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1. Introduction 
The broadband industry has been relying on public-key cryptography (PKC) to provide secure and strong 
authentication across its networks and devices. In particular, the DOCSIS standard [Doc31, Doc40] uses 
X.509 [Itu509] certificates to verify that a device is a legitimate entity that is authorized to join the 
network—for example, a cable modem or a Remote PHY (R-PHY) node [Rphy1]. The choice of using 
digital certificates and public-key infrastructures (PKIs) to protect DOCSIS identities has resulted in a 
scalable and easy-to-deploy key management system for the entire industry. 

Although the DOCSIS PKI has been a success story over the past 20 years (it is one of the largest PKIs 
ever deployed worldwide), things are changing rapidly on both the security side and the broadband 
industry side.  

On the security side, new advancements in traditional and non-traditional computing are threatening our 
ability to use traditional public-key and key-exchange (KEX) algorithms. On the network infrastructure 
side, new zero-trust architectures are being designed that require software and hardware entities to 
securely authenticate to each other (and encrypt traffic) in a distributed environment.  

This paper describes our proposal for a backward-compatible quantum-resistant trust infrastructure (or 
PKI) for the broadband industry. Specifically, our work focuses on the practical aspects of deploying a 
quantum-resistant trust infrastructure by leveraging our idea—namely, the composite cryptography 
mechanism [Com20]. 

The paper is organized as follows: Section 2 provides a description of the quantum threat for the various 
parts of a PKI; Section 3 describes the composite crypto solution and its two building blocks (i.e., 
CompositeKey and CompositeSignature); Section 4 describes how to practically deploy composite 
crypto in PKIs; Section 5 provides considerations surrounding the use of secure elements and hardware 
security modules (HSMs); and Section 6 describes a deployment proposal for securing the DOCSIS PKI. 
Finally, Section 7 provides our conclusions and envisioned future work. 

2. Trust Infrastructures and the Quantum Threat 
Deploying real security is difficult, and security engineers rely on basic cryptographic primitives to make 
sure protocols operate as intended and data is accessed only by authorized entities. Deploying real 
security is even more difficult when uncertainty around the efficacy of your basic tools is at risk. 
Unfortunately, we are living in a period of great cryptographic “uncertainty,” where the advancements in 
both traditional and quantum computing pose serious threats that may impact the possibility to provide 
secure access and data privacy not only for the broadband industry, but across the Internet. 

Recently, advancements in quantum computing suggest that the possibility to break PKC might be closer 
than initially thought. Specifically, the work of Craig Gidney and Martin Ekerå [GE19] improves the 
efficiency of quantum computers to perform code-breaking calculations, thus reducing the required 
resources by orders of magnitude. For example, in 2015, researchers estimated that a billion quantum bits 
or qubits (aka q-bits) would be required to factor 2048-bit keys due to the need to use noise-reduction 
codes that require significant extra qubits themselves. With the recent advancement from Gidney and 
Ekerå, the number of required qubits is reduced to only 20 million. 

Another example of the fast-paced rhythm of innovation occurring in the quantum space is the fact that 
researchers have already moved away from studying qubits to building quantum logic gates. Many 
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experts theorize that at the current speed of innovation, we will have a quantum computer within 20 
years—a very short period of time in the cryptography space. 

The takeaway message is alarming for all of us: Governments, military and security organizations, banks, 
medical facilities and everybody else will have no options to secure their data against powerful quantum 
computers. 

The situation is even more alarming when considering that there are no complete or general solutions 
today that allow for securing all aspects of a PKI—not just signatures or certificates. In particular, 
regardless of the specific standard or technology used in a PKI (e.g., X.509, PGP), no deployments 
currently cover the possibility of using multiple algorithms in a combined fashion to further secure the 
infrastructure in case one or more algorithms are deemed compromised. Our approach addresses this 
limitation by leveraging a recursive construct for both public-key signatures and keys that can be applied 
to every aspect of the PKI lifecycle management. 

On the quantum-safe cryptography standardization front, things are moving forward as NIST recently 
announced the beginning of Round 3 in its selection of a quantum-resistant cryptography standard that 
began few years ago [Nist20]. 

Because the new standard will specify one or more quantum-resistant algorithms for digital signatures, 
public-key encryption and key generation, the selection of finalists comprises various classes of 
algorithms and mathematical properties. In particular, of the original 69 proposals submitted for Round 1, 
only 26 made it to Round 2. For Round 3, only 8 candidates were selected. Four of the candidate crypto-
systems provide public-key encryption, while the remaining four are digital signatures schemes. 
 
The selected key encapsulation mechanisms (KEMs) that provide public-key encryption are: 
 

• Classic McEliece. This KEM is the result of a merger between the Classic McEliece and NTS-
KEM. This work is a code-based KEM based on the original cryptosystem from 1978. The 
cryptosystem has never gained much interest in the cryptographic community; however, its 
resistance to Shor’s algorithm makes it a good candidate for post-quantum standardization.  
Classic McEliece, which uses the binary Goppa code, comes with very large public keys but the 
smallest ciphertext of any other solution. Although this performance profile might not be the best 
fit for the general protocols we use over the Internet today, its stable specifications combined with 
a long history of cryptoanalysis make it an appealing choice for some applications. 
 

• CRYSTALS-Kyber. This algorithm is based on the presumed hardness of the module learning 
with errors (MLWE) problem. The scheme has excellent all-around performance for most 
applications. It also enables relatively straightforward adjustment of the performance-versus-
security tradeoff by varying module rank and noise parameters. NIST regards this scheme as one 
of the most promising KEMs for standardization. 
 

• NTRU. This is a structured lattice-based KEM that has an established adoption history because 
variations of this KEM have already been standardized by IEEE [Ntru09] and ANSI [Ntru10] 
organizations. Although NTRU has a small performance gap in comparison with Kyber and 
SABER, its longer history was an important factor in NIST’s decision because of less risk of 
unexpected intellectual property claims. An important characteristic of NTRU is the fact that it 
relies on a different problem than MLWE; thus, it provides diversity in the set of structured 
lattice-based KEMs for the finalists. 
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• SABER. This KEM is based on a variation of MLWE—namely, the Module Learning 
With Rounding (MLWR), in which rounding from one modulus to a smaller second one 
replaces the addition of small errors. In general, SABER provides good performance for 
general-purpose applications. One of the areas that NIST encourages more research on is 
side-channel analysis for the non-Number Theoretic Transform (non-NTT) style of 
multiplication that is unique to SABER. Together with NTRU and Kyber, SABER is one 
of the most promising KEMs selected for Round 3. 
 

For digital signatures, the following are considered as finalists: 
 

• CRYSTALS-Dilithium. This is a lattice-based signature scheme that relies on the MLWE 
hardness and the module short integer solution (MSIS). One of the advantages of CRYSTALS-
Dilithium over its main competitor, Falcon, is the simpler implementation due to the use of the 
same modulus and ring for all parameter sets and samples. Overall, Dilithium has a good balance 
in terms of key and signature sizes and performs well for key generation, signing and verification, 
making it one of the strongest candidates for standardization as it performs well in real-world 
experiments. 
 

• Falcon. The Falcon signature scheme is lattice-based and uses the “hash and sign” paradigm. 
Although this scheme is more complex to implement than Dilithium, it offers the smallest public 
key and signature sizes. From a key generation point of view, Falcon is slower than other 
candidates, but the overall strong performance makes it a good fit for existing Internet protocols 
and applications. 
 

• Rainbow. This scheme is very different from the previous two. Rainbow is a multivariate 
signature scheme with an unbalanced oil and vinegar (UOV) construct. Rainbow provides fast 
signing and verification, along with very short signatures. The downside of this scheme is the 
extremely large public key sizes. Some issues with the security claims and the fact that NIST 
prefers algorithms with royalty free licensing put this algorithm at the bottom of the list. 
 

• GeMSS. This is the second multivariate signature scheme that uses the “big field” paradigm. 
Although it offers the smallest signatures of any other schemes and provides a fast verification 
algorithm, the large size of public keys is the limiting factor for adoption, especially in low-end 
devices where signing can be very slow. Also, the large size of public keys makes it impractical 
when used with TLS or SSH without protocol changes. This algorithm is still in consideration, in 
case developments in Round 3 show the Rainbow scheme to not be suitable for standardization. 
 

NIST also selected eight alternative algorithms whose evaluation will continue after the first selection for 
the standard. These eight alternative algorithms either might need more time to mature or are tailored to 
more specific applications. For example, the Sphinx+ scheme is considered very secure but also very 
conservative in its design. Because this translates into higher bandwidth and slower performance than the 
selected primary candidates, Sphinx+ is being considered only as a backup option for standardization. 
The review process for Round 4 will continue after Round 3 ends, and eventually some of these 
alternative algorithms could become part of the standard at a later date. The status of the NIST selection 
process is available in the NIST Internal Report 8309 [NISTIR]. 
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2.1. PKI Building Blocks 

To convey which parts of a trust infrastructure will be affected by the use of quantum computing, we 
provide a classification of algorithms or “building blocks” that are used to protect both authentication and 
user data and show how they might be impacted by the quantum threat. 

Specifically, when it comes to the various types of building blocks, we shall differentiate between public-
key algorithms for authentication (e.g., RSA, ECDSA), KEX algorithms (e.g., Diffie-Hellman, Elliptic-
Curves Diffie-Hellman), hashing algorithms (e.g., SHA-256, SHA-3) and encryption algorithms (e.g., 
AES). 

Public-Key Algorithms. Public-key algorithms are primarily used to authenticate (and sometimes 
encrypt) data. Algorithms like RSA or ECDSA are the most common when used in conjunction with 
X.509 digital certificates. The main difference between RSA and ECDSA, besides the underlying 
mathematical properties, is in the size of the cryptographic overhead (or bandwidth) and key-generation 
complexity. In particular, when compared through the performance lens, ECDSA has a clear advantage, 
especially when deployed in small or computationally limited devices. When compared through the 
security lens, though, further considerations are due. One interesting feature of RSA is its ability to use 
different key lengths without changing the algorithm. This allows, for example, RSA cryptosystems to 
increase the size of the public/private keypair to adjust to increased security risks due to advancements in 
computing and crypto research. ECDSA, instead, does not support this feature: Once the curve is selected 
(e.g., NIST’s Secp256r1 curve), the key size cannot be changed, and to increase the security of the 
system, new curves (e.g., NIST’s Secp521r1 curve) must be supported (even for validation only). 

Key-Exchange Algorithms. This class of algorithms has been recently revamped because of the effort, in 
the TLS space, to deploy perfect forward secrecy (PFS). Specifically, the use of finite-field Diffie-
Hellman (DH) and Elliptic-Curve Diffie-Hellman (ECDH) has been required by the latest TLS 
specifications [RFC 8446] to overcome the security limitations of the RSA-based KEX mechanism and 
decouple authentications from key exchanges. KEX algorithms are at the core of protocols like TLS to 
securely derive the encryption keys used after the negotiation phase. 

Hashing Algorithms. This class of algorithms is at the core of the authentication process in modern 
PKIs. In fact, to authenticate any type of data (e.g., a certificate or simply a document), the data must be 
“summarized” to make the signing process efficient and more generic (i.e., providing the same 
operational approach when working with different algorithms). Because of this, breaking the properties of 
the hashing algorithms can be quite devastating for a public-key cryptosystem. 

Encryption Algorithms. When it comes to securing data from unauthorized access, encryption 
algorithms provide the necessary building blocks via the use of securely exchanged (via the authentication 
process) encryption keys. The ability to successfully attack these algorithms can bypass any 
authentication process used during the transfer of encryption keys and therefore grant an attacker direct 
access to the data. 

In the rest of this section, we provide a summary of the threats for each class of algorithms and how (and 
if) the quantum threat is significant in that space. 
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2.2. Modern Cryptography and the Quantum Threat 

2.2.1. Public-Key Cryptography 

When it comes to public-key algorithms such as RSA or ECDSA, the threat of quantum computers being 
able to “guess” (factor large numbers or solve the discrete logarithm problem) private keys is comparable 
for both cryptosystems. In fact, PKC uses mathematical algorithms to generate complex keys, thus 
making the code to reverse-engineer the private component from the public one statistically very hard. 
Different public-key systems can use different algorithms, as long as they are based on mathematical 
problems that are easy to put into place but difficult to reverse-engineer. For instance, any computer can 
multiply two extremely large prime numbers, but factoring the result is nearly impossible—at least, it 
would be for a classical machine. Although only few classes of algorithms (so far) have been identified to 
be more performant on quantum computers, factoring large numbers is one of them. Specifically, Shor’s 
quantum factorization algorithm could be easily used to break this type of cryptosystem.  

The optimization that is possible on a quantum computer is due to the fact that it should be able to use the 
properties of quantum mechanics (e.g., entanglement) to probe for patterns within a huge number without 
having to examine every digit in that number. Because cracking both RSA and EC ciphers actually 
involves finding patterns in huge numbers, quantum computers can perform the inverse operation at 
practically the same speed as the forward one. For example, while on a conventional computer, finding a 
pattern for an EC cipher would take 2N/2 steps—where N is the number of bits in the key. On a quantum 
computer, the number of steps would be in the order of only N/2! 

RSA, ECC and DH are examples of cryptosystems that will not be secure against an adversary with 
access to a quantum computer. 

2.2.2. Hashing Algorithms 

Hashing algorithms give us a chance to breathe a little easier. As explained in the previous section, some 
problems with a special structure (e.g., factorization for RSA, discrete log for EC) typically fall in the 
category of problems for which quantum computers can reduce the task to finding the period of some 
function, which is surprisingly not difficult to solve on a quantum computer.  

However, for unstructured problems, quantum computers seem to provide “only” some non-trivial 
quadratic speedup, via the use of Grover’s algorithm [Gro96]. Simply put, this indicates that a hash 
function with 256 bits of security today would still have 128 bits of security in a post–quantum computing 
era. 

2.2.3. Encryption Algorithms 

Symmetric encryption, and more specifically AES-256, is believed to be quantum-resistant. Quantum 
computers are not expected to be able to reduce the attack time enough to be effective if the key sizes are 
large enough. Also in this case, the speedup from Grover’s algorithm allows quantum computers to 
perform exhaustive searches in the square root of the classical time, rendering classical attacks more 
expensive than generic ones in most cases. To achieve 128 bits of security in a post–quantum computing 
scenario (equivalent to AES-128 today), primitives providing 128 bits of security (e.g., AES) need to 
have a key length of at least 256 bits. In other words, the speedup in the quantum exhausting search 
provided by Grover’s algorithm is the main reason why the current recommendations for encryption with 
post–quantum computing security mandate for AES [Dr99] with a 256-bit key. 
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If you are using AES in your systems in 2020, you should favor AES-256 over AES-128. This is true for 
software environments, but it is especially important when chipsets and hardware deployment is involved;  
to make sure these devices can take you over the “quantum hump,” support for AES-256 is required 
[Aes16, Aes20]. 

Ultimately, as with the hashing algorithms case, modern symmetric encryption algorithms are not affected 
as badly by quantum computing as public-key ones as long as we deploy larger keys (e.g., AES-256). 

2.3. Algorithm Agility to the Rescue 

Algorithm agility is at the core of best practices when it comes to cryptosystems today. Algorithm agility 
refers to the possibility of substituting cryptographic algorithms (and associated data structures) as 
needed, without having to change protocol messages or main data structures. 

Fortunately, the X.509 standard, used across the Internet and in the broadband industry, provides the 
possibility to extend the generic data structure to integrate new algorithm-dependent ones in order to 
identify public keys and signatures. Technically, this is achieved by coupling the crypto data structures 
with an algorithm identifier that can correctly validate and process the associated data structure(s) across 
different types of objects used in PKIs (e.g., X.509 certificates, Online Certificate Status Protocol [OCSP] 
responses, Certificate Revocation Lists [CRLs]). 

For example, look at how public keys are encoded in X.509 certificates: 

AlgorithmIdentifier  ::=  SEQUENCE  { 
        algorithm            OBJECT IDENTIFIER, 
        parameters           ANY DEFINED BY algorithm OPTIONAL  } 

SubjectPublicKeyInfo  ::=  SEQUENCE  { 
        algorithm            AlgorithmIdentifier, 
        subjectPublicKey     BIT STRING  } 

Here, SubjectPublicKeyInfo comprises an AlgorithmIdentifier that identifies the cryptographic 
algorithm and associated parameters, as well as a subjectPublicKey, which is a BIT STRING [RFC 
5280]. The value of subjectPublicKey is the Distinguishing Encoding Rule (DER) encoding of the 
public-key structure as defined for the specific algorithm used. 

For example, Section 2.3.1 of [RFC 3279] defines the contents of SubjectPublicKeyInfo and how to 
encode the RSAPublicKey structure whose DER representation is to be used for the value of 
subjectPublicKey. 

Our solution leverages the algorithm agility feature and defines a new algorithm identifier that encodes, 
recursively, a set of one or more subjectPublicKey data structures to encode multiple keys with 
different algorithms, as discussed in the next section. 

3. A Composite Crypto-Based Solution 
The cable industry, as well as the larger Internet community, is faced with the very difficult task of 
addressing the quantum threat early in order to continue to securely authenticate network devices and 
users by switching to different algorithms when needed. On top of that, the broadband industry faces the 
additional challenge of handling this future transition while relying on fielded devices (e.g., CMs, R-
PHY/R-MACPHY nodes) that might be expensive to replace or update. 
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Although the selection for standard post-quantum algorithms has not been finalized yet, we have been 
actively looking at how to deploy such algorithms for the broadband industry when they become 
available. In particular, we looked at how to protect the integrity of the most vulnerable parts of our 
DOCSIS trust infrastructure first (from a quantum-threat perspective)—that is, the root and intermediate 
CA. We focused on these assets first because they are valuable targets that would allow for an attacker to 
generate new valid entities for the ecosystem. Once the integrity of the upper levels of the hierarchy are 
secured, devices can be updated to support the deployed post-quantum algorithm(s) via Secure Software 
Download (SSD) or other mechanisms. 

What we found in our research is that we could use the same algorithm agility feature that is built into 
modern PKIs to support the use of multiple keys for every aspect of the PKI lifecycle; from certificates to 
revocation lists, everything supports our new paradigm. In other words, our work enables the use of 
classic algorithms like RSA or ECDSA alongside new ones. This allows for a gradual transition to new 
algorithms without losing backward compatibility for devices that cannot be updated with the new 
algorithms. Figure 1 provides an intuitive representation of the composite crypto when used in X.509 
certificates. 

 
Figure 1 - Example of Composite Crypto Usage in X.509 Certificates 

It is interesting to notice how our invention can be used at any time when there is either (a) the need to 
transition to a new protocol without establishing a completely separated infrastructure or (b) uncertainty 
related to the security of an algorithm over an extended period of time. For example, the solution 
described in this paper could be used to transition from less efficient cryptosystems (e.g., RSA) to more 
efficient ones (e.g., ECDSA) or to provide signatures with different hashing algorithms. 

3.1. A New Paradigm: CompositeKeys and CompositeSignatures 

As suggested earlier, to address our problem we relied on our initial considerations about algorithm 
agility to provide a simple and backward-compatible solution. In particular, we defined a new algorithm 
identifier and associated encoding that uses standard substructures to encapsulate multiple keys or 
multiple signatures in PKI data structures and authentication data. 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 10 

The new type of public keys and signatures—namely, CompositeKeys and CompositeSignatures, 
respectively—provide the building blocks we were looking for: backward-compatible encoding for both 
signatures and public keys that allows for multiple keys and algorithms to be used to secure X.509 objects 
and produce generic signatures. By mixing classic and post-quantum algorithms, not only can all aspects 
of a PKI be protected today, but clients supporting at least one of the combined algorithms will be able to 
operate in the environment. 

For example, to trust the authentication of data, relying parties might decide to verify one, some or all of 
the signatures depending on the ability of the relying party to support any of the algorithms used for keys 
and signatures. 

3.1.1. Composed Public Keys and X.509 Certificates 

The technical aspects of our work are simple. We first defined a new value for the algorithm field 
within the AlgorithmIdentifier used in the SubjectPublicKeyInfo of a tbsCertificate 
structure of a X.509 certificate: 

   compositeKeys OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) dod(6) 
                           internet(1) private(4) enterprise(1) OpenCA(18227) 10 } 

When this value is used for the algorithm identifier, it means that the value encoded in the associated 
public key field (e.g., the subjectPublicKey field) contains multiple public keys and associated 
parameters. The parameters field of the AlgorithmIdentifier itself shall be set to NULL in this case 
as there are no specific parameters associated with the composite key – the recursive nature of the data 
structure allows us to delegate the parameters to the individual keys definitions. 

To encode the different keys, we use a sequence of SubjectPublicKeyInfo objects. Each of these 
objects encodes the specific algorithm identifier for the specific key with its parameters and value. The 
final sequence is then encoded as the DER representation of the sequence of keys. 

We also define the CompositePublicKeyInfo as a SEQUENCE OF SubjectPublicKeyInfo where 
each SubjectPublicKeyInfo carries the information of one public key. The ASN.1 definition of the 
CompositePublicKeyInfo is as follows: 

CompositeSubjectPublicKeyInfo ::=  SEQUENCE (1..MAX) OF SubjectPublicKeyInfo 

where the SubjectPublicKeyInfo within the CompositeSubjectPublicKeyInfo must not use 
compositeKeys as an algorithm identifier to prevent multiple levels of recursion. 

For example, to add two separate public keys in an X.509 certificate via composite crypto, the encoding 
would be as follows: 

aCompositeSubjectPublicKeyInfo  = SEQUENCE { keyInfoOne, keyInfoTwo }; 
  -- The main structure, a sequence of two subjectPublicKeyInfo 

keyInfoOne.algorithm.algorithm  = rsaEncryption; 
keyInfoOne.algorithm.parameters = NULL; 
keyInfoOne.subjectPublicKey     = RSAPublicKey; 
  -- The keyInfoOne provides the definition for the first key (RSA) 

keyInfoTwo.algorithm.algorithm  = id-ecPublicKey; 
keyInfoTwo.algorithm.parameters = EcpkParameters; 
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keyInfoTwo.subjectPublicKey     = ECPoint; 
  -- The keyInfoTwo provides the definition for the second key (ECDSA) 

aCertificate.tbsCertificate.subjectPublicKeyInfo.algorithm.algorithm = compositeKey; 
aCertificate.tbsCertificate.subjectPublicKeyInfo.algorithm.params = NULL; 
aCertificate.tbsCertificate.subjectPublicKeyInfo.subjectPublicKey =    
                                                  DER(aCompositeSubjectPublicKeyInfo); 

where aCompositeSubjectPublicKeyInfo is the sequence of two subjectPublicKeyInfo (i.e., 
keyInfoOne and keyInfoTwo). The DER representation of the aCompositeSubjectPublicKey-
Info is then stored in the subjectPublicKey field of the subjectPublicKeyInfo of the 
tbsCertificate. 

3.1.2. Composite Signatures and X.509 Certificates 

When it comes to signatures in X.509 certificates and their validation, we used a similar approach. We 
first defined a new algorithm identifier for compositeSignatures and then defined the specific data 
structures for the composite algorithm. 

Specifically, when a compositeSignatures schema is used to encode multiple signatures at once, the 
value for the algorithm identifier associated with the signature is defined as follows:  

compositeSignatures OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) 
                dod(6) internet(1) private(4) enterprise(1) OpenCA(18227) 11 } 

When the compositeSignatures identifier is used, the corresponding value encoded in the 
signatureValue field contains multiple signatures and associated parameters encoded as the DER 
representation of a CompositeSignatureValue that is a SEQUENCE OF SignatureInfo. Each 
SignatureInfo carries the information about one of the signatures applied to the certificate. The 
definition of the CompositeSignaturesValue is as follows: 

  CompositeSignaturesValue  ::=  SEQUENCE (1..MAX) OF CompositeSignatureInfo 

For example, to encode signatures made with two separate keys (one RSA key and one EC key), the 
encoding would be as follows: 

aCompositeSignatureInfo         = { sigInfoOne, sigInfoTwo }; 
  -- The main structure, a sequence of two SignatureInfo 

sigInfoOne.algorithm.algorithm  = rsaEncryption; 
sigInfoOne.algorithm.parameters = NULL; 
sigInfoOne.subjectPublicKey     = <RSA Signature Value>; 
  -- The sigInfoOne provides the definition for the first signature (RSA) 

sigInfoTwo.algorithm.algorithm  = id-ecPublicKey; 
sigInfoTwo.algorithm.parameters = EcpkParameters; 
sigInfoTwo.subjectPublicKey     = <ECDSA Signature Value>; 
  -- The sigInfoTwo provides the definition for the second signature (ECDSA) 

aCertificate.signatureAlgorithm.algorithm.algorithm = compositeSignatures; 
aCertificate.signatureAlgorithm.algorithm.params    = NULL; 
aCertificate.signatureValue = DER(aCompositeSignatureInfo); 
  -- The final encoding of multiple signatures in a certificate 
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where the aCompositeSignatureInfo structure contains the sequence of the two SignatureInfo 
(i.e., sigInfoOne and sigInfoTwo). The DER representation of the aCompositeSignatureInfo is 
then used for the signatureValue field of the certificate structure. 

3.1.3. Generating Composite Signatures 

To generate composite signatures, the signer shall generate each signature independently by using each of 
the keys present in the signer’s CompositePublicKeyInfo in the same order they appear. Specifically, 
the signer shall use the first key to generate the first signature, the second key to generate the second 
signature, and so on. The signer shall generate one signature for each key in the key set. 

For example, if the CompositeSubjectKeyInfo has three public keys (K1, K2 and K3) of types RSA, 
EC and DSA, respectively, the signing party shall generate the first signature by using K1, the second 
signature by using K2, and the last signature by using K3. 

3.1.4. Verifying Composite Signatures and Time-Dependent Validation 
Policies Deployment 

To be able to verify composite signatures, a relying party shall verify each of the applied signatures 
independently. Also in this case, the relying party shall verify the signature by using the corresponding 
public key in the signer’s certificate in order—that is, the order of the signatures within the 
CompositeSignature shall respect the order of the keys in the CompositePublicKeyInfo in the 
certificate. 

For example, if the certificate has a CompositeSubjectPublicKeyInfo that contains three keys (K1, 
K2 and K3) of types RSA, EC and DSA, respectively, the relying party shall verify the first signature in 
the composite signature by using K1, the second signature by using K2, and the last signature by using K3. 

One important aspect of our invention is that it can be combined with the possibility of applying 
validation policies that can be changed over time or remain static.  

In a static configuration, for example, the relying party might set its policy not to evaluate the correctness 
of signatures if they do not support any of the used (or specific) algorithms, or otherwise refuse to trust 
the signed data entirely, even if it is not able to verify just one of the composite signature’s elements.  

In a time-dependent policy, relying parties could instead use the quantum threat risk level to set the 
threshold for the policy change. Imagine, for example, an infrastructure in which both RSA and ECDSA 
algorithms are used via CompositeKeys encoded in the root and intermediate CA certificates. Also 
imagine that the RSA algorithm is set to retire because deemed not secure in 10 years (e.g., the used key 
sizes for the infrastructure are not considered secure anymore). In addition, assume that ECDSA will still 
be considered secure for the application (e.g., larger keys can be deployed here because of better 
performances). A validation policy could allow relying parties to validate composite signatures by using 
only the RSA algorithm for the next 10 years. After that, the policy might mandate relying parties to 
validate signatures by using all algorithms to make sure the stronger one(s) is validated too. 

In the post-quantum scenario, this translates to a very similar approach.  

Specifically, although static policies might be more appropriate for those relying parties or devices whose 
crypto cannot be updated (see the next section), more dynamic ones could be deployed when the 
validation of new algorithms can be added to the device. In this case, up to a certain security risk level 
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(e.g., until practical deployment of quantum computers is achieved), relying parties and devices could still 
be allowed to use just the traditional algorithms for validation and enable the new ones when the risk level 
for the involved stakeholders goes over the acceptable threshold (and support for it is successfully 
deployed). 

3.1.5. Use of Composite Crypto for Backward Compatibility 

The same solution can be used when deploying a new infrastructure where participants in the ecosystems 
might not be able to update their security parameters. In this case, composite crypto structures can be used 
to deploy trust infrastructures where new and old algorithms coexist in the CompositeKeys and 
CompositeSignatures of certificates. The deployment of superseded algorithms along with new ones 
allows relying parties that cannot update their cryptographic suites (e.g., devices that are already in the 
field) to participate in the same infrastructure while still allowing other relying parties to use stronger 
validation algorithms. 

In other words, composite crypto can be used to keep using old algorithms to accommodate for older, 
already-in-the-field devices that might have hardware constraints (e.g., they have a secure element that 
cannot be replaced) without compromising the overall security of the infrastructure. The stronger 
keys/algorithms will be used by more capable devices (e.g., P-521 or quantum-resistant algorithms). 

4. A Complete Solution: From Requests to Revocation 
Although other solutions have been tried to provide support for adding multiple keys or algorithms to 
certificates by adding new types of extensions, no other solution actually tackles all the aspects of the PKI 
lifecycle. Specifically, no other solution is available that addresses not only the authentication of 
certificates but also the authentication of certificate requests and revocation objects. In this section, we 
take a look at the applicability of our solution to these aspects that are central to the correct behavior of 
PKIs.  

4.1. Requesting Composite Certificates 

In PKIs, the [PKCS10] standard is commonly used when it comes to requesting certificates. Many 
standard (and non-standard) protocols use it as the core building block for their own certificate request 
messages. Examples of this can be found in Certificate Management over CMS (CMC) [RFC 5272, RFC 
5273] and in the Automated Certificate Management Environment (ACME) [RFC 8555]. 

Fortunately, our work is compatible with the PKCS#10 format.  

In particular, to authenticate PKCS#10 requests with composite crypto, the signatureAlgorithm’s 
algorithm identifier in the CertificationRequest structure can be set to carry the 
compositeSignatures value, and the parameters one can be set to NULL.  

The signature field is the one that carries the DER representation of CompositeSignatures and 
contains all the signatures generated with the compositeKeys associated with the identity that is 
requesting a certificate. The signatures are calculated, as usual, over the DER representation of the 
certificationRequestInfo field of the CertificationRequest. 
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4.2. Use of Composite Signatures in CRLs 

CRLs are the oldest form of revocation for X.509 certificates [RFC 5280, RFC 5759, RFC 6818]. Their 
structure was inspired by credit-card number blacklists and are used to convey the list of serial numbers 
of certificates that have been revoked (together with an optional reason code). Because this list is often 
signed by the issuing CA (or a designated signer), we need to make sure that this list is securely 
authenticated, even in a post-quantum threat scenario. 

Our approach seamlessly works with CRLs too. 

As with the case of X.509 certificates, the signatureAlgorithm field in the CertificateList 
structure can be set to carry the compositeSignatures value, and the parameters field can be set to 
NULL. The signature field of the CertificateList can be set to carry the DER representation of the 
CompositeSignaturesValue. 

Also, in this case, there is no change in how the signatures are generated because the individual signatures 
are calculated over the DER representation of the tbsCertList, as usual. 

4.3. Use of Composite Signatures in OCSP Requests and Responses 

OCSP requests and responses have signature fields that can be leveraged with composite signatures to 
address the quantum threat without requiring any protocol changes. 

To authenticate OCSP requests, the signatureAlgorithm algorithm identifier in the Signature 
structure of the OCSPRequest can be set to compositeSignatures, and the parameters field can be 
set to NULL. The corresponding signature field of the Signature structure can then hold the DER 
representation of the CompositeSignature value itself. The signatures are calculated, as usual, over the 
DER representation of the tbsRequest in the OCSPRequest structure. 

For OCSP responses, the BasicOCSPResponse structure provides, together with the 
tbsResponseData and the signatureAlgorithm ones, the needed fields to host composite 
signatures. Specifically, the signatureAlgorithm algorithm identifier in the BasicOCSPResponse 
structure can be set to compositeSignatures, and the parameters field can be set to NULL. The 
corresponding signature field can be set to hold DER representation of the 
CompositeSignaturesValue. Also in this case, the individual signatures can be calculated and 
encoded, as usual, over the DER representation of the tbsResponseData field of the 
BasicOCSPResponse. 

5. Composite Cryptography and Hardware Integration 
Modern cryptography relies on two main principles: making algorithms public and moving all security 
properties to the secrecy of keys. That is why one of the pillars of modern cryptography is keeping your 
secrets ... secret! This is true not only for shared secrets but also for private keys. 

To help with the security of keys, best practices commonly require the use of HSMs or secure elements in 
our devices to make sure that (a) private key computations safely happen on a dedicated processor and (b) 
their value cannot be extracted by a remote party. 

From this point of view, the quantum threat not only poses a risk from a security perspective, but it also 
requires hardware updates to provide the same security properties that we have enjoyed for decades. 
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Although quantum-resistant algorithms must be run in software until support for them is provided via 
secure hardware implementations, the composite cryptography solution itself is fully compatible with 
existing hardware and security modules. This is because the processing of the individual keys and 
signatures still relies on the same primitives; therefore, no changes are required for composite crypto 
integration, as long as the algorithm is supported by the crypto accelerator. Similarily, current standard 
interfaces to crypto hardware, like PKCS#11 [PKCS11] and supporting libraries, do not require any 
changes for the same reasons. This is extremely important for preserving backward compatibility with 
deployed HSMs, which are usually large and very expensive pieces of equipment used mostly to secure 
operating CA keys. 

This means that all investments that Certificate Service Providers (CSPs) made in purchasing and 
maintaining their HSMs are not impacted, as no changes are needed to leverage composite crypto. For 
example, existing root and intermediate CAs can add new keys to their own certificate and have their new 
request signed by using composite crypto today. This allows current infrastructures to add new algorithms 
and still be able to leverage the security (and certifications) of today’s crypto hardware (e.g., FIPS 140-2).  

Summarizing, composite crypto can be used today with existing certified hardware components, thus 
allowing the transition from, for example, RSA to ECDSA without the need for new hardware or 
certifications. Support for new algorithms is still required for deploying quantum-safe crypto. 

6. Deploying a Backward-Compatible, Quantum-Safe DOCSIS PKI 
So far, the DOCSIS ecosystem has deployed two different infrastructures throughout its lifetime. The first 
one, today referred to as “legacy PKI,” was deployed 20 years ago and provides its services for DOCSIS 
1.1–3.0 devices. Because this infrastructure is set to expire soon, it was reasonable to focus our efforts on 
the newer infrastructure. 

The second deployed infrastructure, or “new PKI,” was introduced to update the security parameters for 
the whole broadband industry and provides its services to secure not only DOCSIS 3.1–4.0 devices but 
also other entities associated with the existing and upcoming distributed architectures (e.g., R-PHY or 
CCap Core). Because this infrastructure is not going to sunset anytime soon, our work has been focused 
on defining the deployment strategy for securing this second “new” infrastructure across the “quantum-
threat hump.” 
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Figure 2 depicts the “new PKI” structure that comprises a three-tier hierarchy with an offline root CA that 
issues a second level of intermediate CAs. These CAs issue only end-entity certificates and have assigned 
operational scopes (e.g., device certificates vs. code-signing certificates) that limit their liability in case of 
compromise. All participating entities in the infrastructure use the RSA algorithm for their keys. 

Currently, our work is focused on setting up a test infrastructure that uses composite keys and signatures 
to secure the core part of the infrastructure (i.e., the root CA and the intermediate CAs) against the 
quantum threat and, at the same time, provide the possibility to leverage algorithms other than RSA for 
increased efficiency. 

The envisioned test infrastructure mimics the current “new PKI” hierarchy and uses, for the core of the 
hierarchy (i.e., root and intermediate CAs), three separate public keys: the current RSA key, a new 
ECDSA key and a new Post-Quantum-Algorithm (PQA) one. Device or end-entity certificates are issued 
with a single algorithm that can be either RSA, ECDSA or the PQA, depending on the entity or device 
capabilities. Network or server-side identities are issued with composite crypto keys comprising all the 
deployed algorithms to support all classes of devices (i.e., classic and post-quantum). 

Figure 2 - The DOCSIS "New PKI” Hierarchy 
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Figure 3 provides a validation scenario in which three devices with different capabilities are 
authenticating themselves with credentials from the quantum-safe PKI. In this scenario, CM1 is capable of 
only working with ECDSA P-256 keys but can validate PQA signatures and public keys, CM2 is capable 
of only working with RSA keys, and CM3 fully supports PQA (not only validation but also signing and 
key management) and can also validate RSA and ECDSA. 

On the client side, CM1 can benefit from using either classic or quantum-safe crypto and still authenticate 
itself by using classic crypto (ECDSA). CM2, instead, is a constrained device and can only use RSA; 
without any further update, this class of devices cannot be securely authenticated under the quantum-
threat model (see the next section for proposed mitigations to address this use case). CM3 is a newer 
device that fully supports the selected PQA and therefore uses that algorithm to both validate the network 
credentials and generate its own authentication traces. In case CM3 also supports classic cryptography, 
RSA or ECDSA validation algorithms can still be used before quantum-based attacks become practical. 

On the network side, the CMTS must support all the algorithms supported by the entire population of 
deployed devices—both for validation and authentication. To be able to authenticate CM1, the CMTS 
must support ECDSA. To be able to authenticate CM2, instead, the CMTS has to support RSA. 
Ultimately, authenticating CM3 requires the CMTS to support the PQA. On the authentication side, to 
allow devices that might support only one of the deployed algorithms to be able validate the network 
credentials (e.g., in Baseline Privacy Plus Interface [BPI+] V2), the CMTS must support all of the used 
algorithms in its composite key. This allows the use of RSA, ECDSA and PQA on the various classes of 
devices without the need of separate identities or infrastructures.  

Figure 3 - Validation Scenario Showing Multiple Entities with Different Capabilities 
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In the rest of this section, we provide an overview of the proposed approaches for tackling the quantum 
threat when deploying full PQA-based solutions is not an option—for example, because of limitations in 
fielded devices. 

6.1. Deploying Post-Quantum Solutions for RSA-Only Capable Devices 

One of the most challenging issues when it comes to cryptography is to include devices with different 
capabilities, and some of these devices might not be upgradeable. This can be due to software limitations 
(e.g., firmware or applications cannot be securely updated) or hardware limitations (e.g., crypto 
accelerators or secure elements). 

Although composite cryptography cannot be used to secure non-quantum-safe authentications against the 
quantum threat by itself, in case entities and devices do not to support any post-quantum algorithm, we 
identified a solution that can be used to extend the lifetime of deployed devices for the broadband 
industry. 

6.1.1. Fielded Devices and Authentications 

To consider securing fielded devices that cannot be updated to support PQAs, we looked at their current 
capabilities. We researched which classes of quantum-safe algorithms are available and how can we 
leverage them, given today’s hardware constraints, to provide quantum-safe authentications.  

What we found is that especially for constrained devices, the only option at our disposal is the use of pre-
shared keys (PSKs) to allow for post-quantum safe authentications for the various identified use cases. 
We looked at the limitations and how to tackle them when planning for the transitioning. In this scenario, 
the post-quantum PSK (PQP) is used to generate quantum-safe signatures and, in some cases, to also 
provide a “second factor” of authentication for the certificate chain when no PQA support is available. 

To generate quantum-safe signatures, devices can start using the PSK with their device private keys (e.g., 
RSA keys) to produce quantum-safe authentication data; the classic cryptography provides the identity 
information, along with the proof of possession of the classic private key, while the PQP provides the 
security of the message via a symmetric signature. Combining the PSK with the authentication process 
can be done in different ways. A hash-based key derivation function (HKDF) [RFC 5869] can be used 
with the PQP to derive a message-specific key that is then used with an HMAC function to authenticate 
the messages.  

In BPI+ Version 21, because of the use of the Cryptographic Message Syntax (CMS) [RFC 5652], 
combining PSKs with DOCSIS authentication could also be used to provide key encapsulation 
capabilities for delivering authorization keys via a quantum-safe mechanism [RFC 8696]. For previous 
versions of DOCSIS, or where BPI+ V2 is not supported because direct RSA encryption of the 
authorization key is used, additional changes to the protocol messages might also be required. 

Let’s now take a look at two different scenarios and how to address their limitations. The first use case 
assumes that private keys, certificates and crypto capabilities cannot be updated—in this case, we rely on 
traditional crypto to perform the needed setup operations securely before the quantum threat is real. To 
remove the requirement for time-safe deployment, a second proposal is introduced that looks at devices 
whose private keys cannot be updated, but their support for composite crypto and quantum-safe KEX 
algorithm can (e.g., via SSD). 

 
1 The new version of BPI+ was recently introduced in the DOCSIS 4.0 specifications to introduce several 
improvements to the authorization process, such as mutual authentication and perfect forward secrecy. 
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6.1.1.1. Immutable Devices and Quantum-Safe Traditional 
Authentications 

In this scenario, we look at entities and devices whose support for new algorithms cannot be updated—
not even for validation-only operations (i.e., no support for private keys or signing). Because of these 
restrictions, our proposal is to leverage traditional cryptography to distribute per-device PSKs that can be 
leveraged for post-quantum authentications. 

Specifically, our proposal is to enhance the DOCSIS protocol to introduce the possibility to securely 
transfer (or derive) a common PSK between the operator’s network and the device being authenticated 
(i.e., the cable modem or the R-PHY node). Once the PQP is securely delivered to the device, this secret 
can stay dormant until needed for generating quantum-safe signatures. This PSK can be deployed as part 
of the initial registration of devices to the network, or it could be initiated at any time as long as the PQP 
is transferred securely. 

One very important aspect of the solution is to make sure not only that the session parameters are properly 
authenticated via the quantum-safe signature, but that the certificate chain is protected against 
modifications by including it into the original signature. Assuming the PSK is secure, the relying party 
(e.g., the CCap Core or the CMTS) can trust both the signature and identity of the device because of the 
security of the PQP. 

The big limitation here is related to the security of the PSK. Because the PSK has to be transferred or 
derived by using traditional cryptography, an attacker could potentially pre-record the device’s traffic and 
then—when access to a quantum computer is obtained—get access to the PQP by breaking the classic 
KEX algorithm. The attacker would then be able to impersonate any device, even when using the PQP 
when generating signatures. Although a more secure solution is provided in the next section, operators 
can make things difficult for a malicious attacker who is pre-recording DOCSIS traffic to analyze and 
decrypt it at a later time. 

Indeed, operators can deploy keys at random intervals or use procedures for combining new and old 
values (and/or replace them) at random times. An attacker would require knowledge of the whole history 
of the device connectivity to be able to attack its PQP.  

6.1.1.2. Partially Upgradeable Devices and Quantum-Safe Traditional 
Authentications 

When entities and devices can be updated to support new algorithms, but their private keys cannot (e.g., 
they are tied to secure elements that cannot be updated), more secure options can be adopted for 
transferring the PSK. We think that this upgrade path might be the most common for the broadband 
industry given that the possibility to provide secure software updates is built into the DOCSIS protocol 
since its inception. 

In this scenario, we assume that devices have been updated to support composite crypto and a quantum-
safe KEX algorithm, but they cannot update their own private keys. We also assume that the root and the 
intermediate CAs have been deployed with a PQA algorithm alongside traditional ones. 

To protect the PQP against a possible all-powerful adversary that can break the traditional cryptography, 
we share the PQP by using a quantum-safe KEX algorithm. The use of a quantum-safe KEX algorithm 
guarantees that an adversary would not be able to have access to the PQP, even when pre-recording 
encrypted sessions. The use of traditional cryptography still provides the needed secure identity validation 
to make sure the PQP is shared across the right entities. Also, in this case, when generating authentication 
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data, we need to protect the certificate chain because the link between the intermediate CAs and the end-
entity certificate is not yet protected via a PQA. 

When the entity’s certificate can be updated and signed by using a PQA (i.e., the CA signs a new 
certificate for the entity that includes the original “traditional” key of the entity only, and it is signed 
using all the keys in the CA’s composite certificate), the need to sign the certificate chain with the PSK 
can be relaxed. In fact, because the links from the root to the end entity is already secured by the use of a 
PQA, no additional use of the PSK to protect the device’s or CAs’ identities is needed. 

7. Conclusion 
In this paper, we have examined the quantum threat, the current status of post-quantum cryptography and 
the associated standardization efforts. We also describe how the quantum threat will affect the various 
classes of algorithms we use today within the broadband industry.  

The core of this paper provided a description of our novel approach based on composite cryptography, 
and how it can be used to address the quantum threat. Specifically, we provided the technical description 
of the composite cryptography building blocks (CompositeKeys and CompositeSignatures) and 
showed how to integrate them in every aspect of modern trust infrastructures and associated services (e.g., 
certificates, CRLs, OCSP). We then explored our proposal for a quantum-resistant and backward-
compatible DOCSIS PKI and the use of PSKs to secure entities and devices that will not have access to 
quantum-resistant cryptography. 

Our future efforts will be aimed at working on open source tools and test environments. The quantum-
safe test services deployment will be paramount for security experts and researchers to experiment with 
combining different quantum-resistant algorithms and study their interactions with our protocols. The 
selection of the protocols and their parameters will pave the road to quantum-resistant DOCSIS 
implementations and deployment. 

Ultimately, the takeaway message from our work is that the quantum threat is closer that many people 
think, and we need to be already preparing our infrastructures and protocols for the upcoming revolution. 
Not only quantum computers will become more capable of handling more complex problems; the 
advancements in quantum-based algorithms put everybody’s security and privacy at risk.  

Although the deadline for planning to address this new class of threats is fast approaching, our work 
shows how the broadband industry can already start to address them today and lead the transition to 
quantum-safe cryptography to be able to continue to protect users’ privacy and securely deliver top-
quality services. 
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Abbreviations 
 

AES  Advanced Encryption Standard 
BPI+ Baseline Privacy Plus Interface 
CA certification authority 
CCAP Converged Cable Access Platform 
CRL certificate revocation list 
CSP certificate service provider 
DER Distinguished Encoding Rules 
DOCSIS Data Over Cable Service Interface Specifications 
EC Elliptic-Curves 
ECC Elliptic-Curves Cryptography 
ECDH Elliptic-Curves Diffie-Hellman 
ECDSA Elliptic-Curves Digital Signing Algorithm 
EE end entity 
DH Diffie-Hellman 
HSM hardware security module 
IETF Internet Engineering Task Force Standards Organization 
ISBE International Society of Broadband Experts 
KEM key encapsulation mechanism 
KEX key exchange (algorithm) 
MLWE module learning with errors 
MLWR module learning with rounding 
MSIS module short integer solutions 
NIST National Institute of Standards and Technologies 
NTT Number Theoretic Transform 
PKC public-key cryptography 
PKCS#10 Public Key Cryptography Standard 10 (certificate request) 
PKCS#11 Public Key Cryptography Standard 11 (hardware interface) 
PKI public-key infrastructure 
OCSP Online Certificate Status Protocol 
PFS perfect forward secrecy 
PQA post-quantum algorithm 
QC quantum computing 
R-PHY  Remote RF Layer (PHY) 
R-MACPHY Remote Media Access Control and RF Layer (PHY) 
RSA Rivest-Shamir-Adleman (cryptosystem) 
SHA-256 Secure Hash Algorithm 2 (256-bit) 
SHA-3 Secure Hash Algorithm 3 
SCTE Society of Cable Telecommunications Engineers 
SE secure element 
SSD secure software download 
TLS Transport Layer Security 
UOV unbalanced olive-vinegar (construct) 
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