transmissions to the CMTS, to cancel the frequency 
response effects of the channel, which could be micro reflections (echoes) or filter effects including group 
delay or amplitude roll-off [6].  This form of equalization came to be known as “transmit pre-
equalization” in DOCSIS 1.1 [7]. 

 
Figure 2 - DOCSIS Transmit Pre-Equalizer Structure 

Comparing the DOCSIS 2.0 equalizer of Figure 2 to the perceptron of Figure 1, one cannot help but 
notice the similarities between the two models.  What is most like the perceptron is the linear adaptive 
filter’s weighted inputs feeding a linear combiner, and the ability to perform continuous learning – a 
single neuron operating in its linear mode [1].  The perceptron and an adaptive filter using LMS are 
naturally related [1]. 

3. Power Amplifier (PA) Efficiency Problem 
Designer Charles Warren once gave a talk titled “How Might We: Three Words That Make Design 
Better” [8].  His thoughts are both refreshingly entertaining, and very helpful in organizing our ideas 
around innovation and establishing the following goal statement for this paper. 

How might we optimize PA efficiency in our RPDs? 

Improving PA efficiency in our RPDs may be beneficial in maintaining existing requirements, like RF 
output levels, as we introduce new capacity-enhancing technology.  FDX falls into this category. Its 
accompanying echo cancellation (EC) technology, is necessary for facilitating bidirectional 
communication at the same operating frequencies [7].  EC technology additions will require 
compromises, especially while maintaining existing requirements for RPD RF output power, complexity, 
weight, power consumption, heat dissipation and cost. 

At this point, the reader may be thinking “The goal statement is limited to RPDs, but why not optimize all 
the active components within the RF chain, including line extenders, mini-bridgers, trunk amplifiers, 
home drop amplifiers and even CPE front ends?”  This is a thought we hope to address in paper as well, 
but in the spirit of following Warren’s “How Might We” process through to its end, let’s first consider 
some of the things that may stopping us from achieving our goal as stated.   
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First and foremost, there is a catch when it comes to increasing PA efficiency, and that is increased 
nonlinearity.  Any savings in PA power consumption will have to be balanced with a system of mitigating 
any increases in nonlinearity, something we intend to explore fully in this paper.  Another consideration is 
with respect to standards, and whether the solution requires standardization to ensure seamless 
interoperation across vendors that can be deployed, operated, and maintained in a consistent manner.  
Lastly, with introduction of any new technology, there is always consideration given to how to gracefully 
coexist with legacy products and services, ideally minimizing any impact to existing services. 

4. Nonlinear Distortion (NLD) 
Figure 3 illustrates how PAs strengthen their input signals [10].  When a PA’s input power is at its lowest 
levels, its output power behavior is more linear than it is nonlinear, and its gain is constant.  Ideally, PAs 
would behave linearly for all input signal levels, including high input powers, as illustrated by the dotted 
line.  However, practical PAs generally available today cannot strengthen input signals without adding 
nonlinear distortion (NLD) to those input signals.  As we will later see, NLD increases more rapidly than 
the illustrated input/output increases of the fundamental signals.  Eventually, the PA reaches saturation, 
and its performance becomes more nonlinear than linear.  At this point, the PA’s output is no longer 
proportional to its input, and its performance is dominated by NLD.  Further, a PA’s linear operating 
region or dynamic range is a range of input powers that include a predictable mixture of impairments, 
including noise and NLD.  At low input power, noise dominates the impairment mixture, but as input 
power increases, noise performance improves, while NLD worsens.  The challenge for the network 
designer is to strike a balance between noise and NLD, so that their combined performance is within 
acceptable limits.  Output-power-back-off (OBO) is a term used to describe this compromise, where the 
PA’s operating point is typically several decibels (dBs) below its compression point and includes 
acceptable noise and NLD levels for overall system performance [11]. 

 
Figure 3 - Power Output and Gain Compression Characteristics of a PA 
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4.1. Digital Signal Impact 

Metrics pertaining to Figure 4 node downstream transmission path (blue) performance for noise and NLD 
have been included in Table 1 [9].  These specifications are measured using 6 MHz wide channels and are 
based on a full channel loading consisting of 194 single carrier quadrature amplitude modulation (SC-
QAM) signals.  Decibel-millivolts, dBmVs, are generally used, for mathematical convenience, within the 
CATV industry, to reference operating levels, 𝑂𝑂, for analysis of these systems [12]. 

 
Figure 4 - Sample RPD Node 
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Table 1 - Sample RPD Node Datasheet Summary 
Sample RPD Node Specifications 

Minimum operational gain, 𝐺𝐺 42 dB 
Noise Figure, 𝑁𝑁𝑁𝑁 15.5 dB at 54 MHz 
Composite-Intermodulation-Noise, 𝐶𝐶𝐶𝐶𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟  50 dB 
Reference output level, 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟  42 dBmV at 54 MHz 
Power 160.6 W @ 2.16 A, and 90 V AC 
Weight 49.8 lbs. 

 

Signal-to-noise ratio (SNR) describes the relative measure of signal power, 𝑆𝑆, to the noise power, 𝑁𝑁𝑃𝑃, 
which is the thermal noise or noise floor measured within the same bandwidth as the signal 𝑆𝑆, in this case 
6 MHz. 𝑁𝑁𝑃𝑃 is estimated using (1), where 𝑘𝑘 is Boltzman’s constant (1.374 ×  10−23 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗/°𝐾𝐾), 𝑇𝑇 is the 
absolute temperature in degrees Kelvin (°𝐾𝐾), and 𝐵𝐵 is the bandwidth of the measurement in Hertz (Hz).  
𝑁𝑁𝑃𝑃 in the CATV industry is typically expressed in terms relative to 1 milli-volt (mV) across a 75 Ω 
impedance, therefore 𝑁𝑁𝑃𝑃 at 62 °F is approximately -57.4 dBmV [13]. 

𝑁𝑁𝑝𝑝 = 𝑘𝑘𝑇𝑇𝐵𝐵 (1) 

Composite Intermodulation Noise (CIN) is a type of NLD which results from nonlinear distortion 
generated from loading conditions, which include digital signals, like SC-QAM.  Node contribution for 
SNR and CIN can be calculated using (2) and (3) respectively, for changes in its output levels 𝑂𝑂 
constrained over the node’s dynamic range [12], [13].  In the CATV industry, CIN is typically dominated 
by 3rd-order NLD, which may not be the case for other communication systems, like those used in the 
satellite industry [14]. 

𝑆𝑆𝑁𝑁𝑆𝑆 = 𝑂𝑂 + 57.4 − 𝐺𝐺 − 𝑁𝑁𝑁𝑁 (2) 

𝐶𝐶𝐶𝐶𝑁𝑁 = 𝐶𝐶𝐶𝐶𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟 − 2�𝑂𝑂 − 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟� (3) 

Increasing the node’s operating output power, from the originally specified 𝑂𝑂𝑟𝑟𝑟𝑟𝑟𝑟 , by 5 dB, will result in a 
new output level, 𝑂𝑂 =  47 𝑑𝑑𝐵𝐵𝑑𝑑𝑑𝑑 at 54 MHz.  This new output level increase will also increase SNR to 
47 dB at 54 MHz, using (2).  However, CIN in (3) will decrease to 40 dB, leading to a 2 dB degradation 
overall of the System SNR, 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆, per (4). 

𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆 = −10𝑗𝑗𝑗𝑗𝑙𝑙10 �10−
𝑆𝑆𝑆𝑆𝑆𝑆
10 + 10−

𝐶𝐶𝐶𝐶𝑆𝑆
10 � (4) 

Therefore, increasing node RF output signal levels may enable the designer to improve homes-per-node 
efficiency, such as with higher output level 𝑂𝑂, but will do so at the expense of increasing the node’s 
power consumption and degrading the overall system performance criteria, 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆.  Increasing PA RF 
output levels of networked devices is one of the ways in which to optimize PA efficiency.  However, 
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higher RF output levels may drive power consumption above the network operator’s acceptable threshold 
-- in the case of the node example, above a 160 W maximum.  Power consumption threshold values are 
based on network operator’s unique powering constraints, which may be limited by multiple factors, 
including network design, hardware capability and local regulatory restrictions.  Regulatory restrictions 
here specifically involve the placement of powering hardware at specific telephone pole or pedestal 
locations.  Increased power may also impact heat dissipation and design of the node’s housing.  These 
impacts may translate to the larger surface area and weight of the node’s housing to facilitate necessary 
heat transfer, where weight may increase above an acceptable threshold, in this case 50 lbs. maximum.  
Node weight is an important factor, because technicians need to be able to lift the node in order to connect 
it to the cable plant. The activity could be above ground, attached to telephone poles, or below ground 
within a pedestal mount. 

 
Figure 5 – Error Vector Magnitude (EVM) for a QPSK Signal 

The effect of degraded performance on digital signals is illustrated in Figure 5.  A quadrature phase shift 
keying (QPSK) signal degraded by 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆. will cause actual symbol reception to deviate from the ideal 
symbol receive point, shown as a dark circle.  The resultant error vector, 𝑗𝑗𝑗𝑗, between the actual symbol 
and the ideal QPSK symbol receive point represents a measure of fidelity.  Modulation error ratio (MER) 
in (5) measures the cluster variance in dB, that can be observed in a SC-QAM signal. It includes the 
effects of inter-symbol interference (ISI) spurious, phase noise, and all other degradations, where 𝐸𝐸𝑎𝑎𝑎𝑎 is 
the average constellation energy for equally likely symbols, and 𝑁𝑁 is the number of symbols averaged [7]. 

𝑀𝑀𝐸𝐸𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝐵𝐵) = 10 log10 �
𝐸𝐸𝑎𝑎𝑎𝑎

1
𝑁𝑁∑ �𝑗𝑗𝑗𝑗�

2𝑆𝑆
𝑗𝑗=1

� 5 

Poor MER can lead to symbol decision boundary crossings, translating to symbol errors.  If frequent 
enough, these symbol errors can overwhelm forward error correction (FEC) schema, leading to packet 
errors and ultimately loss of network payload. 
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4.1. Adjacent Channel Leakage Ratio (ACLR) Measurements 

Figure 6 illustrates a nonlinear response to a band-limited signal, where the output of a system represents 
both linear (solid line) and nonlinear components (dashed line) [10].  The term intermodulation distortion 
(IMD) is synonymous with CIN. 

 
Figure 6 - Output Spectrum Comprising Allocated and Adjacent Channels 

Figure 6 is an example of how CIN can accumulate under the signal(s).  One in-band measurement 
approach of CIN involves the following steps:   

1. Measuring 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆, in dBmV per 6 MHz 
2. Turning the signal load off 
3. Measuring the thermal noise contribution to 𝑆𝑆𝑁𝑁𝑆𝑆𝑆𝑆 at the same frequency, 𝑁𝑁𝑃𝑃, also in dBmV 

per 6 MHz 
4. Calculating the difference between these two values, via algebraic manipulation of equation 

4, as the CIN contribution   

This is a reasonable measurement approach in a lab environment, where turning the PA’s signal load off 
will likely not negatively impact a customer.  Figure 6 illustrates a more customer-friendly approach that 
involves out-of-band distortion measurements of the integrated power in the adjacent channel(s), called 
adjacent channel power ratio (ACPR) or adjacent channel leakage ratio (ACLR), where these 
measurements are expressed in decibels relative to the signal’s channel power, or -dBc [10]. 
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Figure 7 - Increasing Spectral Regrowth over Amplifier Linear Region 

Figure 7 is composed of a series of output measurements of one PA, where each color corresponds with 5 
dB changes in ACLR or spectral regrowth, resulting from incremental adjustment of the PA input power.  
ACLR measurements were made via Keysight’s PXA signal analyzer model N9030A and vector signal 
analyzer (VSA) software, model 89601B.  The 6.4 MHz bandwidth power delta marker measurements of 
both the received signal power and the spectral regrowth of the upper first adjacent channel were used to 
obtain the ACLR measurements. 

Figure 7 data was obtained from a CATV drop amplifier, which is sometimes used within the customer’s 
home to overcome losses associated with providing signals to multiple (1-3) client devices, primarily 
supporting video services, but also including voice and high-speed data services.  PAs are used in many 
CATV network clients’ front ends, used within the customer’s home, like set-top boxes (STBs), cable 
modems (CMs), and digital terminal adapters (DTAs).  The outside plant represents another group of 
network elements with embedded PAs, including the node previously discussed and additional amplifiers, 
called trunk amplifiers, line extenders and bridging amplifiers, which are used to compensate for cabling 
and passive losses incurred while distributing and aggregating services to and from the customer’s home.   

All of these cascaded PAs aggregate noise and NLD, resulting in an accumulated end-of-line (EOL) 
performance, which further restricts the individual contribution for any one PA in the chain to that of even 
higher fidelity (i.e. 50 dB per Table 1). This ensures that the customer’s services meet, or ideally exceed, 
some minimum service level agreement (SLA).  Additionally, variations in RF levels can occur for 
multiple reasons, like temperature changes, wind loading, and plant maintenance.  Sometimes RF levels 
can change appreciably over short periods of time.  Network designers may specify even better 
performance, to accommodate this performance variation in several of the components or sub systems in 
the network chain, a.k.a. ‘margin-stacking’ [10]. 
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Similar ecosystems exist in other industries, including cellular, Wi-Fi, satellite, and the Internet of Things 
(IoT).  For example, massive MIMO and millimeter wave transmissions use many PAs in cellular 
deployments and will also have similar end-to-end performance requirements [11]. 

4.2. PA Industry 

The PA industry has a growth outlook from 2019 to 2025, with compound annual growth rate (CAGR) of 
7.6%, primarily from anticipated developments in newer generation cellular communications.  Some of 
the key providers include NXP Semiconductor (Netherlands), Broadcom Corporation (U.S.), Qorvo Inc. 
(U.S.), Anadigics Inc. (U.S.), RFHIC Corporation (U.S.), TekTelic Communications Inc. (U.S.), Texas 
Instrument (U.S.) among others [27]. 

Providers can supply a diverse range of PA classes suited for a variety of applications, some of which 
have been summarized in Table 2Table 2 - PA Classes. 

Table 2 - PA Classes 
Class Description 

A Very linear, especially for smaller signal amplitudes.  Used for PAs at 
high millimeter-wave frequencies, but considered too inefficient, < 50%, 
for PAs in cellular wireless communications applications 

B Power transistor is biased just at the threshold voltage, so the transistor 
conducts for only a half-cycle of the RF waveform.  This wave generates 
a significant amount of even harmonic distortion, and some self-bias.  
Maximum theoretical efficiency rises to 78.6%, compared with a Class 
A. 

AB Transistor is biased slightly into the “on” condition, usually specified as 
a constant quiescent drain current in FETs, with the DC gate bias 
adjusted to provide the design standing current.  The optimal load is 
generally very close to the Class B value, and the achievable energy 
efficiency can be over 70%, theoretically. 

C The Power transistor is biased below threshold, so under quiescent 
conditions, the transistor is switched off.  This mode can be very energy 
efficient, but the gain is low, and the harmonic output and 
intermodulation distortion can be considerable. 

D, E, & F Very efficient.  No overlap between the voltage and current waveforms, 
so this amplifier converts the DC to RF with 100% efficiency.  A 
resonator can be used to filter out the harmonics at the load. 

D Form of switching amplifier, where the PA is driven by a pulsed 
waveform and the output current is switched rapidly between on and off 
states.  Uses two transistors in a push-pull arrangement. 

E Both 2nd, and 3rd harmonics are tuned 
F 2nd harmonic tuned 
Inverse F 2nd harmonic tuned 

 

The CATV industry primarily uses class A PA products because of high performance requirements, 
including low noise and high linearity, over a broad range of spectrum, typically between 5 and 1,218 
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MHz.  While peak efficiencies for some of these classes may be high, they are attained only at or close to 
the maximum RF output power and will fall rapidly with OBO.  To overcome this basic drawback, 
alternative PA architectures will be required. 

4.1. NLD Modeling 

Perhaps the simplest way to represent PA NLD is to describe what it is not.  A distortionless PA would 
have a linear transfer characteristic, which is achieved when the waveform of the PA’s output voltage 
precisely duplicates that of its input.  Only when a PA distorts does the output signal contain additional 
components, at frequencies differing from the frequencies of the input signal.  The nature as well as the 
degree of distortion is dependent not only on the shape of the transfer characteristic of the PA, but also on 
the loading condition and operating point (bias) [12]. 

At higher powers, we have seen that the output power and gain deviate significantly from the linear 
relationship at small signals.  This is the compression region of operation, and at a sufficiently high input 
drive, we will get no more power out of the PA -- at this point, we are at the saturated power level.  In 
these regions of operation, the PA is very nonlinear.  This compression behavior is also known as 
amplitude modulation to amplitude modulation (AM-AM) conversion: by modulating (changing) the 
input signal amplitude, we affect or modulate the amplitude of the output signal in a nonlinear fashion 
[12]. 

Typically, frequency-domain polynomial models will be used to model the AM-AM and amplitude 
modulation to phase modulation (AM-PM) characteristics of the PA.  In general, frequency-domain 
models can describe the RF frequency response phenomena quite well but are unable to accommodate the 
memory effects associated with long time constants -- for example, bias line reactance and charge storage 
[10].  A Volterra series can be thought of as a Taylor series with memory; that is, a Taylor series defines 
not only at the present instant in time, but includes terms at previous instants, up to some specified delay 
[10]. 

Consider the baseband discrete model of the PA 𝑦𝑦(𝑛𝑛) = 𝑓𝑓(𝑥𝑥(𝑛𝑛), 𝑥𝑥(𝑛𝑛 − 1),⋯ ), where 𝑥𝑥(𝑛𝑛) is the input 
signal, 𝑦𝑦(𝑛𝑛) is the output signal, and 𝑓𝑓(∙) is some nonlinear function. The simplest nonlinear PA model is 
the AM-AM/AM-PM model. Let the amplitude of the input signal be 𝑑𝑑𝑥𝑥 = 𝐸𝐸[|𝑥𝑥(𝑛𝑛)|], where 𝐸𝐸[∙] denotes 
short-term expectation or average. The output sample 𝑦𝑦(𝑛𝑛)’s amplitude 𝑑𝑑𝑠𝑠 = 𝐸𝐸[𝑦𝑦(𝑛𝑛)] and additional 
phase change 𝜓𝜓𝑠𝑠 = 𝐸𝐸[∠𝑦𝑦(𝑛𝑛)] depend on 𝑑𝑑𝑥𝑥 in nonlinear ways as (6) and (7): 

𝑑𝑑𝑠𝑠 =
𝑙𝑙𝑑𝑑𝑥𝑥

�1 + 𝑙𝑙𝑑𝑑𝑥𝑥
𝑐𝑐 �

1
2𝜎𝜎

 
(6) 

ψ𝑠𝑠 =
𝛼𝛼𝑑𝑑𝑥𝑥

𝑝𝑝

1 + �𝑑𝑑𝑥𝑥𝛽𝛽�
𝑞𝑞 (7) 

where 𝑙𝑙 is the linear gain, 𝜎𝜎 is the smoothness factor, and 𝑐𝑐 denotes the saturation magnitude of the PA. 
Typical examples of these parameters are 𝑙𝑙 =  4.65, 𝜎𝜎 =  0.81, 𝑐𝑐 =  0.58, 𝛼𝛼 =  2560, 𝛽𝛽 =  0.114, 
𝑝𝑝 =  2.4, and 𝑞𝑞 =  2.3, which are used in the PA models regulated by Institute of Electrical and 
Electronics Engineers (IEEE) 803.11ad task group (TG) [11]. 
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More accurate models should take into consideration the fact that nonlinearity leads to memory effects. In 
this case, Volterra series (8), are typically used to model PAs [11].  A general model is shown in [11] with 
up to Pth order nonlinearity and up to D step memory. 

𝑦𝑦(𝑛𝑛) = ��𝑏𝑏𝑘𝑘𝑘𝑘𝑥𝑥(𝑛𝑛 − 𝑑𝑑)
𝑃𝑃

𝑘𝑘=1

|𝑥𝑥(𝑛𝑛 − 𝑑𝑑)|𝑘𝑘−1
𝐷𝐷

𝑘𝑘=0

 (8) 

It can be shown that estimation of only odd-order nonlinearity (i.e. odd k) may be necessary for limited 
narrowband loading conditions and specific center frequencies, because even-order nonlinearity falls 
outside of the passband and will be filtered out by the receiver bandpass filters [11].  To illustrate this 
phenomenon, we can consider some simple examples where the input signal 𝑥𝑥(𝑛𝑛) consists of a few (1-3) 
single frequency components only.  Omitting the memory effects, if 𝑥𝑥(𝑛𝑛) is a single frequency signal, i.e., 
𝑥𝑥(𝑛𝑛) = 𝑑𝑑0 cos(𝑎𝑎0 + 𝜙𝜙), where 𝑎𝑎0 = 2𝜋𝜋𝑓𝑓0𝑛𝑛.  Then, using well-known trigonometric identities, the output 
signal can be written as 

𝑦𝑦(𝑛𝑛) = 𝑘𝑘1𝑑𝑑0 cos(𝑎𝑎0 + 𝜙𝜙 +𝜓𝜓1) + �
3
4
𝑘𝑘3𝑑𝑑03 +

5
8
𝑘𝑘5𝑑𝑑05� cos(𝑎𝑎0 + 𝜙𝜙 +𝜓𝜓3 +𝜓𝜓5) (9) 

+
1
2
𝑘𝑘2𝑑𝑑02 +

3
8
𝑘𝑘4𝑑𝑑04 (10) 

+ �
1
2
𝑘𝑘2𝑑𝑑02 +

1
2
𝑘𝑘4𝑑𝑑04� cos(2𝑎𝑎0 + 2𝜙𝜙 + 2𝜓𝜓2 + 2𝜓𝜓4) (11) 

+�
1
4
𝑘𝑘3𝑑𝑑03 +

5
16

𝑘𝑘5𝑑𝑑05� cos(3𝑎𝑎0 + 3𝜙𝜙 + 3𝜓𝜓3 + 3𝜓𝜓5) (12) 

+
1
8
𝑘𝑘4𝑑𝑑04 cos(4𝑎𝑎0 + 4𝜙𝜙 + 4𝜓𝜓4) +⋯ (13) 

+
1

16
𝑘𝑘5𝑑𝑑05 cos(5𝑎𝑎0 + 5𝜙𝜙 + 5𝜓𝜓5) + ⋯ (14) 

𝑑𝑑0 cos(𝑎𝑎0 + 𝜙𝜙) and 𝑑𝑑0 sin(𝑎𝑎0 + 𝜙𝜙) are both sinusoidal voltages.  Their waveforms are identical except 
for a 90° phase difference.  The cosine form is used throughout this analysis because it results in simpler 
expressions [11].  The first line (9) is the in-band response with AM-AM/AM-PM nonlinear effects, the 
second line (10) is the direct current (DC) bias, and the remaining lines (11) through (14) include second 
through fifth order harmonics.  At the receiving side, we may just have line (9) left, because all the other 
items will be canceled by bandpass filtering.  Communication network filters, such as the root-raised 
cosine (RRC) filters, are typically implemented in two halves, one in the transmitter and the other in the 
receiver, so that overall, we get Nyquist rate sampling, and provide necessary impedance matching of the 
power transistor to its optimum load impedance of the network.  Another critical filter function is in their 
use of controlling out-of-band emissions from sources including PA NLD, thus limiting the impact of 
distortion to within the operating band. 
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If 𝑥𝑥(𝑛𝑛) consists of two frequencies, i.e., 𝑥𝑥(𝑛𝑛) = 𝑑𝑑1 cos(𝑎𝑎1 + 𝜙𝜙1) + 𝑑𝑑2 cos(𝑎𝑎2 + 𝜙𝜙2), where 𝑎𝑎𝑖𝑖 = 2𝜋𝜋𝑓𝑓𝑖𝑖𝑛𝑛, 
then the inband response includes many more terms, such as the first order terms 𝑘𝑘𝑖𝑖𝑑𝑑𝑖𝑖 cos(𝑎𝑎𝑖𝑖 + 𝜙𝜙𝑖𝑖 +𝜓𝜓𝑖𝑖), 
the third order terms 𝑘𝑘3�𝑑𝑑𝑖𝑖3 + 𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗2� cos(𝑎𝑎𝑖𝑖 + 𝜙𝜙𝑖𝑖 + 𝜓𝜓𝑖𝑖), the fifth order terms 𝑘𝑘5�𝑑𝑑𝑖𝑖5 + 𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗4 +
𝑑𝑑𝑖𝑖3𝑑𝑑𝑗𝑗2� cos(𝑎𝑎𝑖𝑖 + 𝜙𝜙𝑖𝑖 + 𝜓𝜓𝑖𝑖), for 𝑖𝑖, 𝑗𝑗 ∈  {1,2}.   There are also intermodulation terms that consist of 𝑛𝑛𝑎𝑎𝑖𝑖  ±
 𝑑𝑑𝑎𝑎𝑗𝑗 as long as they are within the passband of the bandpass filter, such as �𝑑𝑑𝑖𝑖2𝑑𝑑𝑗𝑗 + 𝑑𝑑𝑖𝑖2𝑑𝑑𝑗𝑗3 +
𝑑𝑑14𝑑𝑑𝑗𝑗� cos�2𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑗𝑗 + 2𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑗𝑗 + 2𝜓𝜓𝑖𝑖 − 𝜓𝜓𝑗𝑗�.  For some specific loading conditions, there may be many 
other higher order terms with frequencies 𝑛𝑛𝑎𝑎𝑖𝑖, 𝑛𝑛�𝑎𝑎𝑖𝑖 ± 𝑎𝑎𝑗𝑗�, or 𝑛𝑛𝑎𝑎𝑖𝑖 +𝑑𝑑𝑎𝑎𝑗𝑗, that can not pass the passband 
filter.  One of the important observations is that the contents that can pass the passband filter may consist 
of odd-order nonlinearity only for specific center frequency and narrowband conditions only. 

If 𝑥𝑥(𝑛𝑛) consists of three or more frequencies, we can have similar observations, albeit the expressions are 
more complex. Let the input signal 𝑥𝑥(𝑛𝑛) be 

𝑥𝑥(𝑛𝑛) = �𝑑𝑑𝑖𝑖 cos(𝑎𝑎𝑖𝑖) ,𝑎𝑎𝑖𝑖 = 2𝜋𝜋𝑓𝑓𝑖𝑖𝑛𝑛.
3

𝑖𝑖=1

 (15) 

The second order component includes the DC component 𝑙𝑙2,0(𝑛𝑛), the sum/difference of beat components 
𝑙𝑙2,1(𝑛𝑛), and the second-order harmonic components 𝑙𝑙2,2(𝑛𝑛).  Specifically, 

𝑘𝑘2𝑥𝑥2(𝑛𝑛) = 𝑙𝑙2,0 + 𝑙𝑙2,1(𝑛𝑛) + 𝑙𝑙2,2(𝑛𝑛) (16) 

Where 

𝑙𝑙2,0(𝑛𝑛) = �
𝑑𝑑𝑖𝑖2

2
,

3

𝑖𝑖=1

 (17) 

𝑙𝑙2,1(𝑛𝑛) = ��𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗 cos�𝑎𝑎𝑖𝑖 ± 𝑎𝑎𝑗𝑗�
𝑗𝑗≠1

,
3

𝑖𝑖=1

 (18) 

𝑙𝑙2,2(𝑛𝑛) = �𝑑𝑑𝑖𝑖2
cos(2𝑎𝑎𝑖𝑖)

2
.

3

𝑖𝑖=1

 (19) 

The third order component includes the third-order harmonic components 𝑙𝑙3,1(𝑛𝑛), the third 
intermodulation beat components 𝑙𝑙3,2(𝑛𝑛), the triple beat components 𝑙𝑙3,3(𝑛𝑛), the self-
compression/expansion components 𝑙𝑙3,4(𝑛𝑛), and the cross-compression/expansion components 𝑙𝑙3,5(𝑛𝑛).  
Specifically, 

𝑘𝑘3𝑥𝑥3(𝑛𝑛) = 𝑙𝑙3,1 + 𝑙𝑙3,2(𝑛𝑛) + 𝑙𝑙3,3(𝑛𝑛) + 𝑙𝑙3,4(𝑛𝑛) + 𝑙𝑙3,5(𝑛𝑛) (20) 

 

Where 
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𝑙𝑙3,1(𝑛𝑛) = �
𝑑𝑑𝑖𝑖3

4
cos (3𝑎𝑎𝑖𝑖),

3

𝑖𝑖=1

 (21) 

𝑙𝑙3,2(𝑛𝑛) = ��
3𝑑𝑑𝑖𝑖2𝑑𝑑𝑗𝑗

4
cos�2𝑎𝑎𝑖𝑖 ± 𝑎𝑎𝑗𝑗�

𝑗𝑗≠1

,
3

𝑖𝑖=1

 (22) 

𝑙𝑙3,3(𝑛𝑛) = ���
3𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗𝑑𝑑𝑘𝑘

2
cos�𝑎𝑎𝑖𝑖 ± 𝑎𝑎𝑗𝑗 ± 𝑎𝑎𝑘𝑘�

𝑘𝑘≠1𝑗𝑗≠1

,
3

𝑖𝑖=1

 (23) 

𝑙𝑙3,4(𝑛𝑛) = �
3𝑑𝑑𝑖𝑖3

4
cos(𝑎𝑎𝑖𝑖) .

3

𝑖𝑖=1

 (24) 

𝑙𝑙3,5(𝑛𝑛) = ��
3𝑑𝑑𝑖𝑖𝑑𝑑𝑗𝑗2

2
cos(𝑎𝑎𝑖𝑖)

𝑗𝑗≠1

.
3

𝑖𝑖=1

 (25) 

The simulated output containing continuous wave signals (CWs) and NLD aligns with measurement in 
Figure 8, given coarse approximations for nonlinear gain coefficients and odd-order memory, based on 
model described in (8).  A Rohde and Schwarz DOCSIS Cable Load Generator (CLGD) generated the 
CWs.  The CWs propagated through a nonlinear power amplifier.  The resultant nonlinear output 
spectrum was measured using a Keysight vector signal analyzer, model MXA, running in spectrum 
analysis mode. 
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Figure 8 - 3 Tone NLD Measured vs. Simulated 

5. NLD Mitigation 
The focus of this paper up to this point has been on the levers associated with PA efficiencies (a) near 
saturation operation, and more efficient implementations via (b) PA classes, which may include (c) 
biasing the PA to consume less power.  All these approaches result in degraded NLD, which becomes 
even more challenging as modern-day orthogonal frequency division multiplexing (OFDM) signals, 
which have a higher peak-to-average power ratio (PAPR), become more ubiquitous in communication 
network payloads [15].  One of the major design goals modern systems is to make the communication 
systems more power efficient. This needs efficient PAs, which is unfortunately more challenging since 
OFDM has much higher PAPR and wider bandwidth [11]. 

We will next explore a portfolio of current methods focused on harvesting PA efficiency and in most 
cases include mitigating NLD.  These methods have enabled network designers to push the network 
operating boundaries that were previously constrained by lower amounts of NLD.  These methods will 
include PAPR Reduction, Transmitter DPD, and Receiver Post-Distorter Equalization. 

5.1. Peak-to-Average-Power-Ratio (PAPR) Reduction 

Figure 9 illustrates how PAPR can interact with PA characteristics.  OFDM signals can have a high 
degree of PAPR and push the PA operation into saturation at maximum signal amplitudes, also illustrated 
in Figure 9.  PAPR reduction methods work to minimize the signal’s PAPR, so that operation at PA 
saturation can be avoided, like OBO.  There are multiple methods available to achieve PAPR reduction, 
as we will see, each with their own tradeoffs in benefit and cost. 
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Figure 9 - PA Characteristics with PAPR and DPD 

PAPR reduction was discussed during the deliberations of the DOCSIS 3.1 standard development, which 
introduced OFDM signaling into its portfolio of physical layer technology (PHY) [7].  The concern was 
that the increased PAPR of OFDM exceeded that of previous generation DOCSIS 3.0, SC-QAM on a 6 
MHz bandwidth basis.  However, the standards group ultimately decided against using PAPR reduction, 
primarily because the impact to CATV PAs would be negligible, given their broadband nature, which is 
an aggregate of over one hundred 6 MHz channels, up to approximately 1 GHz of bandwidth, total.  
Through lab measurement, these conclusions have been validated, but actual field results at scale have yet 
to be made [15]. 

High data rates have led to complex modulation schema, and ultimately higher spectral efficiency.  One 
consequence of using spectrally efficient modulation schemes is that the dynamic range of the signal may 
be quite high [10].   This is generally measured in terms of the ratio of the peak signal power to the 
average power of the modulated signal, or PAPR [10].  While a large PAPR is not such a problem for 
signal transmission, it can have an impact on the efficiency of the transmitter PA [10], as illustrated in 
Figure 9, where the signal peaks can push the PA into saturation if the signal OBO isn’t sufficiently 
below the PA compression point.  Reducing the PAPR of the input signal using digital signal processing 
allows the PA to be operated at a higher efficiency, and it also reduces the dynamic range needed to 
represent the input signal digitally [10].  In addition, the reduced PAPR will often reduce the complexity 
of the linearization approach needed to compensate for PA nonlinearities [10]. 

The PAPR of a signal 𝑥𝑥(𝑛𝑛) is illustrated in (26), where 𝐸𝐸[∙] denotes short-term expectation or average 
[10]. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆 =  
max(|𝑥𝑥|2)
𝐸𝐸[|𝑥𝑥|2]  (26) 

(27) illustrates how PAPR is based on the statistics of the signal rather than the absolute peak, while the 
practical peak is the level, 𝐿𝐿, at which the signal magnitude has a 10-4 probability, 𝑃𝑃, of exceeding. 
 

𝑃𝑃{ |𝑥𝑥|2 > 𝐿𝐿} = 10−4 (27) 

The complementary cumulative density function (CCDF) of |𝑥𝑥|2, is a useful description of the signal 
statistics, often compared to that of a Gaussian waveform because the statistics of multi-carrier signals 
used in many of today’s communications networks tend to approach that of a Gaussian [10].  Figure 10 is 
a Keysight PXA PAPR measurement for a 6 MHz, DOCSIS downstream SC-QAM signal whose PAPR 
(yellow line) is approximately 9.44 dB based on a 10 Mpt (million point) sample period [15].  Changing 
from DOCSIS SC-QAM to an OFDM-based PHY and limiting measurements to 6 MHz bandwidth, 
shows that PAPR will increase by approximately 0.96 dB, using M=256 QAM constellation levels for 
both signal types.  However, much broader bandwidth comparisons over 192 MHz revealed that OFDM 
PAPR was lower than SC-QAM, by about 0.52 dB [15]. 
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Figure 10 - DOCSIS Downstream SC-QAM PAPR Measurement 

Many techniques have been developed for PAPR reduction, such as signal clipping, peak cancellation, 
and error waveform subtraction (noise shaping) [10].  These clip-and-filter approaches clip peaks 
exceeding a specified level and filter the waveform to remove out-of-band distortion [10].  Clip-and-filter 
and peak windowing are the easiest Crest Factor Reduction (CFR) methods to implement, making them 
the most likely to be used [10]. 

For OFDM-based formats, CFR is often achieved using redundant coding or the transmission of auxiliary 
information, both of which reduce data throughput of the system.  Pilot tones and unmodulated 
subcarriers can be exploited to reduce PAPR with some special pre-coding techniques [16].  The selected 
mapping approach (SLM) from [16] provides good PAPR reduction performance, but may suffer from 
high computational complexity from using a bank of inverse fast fourier transforms (IFFTs), illustrated in 
Figure 11. 
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Figure 11 - Traditional Selected Mapping, PAPR Reduction via Pre-Coding 

The new SLM approach from [16], shown in Figure 12, replaces IFFTs with new kinds of conversions, 
resulting in much lower complexity. Multiple IFFTs are replaced with transformation matrix, 𝑇𝑇𝑟𝑟 , to 
produce candidate signals [16].  PAPR reduction for this approach is almost as good as traditional SLM 
approaches but uses much less processing overhead [16]. 

 
Figure 12 - Transformation Based Pre-Coding for SLM PAPR Reduction 

CFR techniques are very appropriate for many wireless communications applications, such as cellular 
wireless handset PA applications, where Class AB operations are typically used [10].  CFR is a form of 
digital signal processing applied to the digital signal 𝑥𝑥(𝑛𝑛), used in combination with DPD to reduce the 
requirements on the RF PA within the transmit chain [10].  Although the distortionless PAPR reduction 
methods decrease the deleterious effect of nonlinear distortions, their effectiveness in improving the 
system performance is limited, since the main problem of the limited dynamic range of the PA remains 
unsolved [17].  Therefore, CFR often precedes DPD, per Figure 13.  When CFR is used in conjunction 
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with DPD techniques, the expansive nature of the DPD function operates on the crest factor reduced 
signal, so that the resulting pre-distorted signal that enters the PA does not have an excessive PAPR, and 
the PA can still be driven hard to operate at its highest efficiency [10].  This behavior is also illustrated in 
Figure 9. 

 
Figure 13 - High-Level Transmitter with CFR and Adaptive DPD 

CFR assumes that reducing the peak of the signal is beneficial to the performance of the digital 
transmitter, essentially allowing the linearized PA to operate at a higher efficiency, while meeting the 
linearity requirements of the modulation format used [10].  CFR has drawbacks which degrade the system 
performance, either by increasing in-band degradation or reducing data throughput, but the overall system 
can be optimized to meet the performance specifications at higher PA efficiencies [10].  When applied 
properly, CFR allows the PA to operate more efficiently, thereby improving the performance of the 
transmitter [10]. 

5.1. Transmitter Digital Pre-Distortion (DPD) 

One of the dominating practices in the cellular and satellite industries today is to insert a DPD circuit 
before the PA, which distorts the signals appropriately to compensate for the nonlinear PA response [11].  
The distortion is added in such a way as to cancel the inherent nonlinearity of the PA, so that its output is 
a linear replica of the original input signal.  DPD has been applied widely in many modern transmitters 
[2].  DPD can lead to the use of more efficient and cost-effective PAs [11] and is being considered for 
future generations of FDX RPD node hardware, where power consumption thresholds are already being 
encroached upon, while new capability is being added to increase its capacity as efficiently as possible. 
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Figure 14 - Nonlinearized PA vs. Linearized PA via Digital Pre-Distortion 

We will now focus on current approaches available to mitigate the effects of NLD, which are based on 
equalization, or creating an anti-phase version of NLD, as in the bottom part of Figure 14, which, when 
added to the signal from which it was derived, can negate the nonlinear effects of the PA. This essentially 
linearizes the PA’s behavior. 

In Figure 14, equalization is being performed prior to the signal’s exposure to NLD, or pre-equalization.  
Pre-equalization of NLD is typically accomplished using DPD technology.  DPD is analogous to DOCSIS 
Transmit Pre-Equalization, and the key difference is in the type of distortion that gets mitigated.  DOCSIS 
Transmit Pre-Equalization mitigates linear distortion (LD), or plant echoes and other filter effects 
including amplitude roll-off, and group delay variation [7].  The key similarity here is that both signal 
processing techniques are applied as a signal bias, prior to the signal’s impairment exposure, impairments 
being NLD for DPD, and LD for transmit pre-equalization.   
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Figure 15 - CM Upstream Transmit Pre-Equalization and Post-Equalization Functions 

Equalization functions can also be applied to the signal after impairment exposure, and this is known as 
post-distorter equalization for NLD and post-equalization for LD.  In DOCSIS upstream communications, 
both Transmit Pre-Equalization and post-equalization functions work collaboratively to mitigate the 
effects of LD [7].  Figure 15 illustrates these two functions together compensating for the communication 
channel that exists between, say, my CM, and the CMTS that serves multiple neighboring towns, 
including my own.  CMTSs may connect to hundreds of nodes, as discussed in earlier sections, and 
ultimately connecting to thousands of CMs.  The CMTS’s primary function is that of a router, facilitating 
communication between the local area network (LAN), comprised of many CMs, including mine, and the 
wide area network (WAN) or internet. 

The collaboration between the CM and CMTS on how to equalize upstream LD is specified in DOCSIS, 
where transmit pre-equalization is a CM function and its DOCSIS 2.0, 24 symbol-spaced coefficients, 
shown in the upper left side of Figure 15 in yellow, are provided to it by the CMTS [7].  The CMTS post-
equalization function is shown in the upper right side, in green.  While performing its own post 
equalization function, the CMTS periodically sends a set of equalizer coefficients to the CM, via station-
maintenance messages, with instructions to either overwrite or convolve the CM’s current set of equalizer 
coefficients with the new coefficients. 

An effect of this collaboration is to perform most of the channel equalization at the CM’s transmit pre-
equalization function, leaving only minor corrections in the post equalization function, at the CMTS.  The 
equalizer’s coefficients are colored yellow because of the intensity of correction, or, in other words, the 
variation of its amplitude frequency response, illustrated in the lower left chart, which exceeds ±1 dB 
peak-to-peak.  Figure 15 illustrates how the CM is compensating for most of the channel’s LD.  Overall, 
LD equalization at both ends of the communication link has proven to be very robust and reliable in the 
CATV industry, but it does so with additional signal processing and overhead. 

Adaptive pre-distortion techniques include an observation path that samples the output from the power 
amplifier and feeds the signal back to the pre-distorter to estimate system nonlinearity [10].  Additional 
components include analog-to-digital converters (ADCs) which are used to convert the observation signal 
back to baseband and digitize for digital domain operations.  Components in this path will have better 
linearity than the desired performance of the transmitter to avoid introducing distortion at the PA output 
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arising from the observation process [10].  Input and feedback signals must be synchronized, accounting 
for the group delay of the PA, which tends to dominate the loop [10]. 

 
Figure 16 - Effects of Sample Rate on a Pre-Distorted Signal 

Pre-distorters reconstruct the NLD in the analog domain, for input into the PA chain in the transmitter, 
which needs to be sampled at a higher rate to accommodate for the increased bandwidth. Therefore 
upsampling is required, otherwise under sampling the NLD could lead to aliasing in Figure 16 [10].  The 
output signal from the pre-distorter (b) has a much wider bandwidth than the input signal (a).  Under-
sampling of the input will lead to aliasing of the output signal (c), and the clean DPD.  Typical 
oversampling by 5x will represent 5th order NLD [10].  Two main approaches have been adopted in the 
pre-distorter block:  

(1) Look-up tables (LUTs) to provide a map relating the desired pre-distorter output to the input 
voltage 
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(2) Nonlinear basis functions to describe nonlinear pre-distortion function, requiring generation of 
the nonlinear functions and the multiplication of the basis functions by the input voltage [10]. 

Many PA models can describe the nonlinear pre-distortion function, including the Volterra series and 
Wiener model [19].  PA models will need to consider that PA characteristics do not change rapidly with 
time; changes in PA characteristics are often attributable to temperature drift, aging, etc., which have long 
time constants [19].  The cause of memory effects can be electrical or electrothermal [19].  Higher output 
power PA operation, such as those used in wireless base-stations, exhibit memory effects [19].  Having 
memory means that the output of the PA is not only a function of the current input, but also a function of 
past inputs and outputs [18].  Memory effects in the power amplifier limit the performance of DPD for 
wideband signals [18]. 

 
Figure 17 - Memory and Memoryless DPD Results 

An issue with DPD is that it is compensating for the PA in the transmitter only, which, in most practical 
networks today, represents a fraction of the nonlinearity present in the communication channel.  PAs are 
at least used in both the transmitter and receiver.  Multiple PAs could be used in between the transmitter 
and receiver to extend the reach in many communication networks, such as CATV networks.  Passive 
components are used to distribute signals to many receivers, and may also contain nonlinear components, 
such as inductors, that contribute to the channel’s aggregate nonlinear NLD.   

AI methods for DPD, using neural networks, illustrate the potential for improvement for NLD 
performance over traditional methods [20] [21].  However, incorporating additional NLD compensation 
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into the transmitter to account for the rest of the communication network chain, like similar closed-loop 
equalization systems, could lead to DPD reaching its full potential. 

Implementations of DPD should be architected to compensate for stronger nonlinearity, much like the 
closed-loop LD equalization strategy described in the beginning of this section, for DOCSIS upstream 
signals can compensate for appreciably high LD.  Because of bidirectional network connectivity, both the 
CMTS and CM can collaborate on the estimation of the total NLD present within the communication 
channel, and send coefficients via the downstream communication path, with instructions to either 
convolve or overwrite coefficients describing the estimated path NLD that will account for all the 
nonlinear elements within the communication network chain (transmitter, receiver, amplifiers, and 
nonlinear passive components).  For this strategy to work, receivers must be capable of mitigating NLD. 
We will next review the current solutions available in receiver-based post distortion cancellation. 

5.1. Receiver Post-Distorter Equalization 

Another strategy is to mitigate the nonlinear PA distortions at the receivers via post-distorter equalization 
[22] [23] [24].  The solution presented in [25] develops a Bayesian signal detection algorithm, based on 
the nonlinear response of the PAs.  However, this documented approach applies to a simple “AM-AM, 
AM-PM” nonlinear PA model only. 

The authors of [22] propose a symbol-based equalizer, with nonlinear distortion cancellation for the 
forward link as an addition to the standard linear equalizer at the receiver, suitably adapted to incorporate 
specific channel functions in the forward link, including input multiplexing (IMUX) and output 
multiplexing (OMUX) filtering and the traveling wave tube amplifier (TWTA), using the memory 
polynomial model.  The proposed setup is compared with current mitigation approaches, yielding 
significant efficiency gains [22].  The nonlinearity in the satellite channel is introduced primarily by the 
TWTA [22]. 

The objective of [22] was to compare the performance of the proposed equalizer with the state-of-the-art 
dynamic data pre-distortion, and to show that the best system performance is achieved when both pre-
distortion at the transmitter and decision-directed equalization at the receiver are applied.  In addition, the 
performance of a simple maximum likelihood (ML) demodulator in the detector in the cancellation loop 
is compared against a low density parity check (LDPC) decoder, to show the robustness of the proposed 
equalizer to decision errors [22].  Overall system complexity of the proposed nonlinear equalizer is 
argued to be less than current linear equalization approach, due to less-frequent updates [22].  As 
discussed earlier in the section covering DPD, similar transmitter and receiver equalization loops have 
proven to be robust against LD for DOCSIS upstream [7]. 

References [23] [24] and [25] approach receiver post NLD equalization via clustering methods, which is a 
subset of broader suite of AI models.  [23] leverages SVMs, while [24] uses a radial basis function (RBF) 
network and [25] is Bayesian.  ANNs have attracted researchers in the field of PA modeling, due to its 
successful implementation in pattern recognition, signal processing, system identification, and control 
[26]. 

6. Severe NLD Mitigation 
One of the major design goals for modern systems is to make the communication systems more power 
efficient. This needs efficient PAs, which is unfortunately more challenging, since many modern PHY 
include OFDM, which has much higher PAPR and wider bandwidth [11].   
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Existing nonlinear PA mitigation strategies -- DPD, PAPR reduction, and receiver-based equalization, 
discussed in Section 5 -- may not be sufficient enough when considered individually. We can reduce 
PAPR to some extent only. DPD is too complex and costly for small and low-cost devices. Existing DPD 
and equalization techniques have moderate nonlinear distortion compensation capabilities, because they 
have been designed to cancel internal transmitter NLD only. 

There is a larger system that must be considered, consisting of a transmitter, receiver, and nonlinear 
active/passive components in between them, all contributing to the overall NLD observed at the receiver. 
In some cases, the NLD can be quite severe, due to required higher-efficiency modes of operation.  
Supporting collaboration between the transmitter and receiver, like the LD cancellation systems used for 
DOCSIS, may be the key to achieving optimal network efficiency, while minimizing NLD.  Severe 
nonlinearity estimation and mitigation is a requirement for the receiver, representing information that 
could then be shared with the transmitter through bidirectional communication. Ultimately, this lessens 
the burden at the receiver location and the NLD equalization system overall. 

In this section, a system for cancelling severe NLD will be proposed which develops nonlinear equalizers 
that exploit both deep neural networks (DNNs) and Volterra series models to mitigate PA nonlinear 
distortions.  The DNN equalizer architecture consists of multiple one-dimension convolutional layers.  
The input features are designed according to the Volterra series model of nonlinear PAs.  This enables the 
DNN equalizer to mitigate nonlinear PA distortions more effectively, while avoiding over-fitting under 
conditions of limited training data.  Experiments are conducted with real measurement data obtained from 
a highly nonlinear RFMD RF2317 Linear CATV Amplifier [11].  The results will demonstrate that the 
proposed DNN equalizer has superior performance over conventional equalization approaches, a 
necessary tool for more collaborative NLD mitigation strategy that could make more efficient network 
components potentially realizable. 

6.1. Enhanced Equalization – Integrating Volterra Series and DNNs 

Reference [11] proposes the use of DNNs to implement the nonlinear equalizer in the receiver, which can 
mitigate the nonlinear effects of the received signals, due to not only PAs but also nonlinear channels and 
propagations.  The architecture of the DNN equalizer is shown in Figure 18.   

 
Figure 18 - Block Diagram of DNN Equalizer 

Different from [28], [11] used multi-layer convolutional neural networks (CNNs).  Different from 
conventional neural network predistorters proposed in [29], [11] used neural networks as equalizers at the 
receivers.  Different from conventional neural network equalizers such as those proposed in [30] [31], in a 
DNN equalizer [11], a CNN is used and the input features in 𝑋𝑋 are not only the linear delayed samples 
𝑟𝑟(𝑛𝑛).  Rather, Volterra series models are used to create input features. 
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Figure 19 - System Block Diagram with Nonlinear Power Amplifier and Deep Neural 

Network Equalizer 

To simplify presentation, according to the previous section, [11] assumes that the linear channel 𝑯𝑯 has 
already been equalized by a linear equalizer of Figure 19, whose output signal is 𝑟𝑟(𝑛𝑛).  According to 
Volterra series representation of nonlinear functions, the input-output response of the nonlinear equalizer 
can be written as 
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 (28) 

One of the major problems is that the number of coefficients 𝑓𝑓𝑘𝑘1,…,𝑘𝑘𝑘𝑘  increases exponentially with the 
increase of memory length 𝐷𝐷 and nonlinearity order 𝑃𝑃.  There are many different ways to develop more 
efficient Volterra series representations with reduced numbers of coefficients.  For example, in [32], the 
authors exploit the fact that higher-order terms do not contribute significantly to the memory effects of 
PAs to reduce the memory depth 𝑑𝑑 when the nonlinearity order 𝑘𝑘 increases.  This technique can 
drastically reduce the total number of coefficients.  In [33] [34] [35], the authors developed the dynamic 
deviation model to reduce the full Volterra series model (28) to the following simplified one 

𝑧𝑧(𝑛𝑛) = 𝑧𝑧𝑠𝑠(𝑛𝑛) + 𝑧𝑧𝑘𝑘(𝑛𝑛)
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(29) 

where 𝑧𝑧𝑠𝑠(𝑛𝑛) is the static term, and 𝑧𝑧𝑘𝑘(𝑛𝑛) is the dynamic term that includes all the memory effects.  We 
can see that the total number of coefficients can be much reduced by controlling the dynamic order 𝑗𝑗 
which is a selectable parameter. 

[11] constructs the input features of the DNN based on the model (29).  Corresponding to the static term 
𝑧𝑧𝑠𝑠(𝑛𝑛), [11] changes it to 

𝑧𝑧𝑠𝑠� (𝑛𝑛) = � 𝑓𝑓𝑘𝑘,0𝑟𝑟(𝑛𝑛)|𝑟𝑟(𝑛𝑛)|𝑘𝑘−1
1≤𝑘𝑘≤𝑃𝑃

 (30) 

The reason that (30) changes 𝑟𝑟𝑘𝑘(𝑛𝑛) to 𝑟𝑟(𝑛𝑛)|𝑟𝑟(𝑛𝑛)|𝑘𝑘−1 is that only the signal frequency with the valid 
passband is of interest.  This means that input feature vector 𝑋𝑋 should include terms 𝑟𝑟(𝑛𝑛)|𝑟𝑟(𝑛𝑛)|𝑘𝑘−1.  
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Similarly, corresponding to the dynamic term 𝑧𝑧𝑘𝑘(𝑛𝑛), we need to supply 𝑟𝑟𝑘𝑘−𝑗𝑗(𝑛𝑛)∏ 𝑟𝑟(𝑛𝑛 − 𝑑𝑑𝑖𝑖)
𝑗𝑗
𝑖𝑖=1   in the 

features where half of the terms 𝑟𝑟(𝑛𝑛) and 𝑟𝑟(𝑛𝑛 − 𝑑𝑑𝑖𝑖) should be conjugated.  For simplicity, in DNN 
equalizer used in [11], the vector 𝑋𝑋 includes 𝑟𝑟(𝑛𝑛 − 𝑞𝑞)|𝑟𝑟(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘−1 for some 𝑞𝑞 and 𝑘𝑘. 

By applying Volterra series components directly as features of the input 𝑋𝑋, the DNN can develop more 
complex nonlinear functions with fewer hidden layers and fewer neurons.  This will also make the 
training procedure converge much faster, with much less training data. 

In Figure 18, the input 𝑋𝑋 is a tensor formed by the real and imaginary parts of 𝑟𝑟(𝑛𝑛 − 𝑞𝑞)|𝑟𝑟(𝑛𝑛 − 𝑞𝑞)|𝑘𝑘−1 
with appropriate number of delays 𝑞𝑞 and nonlinearities 𝑘𝑘.  There are three one-dimension convolutional 
layers, each with 20 or 10 feature maps.  After a drop-out layer for regularization, this is followed by a 
fully connected layer with 20 neurons.  Finally, there is a fully connected layer to form the output tensor 
𝑌𝑌 which has two dimensions.  The output 𝑌𝑌 is used to construct the complex 𝑧𝑧(𝑛𝑛), where 𝑧𝑧(𝑛𝑛) =
𝑥𝑥�(𝑛𝑛 − 𝑑𝑑) for some appropriate delay 𝑑𝑑.  All the convolutional layers and the first fully connected layer 
use the sigmoid activation function, while the output layer uses the linear activation function.  [11] uses 
the mean square error loss function 𝐿𝐿𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = 𝐸𝐸[|𝑥𝑥(𝑛𝑛 − 𝑑𝑑) − 𝑧𝑧(𝑛𝑛)|2], where 𝑧𝑧(𝑛𝑛) is replaced by 𝑌𝑌 and 
𝑥𝑥(𝑛𝑛 − 𝑑𝑑) is replaced by training data labels. 

Measurement signals were obtained from an implementation of a RFMD RF2317 PA used in the cable 
industry, which are typically dominated by 3rd order nonlinearities.  Various levels of nonlinear 
distortion, in terms of dBc, were generated by adjusting the PA RF input levels [11]. 

For the Volterra equalizer, reference [11] approximated the response of the nonlinear equalizer with 
delays including 8 pre- and post- main taps, and with nonlinearity including even and odd order 
nonlinearity up to the 5th order.  To determine the values of the Volterra coefficients, we transmitted 
𝑁𝑁 =  4,096 training symbols through the PA and then collected the noisy received samples 𝑟𝑟(𝑛𝑛). 

For conventional time-delay NN equalizer, [11] applied a feedforward neural network with 80-
dimensional input vector 𝑋𝑋 and 5 fully connected hidden layers with 20, 20, 10, 10, 10 neurons, 
respectively. 
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Figure 20 - Constellation of 16-QAM Non-Equalized vs. Equalized 

Figure 20 shows the constellation of 16-QAM equalization over the real PA.  The corresponding SER 
were 0.0067, 0.0027, 0.00025 respectively.  Nonlinear filtering of both a DNN and DNN with Volterra 
input features show superior equalization over just Volterra filtering alone.  Further, it can be seen that the 
proposed Volterra+NN scheme has the best performance. 
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Figure 21 - Comparing Three Equalization Methods for 16-QAM under Various NLD 

Levels 

Figure 21 provides MSE measurements for 16-QAM under various nonlinear distortion levels, dBc.  For 
each 1 dB increase in NLD, the resultant MSE is shown for the “Measured”, “Volterra”, “NN”, and the 
proposed “Volterra+NN” cases.  MSE reduction diminishes appreciably as modulation order increases 
from QPSK to 64-QAM, but small improvements in MSE have been observed to lead to appreciable SER 
improvement, especially for more complex modulation orders.  Unfortunately, the 4,096 symbol sample 
size limited measurements to a minimum measurable 0.000244 SER, which represents 1 symbol error out 
of 4,096 symbols. 

Table 3 - Comparing MSE/SER Improvement % for the Three Equalization Methods 

 

Table 3 summarizes equalization performance, which shows the average percent reduction/improvement 
in MSE and SER from NLD-impaired data for multiple modulation orders.   
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7. Conclusion 
The enhanced capacity associated with FDX is increasing the need for higher efficiency PAs.  A familiar 
scenario also playing out in the cellular, Wi-Fi, and satellite industries, where similar capacity-enhancing 
needs are increasing the needs for more efficient PAs.  PA efficiencies can be realized by (a) near 
saturation operation, and more efficient implementations via (b) PA classes, which may include (c) 
biasing the PA to consume less power.  All these approaches result in degraded NLD. 

NLD mitigation techniques, like DPD, can lead to the use of more efficient and cost-effective PAs [11], 
and are being considered for future generations of FDX RPD node hardware -- where power consumption 
thresholds are already being encroached upon, while new capabilities are being added to increase their 
capacity as efficiently as possible.  However, an issue with DPD is that it is compensating for the PA in 
the transmitter only, which, in most practical networks today, represents a fraction of the nonlinearity 
present in the communication channel.  Incorporating additional NLD compensation into the transmitter, 
to account for the rest of the communication network chain, like similar closed-loop equalization systems 
discussed in this paper, could lead to DPD reaching its full potential. 

Bidirectional network connectivity between the CMTS and CM can enable the convergence to an estimate 
of NLD present within the communication channel, in either direction, and send coefficients via the 
downstream communication paths, with instructions to either convolve or overwrite coefficients 
describing the estimated path NLD that will account for all the nonlinear elements within the 
communication network chain (transmitter, receiver, amplifiers, and nonlinear passive components).   

However, for this strategy to work, receivers must be capable of mitigating severe NLD.  Supporting  
collaboration between the transmitter and receiver, like the LD cancellation systems used for DOCSIS, 
may be the key to achieving optimal network efficiency, while minimizing NLD.   

Thus, more aggressive NLD cancellation methods may be accomplished by advanced DNN approaches, 
such as incorporating input features derived from Volterra series models.  Results from [11] demonstrate 
that the proposed DNN equalizer has superior performance over conventional equalization approaches, 
and is a necessary tool for more collaborative NLD mitigation strategy. Ultimately, this could make more 
efficient network components realizable. 

Abbreviations 
ACLR adjacent channel leakage ratio 
ACPR adjacent channel power ratio 
ADC analog-to-digital converter 
AI artificial intelligence 
ANN artificial neural networks 
AM-AM amplitude modulation to amplitude modulation 
AM-PM amplitude modulation to phase modulation 
Auto ML automated machine learning 
CAGR compound annual growth rate 
CATV cable television 
CCDF complementary cumulative density function 
CFR crest factor reduction 
CIN composite-intermodulation-noise 
CLGD DOCSIS Cable Load Generator 
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CM cable modem 
CMTS cable modem termination system 
CNN convolutional neural network 
CPE customer premise equipment 
CW continuous wave 
dB decibel 
dBc decibels relative to carrier power 
dBmV decibel-millivolts 
DC direct current 
DNN deep neural networks 
DOCSIS data over coax system interface specifications 
DPD digital pre-distortion 
DTA digital terminal adapter 
EC echo cancellation 
EOL end-of-line 
EVM error vector magnitude 
FEC forward error correction 
FDX full duplex DOCSIS 
Hz hertz 
IEEE Institute of Electrical and Electronics Engineers 
IFFT inverse fast fourier transform 
IMD intermodulation distortion 
IMUX input multiplex 
IoT internet of things 
ISI inter-symbol interference 
LAN local area network 
LD linear distortion 
LDPC low density parity check 
LMS least mean squares 
LUT look-up table 
MER modulation error ratio 
MHz mega-hertz 
ML maximum likelihood 
Mpt million point 
mV milli-volt 
NF noise figure 
NLD nonlinear distortion 
OBO output-power-back-off 
OFDM orthogonal frequency division multiplexing 
OMUX output multiplex 
PA power amplifier 
PAPR peak-to-average-power-ratio 
PHY physical layer 
RBF radial basis function 
RF radio frequency 
RPD remote PHY device 
RRC root-raised cosine 
QPSK quadrature phase shift keying 
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SC-QAM single carrier quadrature amplitude modulation 
SLA service level agreement 
SLM selected mapping approach 
SNR signal-to-noise ratio 
SNRS system signal-to-noise ratio 
STB set-top box 
SVM support vector machines 
TG task group 
TWTA traveling wave tube amplifier 
VSA vector signal analyzer 
WAN wide area network 
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