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1. Abstract 
Academics, strategy pundits and entrepreneurs like to talk about the transformative power of artificial 
intelligence (AI) and the need to accelerate implementations. (AI has been called the “new 
electricity.”[1]) But service provider operations teams tend to tell a different and more nuanced story. 
While no one disputes the long-term potential of these technologies, what’s becoming clear is that the 
complexity of advanced AI, such as neural networking, is difficult to fit into their current paradigms.  

The pragmatic way to adopt these technologies is to define a clear use case, start with what you already 
have, and layer on these technologies in such a way that operations teams can augment existing 
architectures. A phased approach allows room to focus on learning and enhancing rather than replacing 
existing network operations (NetOps) practices, including root cause analysis, in order to evaluate costs 
and benefits. Key to this process is focusing on a better-together approach to provide evidence-based 
demonstration of value. In this paper, we will introduce neural networking, explain why it is a good fit for 
today’s networks, and provide use cases from our experience in deploying these technologies in 5G and 
cable environments. It is more than possible to experiment with this technology, while evolving, rather 
than reinventing existing skillsets and processes.  

2. Introduction 
A method of problem solving that moves beyond reactive to proactive management, root cause analysis 
(RCA) has long been a goal of effective NetOps. As cable networks have become increasingly complex, 
with service delivery stitched across access networks, optical fabric, IP/MPLS backbones and, 
increasingly, cloud infrastructure, NetOps has evolved accordingly. In a NetOps 2.0 world, RCA has not 
only become an expected feature, it has needed to become smarter and more effective. 

Implementing a proactive and predictive RCA in complex service provider clouds that span networks 
comprising more than a million devices is no trivial challenge. How do you determine the network radius 
of "problem spaces” that are compounded in extent by multi-tenancy, network traffic paths, and physical 
and logical L2/L3 connections? Neural networking-based algorithmic approaches, using non-
deterministic and probabilistic models and automated computation, are one promising approach to this 
challenge. Employed to multi-tiered problem spaces with temporal and spatial aspects, this brand of AI 
technology is highly effective at executing RCA on top of non-deterministic anomaly detection, all within 
context.  

The prerequisites are network and service discovery, along with a platform for data collection, streaming 
and processing. When properly set up and implemented over physical and virtual infrastructure, neural 
networking can drive improved RCA and its positive business effects across multiple use cases. On the 
other hand, if inadequately understood or lacking in data, neural networks can exceed their limits or result 
in less control. As with any AI or machine learning (ML)-driven initiative, upfront knowledge is key. 

3. Background 

3.1. NetOps, PNM and RCA 

There are many aspects to NetOps, from the physical Network Operations Center (NOC) itself to the 
personnel who work there to the policies employed to the technologies used in managing, monitoring and 
control any number of discrete or interrelated networks. A common term used in the cable industry used 
for optimizing NetOps is proactive network maintenance (PNM). As a part of a special initiative covering 
wired, Wi-Fi and optical technologies, CableLabs has encouraged careful thinking about PNM, 
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emphasizing the benefits of proactive management.[2] The point of any such exercise, of course, is a 
higher level of customer service.[3] 

The RCA approach to problem solving falls into that broad category of proactive measures, in that it 
seeks to uncover the underlying cause of faults or incidents affecting network performance; and because 
the failure to address that cause is likely results in recurring issues. By isolating the fundamental fault 
associated with a multiplicity of issues, RCA leads to a reduction in immediate number of alarms, as well 
as a lower number over time. RCA does not by itself remediate problems, but feeds into a process of 
corrective and preventative action. 

3.2. Service Provider Clouds 

A typical domain for applying the tools of PNM is the cable access plant, for instance DOCSIS-related 
problems that occur on that part of the network spanning the CMTS or CCAP device and the related 
modem at the customer premise. Yet with virtualization, that network now extends beyond the physical 
plant into cloud infrastructure. 

The distributed access architecture (DAA) initiative remains one of the industry’s most prominent use 
cases related to virtualization. Being transformed from purpose-built hardware into software enables a 
cable operator to run the CCAP in a data center on a private cloud. Other possible cases for MSO 
virtualization include VOD, network PVR, 5G and Multi-access Edge Computing (MEC).[4]  These cases 
increasingly cross industry lines, many applications all requiring high-performance, low-latency 
networks. The expansion of these networks has placed a tax on traditional NetOps. MSOs have expressed 
frustration with monolithic management tools, and delight in those that deliver cross-domain results.[5]  
An extensive physical and cloud environment makes it difficult to rely on siloed legacy tools with manual 
processes and scripts. (See Figure 1.) 

 

 

 

 

 

 

 

 
Figure 1 – Multiple Screens Manual Processes 

3.3. Neural Networking 

In that context, it is fair to ask whether networks can survive without AI.  The real question today, 
however, is what kind of AI or ML serves best. Neural networking is worth considering. It may appear to 
be a recent addition to this category, but its genesis goes back decades. Building upon theories of 
biological neural network, i.e. the brain, the seminal paper on artificial neural networks appeared in 
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1943.[7]  By the late 1990s, engineers were looking at possible applications in manufacturing.[8]  Driven 
in part by innovative big-data ingest and storage capabilities, neural networking in recent years has 
achieved tremendous progress in areas such as natural language processing and image recognition. 

In the cable and telecommunications arenas, other kinds of AI and ML have taken the lead. One example 
is a trial that involved “operational analytics (OA) and machine intelligence (MI)” to predict service 
impairments in near real-time, which used Support Vector Machine (SVM) classification, spectral 
clustering, tree-based taxonomy and related tools.[9]  Like these uses of advanced data analytics, neural 
networks can very well approximate the non-deterministic, stochastic nature of various network scenarios.  

Neural networking is typically supervised, i.e. it requires setting up and training a data model. A key 
characteristic is that these networks involve layers of input, hidden and output neural nodes, each 
connected to others, with certain weighed coefficients. Besides feed-forward networks, there are other 
kinds of deep-learning models, including recursive neural networks (RNN) and convolutional neural 
networks (CNN), etc. But neural networking can be unsupervised as well, especially when no labeled data 
is available. The system tries to find patterns and form clusters in a meaningful way. It involves mapping 
the continuous random variables to discrete representations, while neural networks are capable of 
achieving that through their ability to converge. 

4. Are Neural Networks a Good Fit? 

4.1. Modern Network Characteristics 

There are a number of reasons for servicer providers of all stripes to consider the applicability neural 
networking for key NetOps problems, such as RCA. One overriding reason is that for many, networks are 
simply not what they were only a few years ago. Nor have they reached an endpoint. Monitoring and 
analytic tools and platforms simply need to keep pace with advancing network technologies. that now 
increasingly bear these characteristics: 

4.1.1. Complex  

A conventional approach to network monitoring and management has involved applying simple 
thresholds to classifying physical layer HFC performance within normal and abnormal parameters. That 
remains an effective way to trigger alarms, but insufficient when the goal is to isolate underlying 
problems affecting services that touch heterogenous networks, each of which may have its own siloed 
data arranged in unique formats. Assessing and weighing multiple inputs, and becoming even smarter 
over time, is possible with the computational power and adaptability of a neural network. 

4.1.2. Dynamic 

The disaggregation of once-unified equipment, such as the CMTS or CCAP device, into core and remote 
elements, is an indication of not only growing network complexity but also accelerated change. The 
addition of remote PHY devices (RPDs) entails new configurations and adjusted topology adjustments, 
while a virtualized CMTS core now depends upon cloud infrastructure that may rapidly scale up and 
down. Edge wireless, IoT devices and even CPE contribute more unknowns to the mix. Neural networks 
are adept at handling dynamic change. 
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4.1.3. Data-rich 

The sheer volume and variety of data emanating from today’s networks is one of the biggest drivers in the 
search for new approaches. Only a few years ago, network data mean SNMP queries that delivered a 
limited amount of information every fifteen minutes, and of that very little was useful. MSOs had tools 
that could handle those challenges. The data challenges now facing many MSOs are beyond their scope. 
Neural networks actually work better with inputs provided by big data analytics.  

4.1.4. Real-time 

Exacting performance in areas such as latency matter to many end customers, whether the scenario is cell 
backhaul or internet gaming. Data about those services matters, too. But even if MSOs were able to staff 
their NOCs with the sharpest analysts, the rate at which performance data arrives and the need to process 
them with utmost speed is beyond human capabilities. Manual review of Syslogs and support cases do not 
scale, and status-quo analytic tools fall short. To respond to network behavior real-time, service providers 
need certain automatic ML-based mechanisms, and neural networking is a very good ML model. 

4.2. No Free Lunch 

Neural networking is not the only advanced AI and ML-based analytic tool available. For supervised 
classification problems, there are some commonly used ML algorithms, such as SVM, decision tree, 
logistic regression, etc. For decision tree, rigidness of the model is the common problem which easily 
leads to over-fitting. Although they can be trained to be accurate, once given new data, they may jump to 
wrong conclusions. That could happen through creating tree branches that follow certain order of 
precedence. Ensemble methods, however, can alleviate this problem.  

SVM performs data separation either linearly or non-linearly, which highly relies on the choice of kernel 
function. It makes a model difficult to scale well to a large dataset. While logistic regression tends to 
underperform when there are multiple or non-linear decision boundaries, it is not flexible enough to 
naturally capture more complex relationships. Neural networking is more flexible as it has the capability 
to approximate almost any scenario accurately by adjusting hidden layers and hidden nodes. 

A common criticism of neural networks is that they operate like black boxes. While a decision tree is 
relatively easy to understand, it is hard to explain how a neural network arrives a particular conclusion. 
Neutral networks do well with large amounts of data, which makes them a good fit for advanced 
communications networks; but the converse applies, they do less well in scenarios that are data-deprived. 
Computationally powerful, they can also require more time to train than traditional ML algorithms, which 
can increase their cost. Likewise, operating them requires some expertise in data science.  

Shortchanging knowledge and taking a set-it-and-forget-it approach can be tempting but dangerous. A 
single-engine propeller aircraft can be operated and maintained manually; whereas a commercial jet 
airliner requires NetOps 2.0-level systems and procedures. Yet when pilots are unable to override these 
systems and are unprepared for edge cases that may arise, they cede too much control to the automation 
that was designed to optimize flight operations.[10] 

A similar charge could be leveled against a neural network, which generally speaking is a “non-convex 
optimization problem,” especially when the activation function is non-linear. (Since weights are 
permutable across layers there are multiple solutions for any minima.) Sometimes, domain knowledge is 
needed to make sounding judgements when selecting reasonable ML tuning parameters. The takeaway is 
that it is important, whether building one of these platforms yourself or working with a partner, to 
understand the technology’s potential benefits, its operating characteristics and its limits.  
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5. Existing Frameworks 
How do existing service assurance platforms handle RCA? A crucial prerequisite of any framework is 
data collection, streaming processing and data modeling. As for RCA more directly, one currently 
effective approach is to rely on multi-dimensional matrices of deterministic models that create 
‘signatures’ related to symptoms and problems. The idea is to correlate events and alarms with known 
patterns and signatures to identify where the root of the problem lies. Other best practices include 
continuous self-updating; adapting to dynamic workloads, network configurations and inventory; and 
integrating with orchestration tools for auto-remediation and incident management for support workflows. 

What status quo platforms typically do not yet have is a continuous flow of anomaly detection, leading to 
RCA for the anomaly, and finally providing prescription for the problem. A non-deterministic, neural 
networking engine can extend while enhancing other effective techniques for anomaly detection, RCA 
and problem prescription. The neural networking ML utilizes streaming processing output, although the 
training can be done off-line. Then streaming processing engine picks up ML result, through multi-stages 
to generate real-time results in an automated fashion. This paper focuses on RCA, while the problem 
prescription is out of scope.  

Below is an example of flow using neural networking in radio access network (RAN) throughout the 
whole data analytics process. (See Figure 2.) 

 

 
Figure 2 – Continuous ML Flow 

6. Use Case Scenarios 

6.1. Anomaly Detection, RCA 

Neural networking works well for anomaly detection, which is both a powerful technique and a prime use 
case. The detection of anomalies, or statistical outliers, is applicable in complex, on-prem/off-prem and 
dynamic environments where operators are interested in long-term trends, aberrations such as spikes, and 
cross-correlation with other inputs. In the case of having no global formula to define anomaly, neural 
networking is able to learn the network performance down to the subscriber level over a long-enough 
period of time and determine the anomaly. All of that information can help drive effective RCA, which 
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could also be considered a use case. Anomaly detection can be supervised, unsupervised or semi-
supervised, depending upon the use of a training data set. Like RCA, it figures in several other use-case 
scenarios.  

6.2. Performance Management 

To track the delivery of any number of services across a large subscriber base, a service provider today 
needs to receive concurrent data feeds from a massive number of network elements, correlate those with 
user session data, and then calculate real-time key performance indictors (KPIs). The big data platform 
enables an operator to achieve those tasks. Neural networking is built on top of the platform to combine  
the KPIs with application-specific inputs and policies to deliver network visibility, anomaly detection, 
and real-time predictive network intelligence. 

6.3. Fault Management and Configuration Management 

A fault management system must have a comprehensive picture of the network topology, which is related 
to configuration management. There are thousands of ways can a network fail, go sideways or skip a beat. 
Hardware failure, connectivity loss, and power outages are some types of network faults. Let’s consider 
one, the misconfiguration of a network device, such as an RPD. Anomaly detection might first indicate 
that subscriber data throughout is not matching up with other session-level parameters. A system 
equipped with neural networks for anomaly detection might detect conditions where average user 
throughput dropped below a certain level, while the channel utilization was abnormally high, and 
DOCSIS sub-carrier utilization low. Identifying the condition and the underlying cause then enables a 
recommendation for device reconfiguration. 

Another example is a cellular tower fault. Each cell has neighbors, and if one cell is in trouble, then the 
user traffic is distributed to the neighbor cells, at which point the neighbor cells will show an abnormal 
increase of traffic amount and maybe congestion. Some network faults directly impact or even block 
service delivery. Neural networking can certainly help network fault management to detect/predict fault 
and further diagnose the source and type of the fault. The subsequent action is to automatically trigger 
fault correction, or to at least prevent incidents from happening in the future. 

6.4. Predictive Maintenance 

In its early forms, neural networking was seen as a way to help monitor manufacturing processes, predict 
failures and schedule maintenance on aging equipment. It likewise applies to telecommunication and IT 
network equipment, which can experience transient or permanent hardware or software malfunction. One 
concern involving new proliferating IoT endpoints is battery life.[11]  Neural networking could assist in 
managing this and other aspects of IoT, including the detection of missing data transmission and related 
RCA, either as part of an MSO’s own network or a managed service to businesses.  

6.5. Security and Fraud 

In the area of intrusion detection, network security experts have combined anomaly detection models with 
various deep neural networking structures.[12]  Models could detect strong login behavior, too many 
DNS requests or frequent changing of temporary IP or ID during a session. Operators themselves are 
motivated to prevent telecommunications fraud on their own networks and to deliver high-value managed 
security services to other businesses. To detect fraud, the data covers several domains, such as network 
usage in multiple types of networks, financial, personal information, location information, etc. Fraudsters 
are good at frequently changing their behavior to match the ‘normal’ pattern of the network to circumvent 
the security rules, which increases the level of difficulty for fraud detection. In addition to detecting 
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identity theft and fraudulent activity, network operations intelligence has also had to track the location 
and time of fraud. The data-mining capability of neural networking has made it a candidate for providing 
better information to MSOs about unsanctioned use of telecom networks, whether for financial gain, 
abuse of services, ghosting, tampering, cloning or other fraud.[13]  

7. General Neural Networking Approach 
A neural network-based service assurance recognizes that the world has changed. Service-related data 
once arrived slowly and with limited utility. Then services became IP-centric, and it was economically 
and technically feasible to ingest and store exponentially more data than before. Applying neural 
networking for anomaly detection, RCA and other uses entails completing a sequence of tasks: data 
collection (and network discovery), data processing, data modeling and follow-up adjustments. (See 
Figure 3.) 

 
Figure 3 – Data Analytics Model 

7.1. Data Collection 

This task involves collecting fault and performance metrics for each network component at the user level. 
There are traces, events as performance metrics. The fields include start and end-time on each of 1000s of 
pieces of equipment, user ID, traffic type (voice/video/data) IP address and location, throughput, traffic 
volume, etc. For security and fraud use cases, typically call detail records (CDR) and network 
management system (NMS) logs are needed. CDR and logs have subscriber-level call details and activity 
records in a certain period, i.e., once a month. Network devices could use various industry standard data 
collection methods, such as SNMP, REST, NEP, etc., for streaming data sources. The time stamp is 
important for model training and prediction. Data collectors may span multiple vendors, with their own 
implementations and formats, as well across network silos. What generally appears in the NetConf 
standard are configuration files, counters and information about the state of the device. 

7.2. Data Processing Pipeline 

After setting up the collectors, the next step is to set up real-time streaming and processing of the time-
stamped data into a data pipeline and connecting to a database. The process of data joining can be a 
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challenge in the streaming domain, with SQL joins being especially slow and difficult. Yet standard big-
data and schema-agnostic database formats have helped smooth the preparation phase. Related tasks 
include filtering, sanitizing the data, as well as running network topology discovery to associate data with 
device location. There is a Kafka bus to connect various big-data components in the pipeline. Those 
components exchange data/information through the Kafka bus. Some big data frameworks are Apache 
Spark, Twitter Heron, Apache Flink, etc.  

A common way of storing the processed data is to ingest data via Kafka into a data lake, which will be 
used for neural networking model training. The streaming processing engine is equipped with a ML 
module. The module can get the ML model result and uses streaming data to generate prediction results, 
such as anomaly detection or RCA. 

Below is one example of streaming data processing pipeline including neural networking model training 
engine. (See Figure 4.) Note that data lake is not the only way to store the data; there are other ways 
which do not require a data lake, such as tiered storage in Kafka. Also, some neural networking ML use 
cases do not require the results to be fed back to real-time streaming processing engine; they can certainly 
run separately. 

 
Figure 4 – An Example of Streaming Processing Data Pipeline 

7.3. Further Adjustment 

Other data management techniques may be required. During data preparation, in the case of missing data, 
average or default data may be inserted, or the fields could be ignored. Several approaches can be taken in 
the case of data skewness, such as oversampling, or synthetic minority oversampling technique (SMOTE) 
to compensate for an imbalance within the set. Neural networks tend to make better predictions when 
trained on balanced data. 

7.4. Data Modeling 

Correlating chosen KPIs (containing time stamp, user ID, traffic type, etc.) with different network 
components is important to establishing an end-to-end view. A critical part of building a model is 
identifying features, which correspond to parameters or counters in events. These could be throughput, 
signal strength, transmit power, or whichever ones best align with the use case in question. All of those 
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features are associated with a single time stamp that represents training data that are fed into the model. 
Data scientists can optimize the model’s “fit” by adjusting the weights and layers of the middle nodes, 
which may have distinctive properties of their own, such as the ability to do “convolutional” math or look 
back across the network in a “recursive” manner. If so engineered, the model will deliver outcomes that 
determine a root cause or detect anomalies. (See Figure 5.) There are various ML framework libraries to 
draw upon, including TensorFlow, Theano, Deeplearning4j, Keras, sklearn, etc. 

 
Figure 5 – Data Model Development 

7.5. Continuous Learning 

The model training is a continuous process. We should proactively compare ML predicted result with 
ground truth and then adjust the model if necessary. A separate effort can be placed on continuously 
enhancing the model, and then feedback the new model in the subsequent data analytics flow. (See Figure 
6.) 

 
Figure 6 – Continuous Training Cycle 
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7.6. Model Management 

After a neural networking ML model is delivered, the following criteria need to be evaluated: 
• ML performance, which can be evaluated by comparing the prediction result with ground truth 

and quantified by mathematical formula. 
• What features are used? Can the feature list be changed? 
• Are the training data generalized enough?  
• How much training data is enough? 
• Is there any over-fitting or under-fitting? 
• What are the optimal hyper parameters? Are they generalized or specific to particular scenarios? 
• Is human input needed? For example, sometimes human help is needed for training data labeling, 

or domain knowledge is needed to customize the ML prediction result. 

The above considerations should be taken into the model management. Further actions like model 
versioning, customization, refinement, profile, performance recording, dependency should be 
incorporated when deploying models: 

• Model versioning: If a model is only suitable for old data, a version is used to avoid using the 
wrong model on new data. 

• Model customization: ML models are normally consistent across deployments but can be 
customized to take into account market-specific conditions. For example, different hyper-
parameter lists, or values are used for different markets (due to different RF bands, geographical 
situation or other factors); different feature lists or weights for different markets or clusters, etc. 
Another case is that network performance should follow some theoretical rule, but sometimes an 
AI/ML-driven prediction lands outside of the reasonable boundary; in which case human 
customization or adjustment is needed. 

• Model profile: Certain mechanisms to prevent over-fitting, under-fitting, and ML software 
framework can be recorded for evaluating ML model performance. 

• Model performance: This helps determine how good a model is. It can be evaluated in various 
ways, such as, F1-score, area under the curve (AUC), receiver operating characteristics (ROC) 
curve, learning curve, R2-score for regression algorithm, etc. Also the learning curve can help 
determine how much training-set data are needed or are sufficient.  

• Model dependency: When new or novel patterns are detected, the associated event stream can be 
used as labeled data by domain experts (which suggests human input) for re-training of models 
using supervised learning. This human-input dependency can be incorporated into model-training 
software. 

7.7. Model Optimization and Automation 

Machine learning helps realize a big portion of network operations automation. But the ML model itself 
can also be optimized and automated. In the case of neural networking, the model performance heavily 
relies upon the hyper parameters, including the number of hidden layers, the number of nodes in each 
hidden layer, the learning rate, etc. In a production environment, it is crucial to automate the process of 
selecting optimum tuning parameters. Bayesian optimization appears to be an efficient choice, as it not 
only helps find the vector of hyper parameters that result in a neural network with the lowest error, but 
also reduces considerably the time spent on model tuning. There are other optimization tools or ML 
libraries available, as well. 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 14 

 

8. Other Limitations 
As mentioned earlier, while neural networking thrives on large amounts of data, in some cases there may 
not be enough. Challenges surrounding data joining have also been noted. Mistakes on a key or value 
could result in the time stamp being off, which would make it difficult to correlate data belonging to the 
same user session. One solution is to set a slightly wider time range. Finally, there are always going to be 
false positives and false negatives. The tradeoff between precision and recall cannot be avoided. In setting 
up the model and use case, operators should take note of the use case and consider any false positives. 

9. Best Practices for Adoption of Neural Networking 
Experience across the wider service provider industry has revealed an effective way to approach this 
powerful and challenging technology. If you are motivated to successfully adopt neural networking for 
RCA, consider the following key principles:  

9.1. Start Where You Are 

Allow yourself room to experiment. Consider a data-driven before/after business case that can be used to 
showcase progress and share learnings. We recommend starting with one of the use cases mentioned 
above, perhaps anomaly detection, being applicable in many scenarios. 

9.2. Layer on New Capabilities, Stitched Together at a Workflow-level 

Early adopters are thrilled to discover that neural networking can deliver insights that were previously 
impossible to obtain. Yet the difficulty in explaining how it works can hinder practical and actionable 
impact. By framing the technology as an augmentation, on a second screen or a dashboard with all 
anomalies detected by neural networking tagged as an overlay, operations teams can get started with the 
technology in a way that stages risks and provides ample room for learning and evolving, both in terms of 
testing and tuning the models, but also to mitigate false positives while the models are being developed. 

9.3. Collaborate, Internally and Externally 

Given the rate at which these technologies are evolving, and the centrality of model definition and 
evolution, it pays to collaborate with other teams both internally and externally. In our examples here, 
many of the models applicable to any network scenario were developed initially for 5G interference 
scenarios but are equally applicable to DOCSIS environments and LLX deployments. Look for ways to 
collaborate across silos and share insights. 

9.4. Be Metrics-driven: Use Testing to Show Impact over Time  

Neural networking is not a reinvention as much as an evolution, and in to demonstrate value and prioritize 
investments in these technologies, vanguard teams who are seeing the most success with implementations 
have taken “show me” approaches to proving value. The most straightforward way is to define a clear use 
case and employ A/B testing to demonstrate the value with before-and-after metrics. Prioritize future 
steps accordingly. 
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9.5. Avail Yourself of Expertise When You Need It 

Because of the learning curve and pitfalls of developing, training, evolving, and explaining neural 
networking models, having access to the right level of expertise is crucial in getting these programs off 
the ground. It can be time-consuming to identify domain experts who are adept at translating the data 
science principles into the context of RCA. Plan ahead. 

 

Abbreviations 
5G fifth-generation cellular wireless 
AI artificial intelligence 
AUC area under the curve 
CCAP converged cable access platform 
CDR call detail records 
CMTS cable modem termination system 
CNN convolutional neural network 
CPE customer premises equipment 
DNS domain name system 
HFC hybrid/fiber coax 
IoT internet of things 
IP internet protocol 
KPI key performance indicator 
LLX low latency Xhaul 
MEC multi-access edge compute 
MI machine intelligence 
ML machine learning 
MPLS multi-protocol label switching  
MSO multiple systems operator 
NETCONF network configuration protocol 
NMS network management system 
NetOps network operations 
NOC network operations center 
OA operations analysis 
PNM proactive network maintenance 
PVR personal video recorder 
RAN radio access network 
RCA root-cause analysis 
REST representational state transfer 
ROC receiver operating characteristics 
RNN recursive neural network 
RPD remote PHY device 
SNMP simple network management protocol 
SMOTE synthetic minority oversampling technique 
SQL structured query language 
SVM support-vector machine 
VOD video on demand 
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