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1. Introduction 
The networking software industry is experiencing an accelerating technology shift from centralized data 
center application delivery models to a distributed edge computing paradigm. In this new computing 
paradigm, cloud infrastructure and services are delivered from multiple distinct and geographically 
distributed locations in closer proximity to the end user or data source. The drivers for this shift are the 
emergence of advanced Enterprise use cases & applications, network infrastructure convergence and 
operator digital transformation initiatives. These applications require deterministic latency and ultra-fast 
response times, distributed processing of large volumes of data near the source and flexible scalability 
across network and computing ecosystems. Included in this transition, the convergence between wireless 
& wireline, combined with increased hub-site network capacity in cable Distributed Access Architectures 
(DAA) and the drive to centralized mobile Radio Access Networks (cRAN), are making distributed edge 
computing more feasible for operators. 

This computing paradigm is enabled by cloud-native principles and application containerization & 
orchestration technologies that promise new operational efficiencies and agility to develop innovative 
services. We see this trend across Enterprises and network operators that want to accelerate software 
delivery while maintaining a consistent quality of experience from applications & data to devices and 
end-users alike, independent of location. 5G and high-speed fixed broadband connectivity services are 
acting as catalysts to enhance the underlying network performance and agility using a cloud-native 
services-based architectures. This in turn poses a challenge of operationalizing an applications-first 
approach in the operator’s network to facilitate open, modular, and portable multi-vendor networking 
software across their distributed edge compute infrastructure platforms.   

Advanced cloud-based management & orchestration systems, however, were not designed for distributed 
edge computing. These systems were optimized for very large compute environments where server 
clusters are co-located and mesh inter-connected by an over-provisioned data center fabric. In edge 
centric architectures, compute & network nodes are geographically distributed and inter-connected by 
multi-layer access and aggregation networks with varying degrees of capacity, latency, and flexibility. 
This creates the opportunity to adapt and optimize the use of containerization and cloud orchestration 
technologies to meet the needs of embedded real-time network functions and edge business applications. 

This paper will delve into emerging edge computing infrastructure architectures, available open-source 
software to enable distributed edge computing, and key technical considerations to accelerate adoption of 
new software-based operational methods. This paper evaluates the use of open-source projects from the 
Linux Foundation Edge (LF Edge) and Cloud Native Computing Foundation (CNCF), such as Akraino 
Edge Stack and Kubernetes, to build and operationalize distributed edge computing networks. This paper 
will also explore how hyperscale cloud platforms are addressing this technical challenge and how cable 
MSOs can leverage a rich technology ecosystem to architect open edge technology systems, implement 
software defined network operations, and monetize new edge-based business services. 

2. Drivers for Access Network Modernization 
In the ever growing quest for delivering higher reliability, higher speed connectivity services to 
residential and business customers, MSOs are overhauling their traditional Hybrid Fiber Coax (HFC) 
networks along three key dimensions:  (1) disaggregation and distribution of vertically integrated, 
proprietary functions of the CMTS previously located at headend or hub locations; (2) deeper fiber-based 
Ethernet/IP connectivity to remote access infrastructure nodes where MAC and PHY layer processing 
occurs; (3) convergence of service functions & infrastructure for both wireline and wireless services.  
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Functional disaggregation based on the DOCSIS DAA specifications allow for splitting of MAC & PHY 
layers from the CMTS, driving either a Remote MACPHY Device (RMD) or a Remote PHY Device 
(RPD) deeper into the access plant (Levensalor & Stuart, 2020). DAA extends the digital processing of 
the headend and hub domains out to fiber nodes, pushing intelligence closer to the end user and offering 
the opportunity to leverage generalized compute platforms, NFV and SDN. This in turn facilitates flexible 
deployment, optimized infrastructure and automated operations which would otherwise be increasingly 
complex due to the distributed nature of this architecture (Evolution to Distributed Access Architectures, 
n.d.). This is illustrated in Error! Reference source not found.. Additionally, since these locations are 
typically constrained in space and power, there is a need for light-weight, high-performance compute 
resources and efficient virtualization technologies such as Linux containers to maximize use of CPU and 
network resources.    

Pushing fiber and Ethernet/IP connectivity deeper in the access plant has the effect of increasing the 
available access network capacity to a smaller number of homes or businesses in a service group. This in 
turn allows operators to boost service bandwidth and reliability, while guaranteeing SLAs via increased 
levels of visibility and control in the physical network underlay. A unified and automated physical & 
virtual network underlay is a critical component of orchestrating edge compute & storage infrastructure in 
support of dynamic infrastructure and overlay end-user applications and services (The Converged 
Interconnect Network, 2020). 

 

 
Figure 1 - MSO transition to DAA and fiber deep 

Finally, Packet Core functions delivered via a virtualized CCAP such as user management and 
authorization are non-data/user plane software-centric capabilities that can be delivered out of a 
centralized location leveraging the economies of scale offered by cloud-based IT platforms. These 
functions can be placed in headend or regional data center locations but would necessitate a unified 
approach to manage the end-to-end lifecycle of open, modular, multi-vendor software components that 
ran as a monolithic application in a single-vendor CMTS system. This comes with the added benefit of 
enabling the convergence of service delivery functions across different access medium, such as FTTH and 
5G RAN. 
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3. Cloud Native and Edge Computing Architectures 

3.1. Distributed Edge Computing 

As the cost of commodity computing hardware continues to decline and smart devices and sensors shrink 
in size, it becomes economically feasible to build connected infrastructure that is continuously monitored 
and optimized using data-driven insights and intelligent automation systems. In addition, 5G technology 
promises to enable the interconnection of tens of billions of devices, sensors, and things, so we are going 
to see an exponential increase in endpoints coming online and generating massive amounts of data that 
need to be processed closer to its source. 

When we overlay this technology landscape with new kinds of business oriented real-time, low-latency 
applications, like self-driving cars, robotic manufacturing, industrial process automation, and 
augmented/mixed reality, it becomes critical to segment the application space based on bandwidth and 
response time requirements. See Figure 2 - Edge Application Segmentation. This high-level segmentation 
provides a framework to think about applications in terms of its functional components, communications 
requirements and where these components need to be located to meet the end user experience. Since most 
public cloud regions are within 60-100 msec of high-density population centers, it becomes clear that a 
good subset of these high intensity applications is not feasible with today’s centralized cloud model.  

 

 
Figure 2 - Edge Application Segmentation 

Centralized cloud computing has been a huge success by all measures, and businesses continue to migrate 
both generic IT and specialized workloads to public clouds. These businesses include Communication 
Service Providers (CSP) and network operators who are embracing cloud-native technologies to virtualize 
their networks, modernize operations, accelerate the pace of service innovation, and dramatically reduce 
costs. The resulting cloud workloads range from business-oriented IT applications such as planning, order 
management and service assurance, to network-centric software applications such as network service 
orchestration, virtualized routing and other CPU-based data / user plane functions. These workloads will 
be distributed across heterogeneous central and edge-based data centers that require a unified approach 
for software management and operations. 
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On the technology front, one of the corner-stone technologies of cloud computing – server virtualization 
or virtual machines – is increasingly being replaced by Linux container technology which has three 
compelling advantages: rapid workload deployment, better CPU utilization and lighter-weight resource 
footprint. This container technology supported by tools like Docker have the added benefit of simplifying 
application life-cycle, from creation and packaging, to testing and delivery across any infrastructure 
running a Linux OS. 

These trends are helping drive an industry shift to create a more distributed and infrastructure optimized 
computing model, which moves cloud-style consumption of compute, storage, and network resources 
closer to the end-user or data source. We call this new computing paradigm Distributed Edge Computing 
(DEC), whereby a software-centric approach facilitates dynamic placement of application components 
across a heterogeneous environment of connected compute & storage resources, while abstracting the 
complexities of operating these resources from the application developer. These resources may reside on 
a smart sensor powered by an ARM processor, an IoT gateway running on a network appliance or a data 
center located within a hub location of an MSO network. See Figure 3 - Edge Locations.  

This DEC approach is also fundamental in the move towards virtualization and distribution of CMTS 
functions that must be dynamically, but intelligently placed across Hub and access infrastructure with the 
right resources to meet performance requirements, such as Low Latency DOCSIS (LLD) specifications. 
LLD targets 1ms queuing and overall less than 10 ms round trip time in the access network (Whie, 
Sundaresan, & Briscoe, 2019). 

 
Figure 3 - Edge Locations 
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3.1.1. Properties of Distributed Edge Computing 

There are in fact multiple names and definitions of this style computing, so we propose that there are 
three key properties shared across the spectrum of edge-centric computing architectures. 

• Location:  physical location of a compute node in a distributed environment defines 
communications latency, data sovereignty and ability to perform specialized hardware-
assisted processing. This covers a spectrum of compute capabilities from a sensor/device in a 
mining field to customer premise and operator network infrastructure hosting network and 
application services within a metropolitan area. 

• Heterogeneous cloud:  distributed edge computing is an optimization of central cloud 
computing, and as a result it inherits properties such as shared resource pooling, elasticity, 
and application agnostic infrastructure. This is often overlooked but it emphasizes the need to 
support a holistic and cloud-native approach to containerized application delivery and multi-
location data processing according to resource constraints, performance & quality of 
experience. 

• Network diversity: as application components and supporting resources become more 
distributed, the underlay communications network becomes more diverse, and increasingly 
critical, in terms of protocols, technology domains, application awareness and transport 
flexibility. This is in contrast with network applications that run within a server cluster in the 
same core data center.  

 

3.2.  Cloud Tiering Reference Model 

3.2.1. 3-tier Cloud Model 

From a software application standpoint, edge computing infrastructure fits into a 3-tier system, where the 
edge tier is located between the hyperscale cloud and devices to perform specialized functions. This 3-tier 
system limits the extent to which device level applications need to communicate with a centralized cloud 
for active data storage, processing and other services, as illustrated in Error! Reference source not 
found.. 

 
Figure 4 - Three-tier Cloud System 

When this edge tier is missing, which by and large is the norm today, the system becomes a traditional 
cloud computing environment whereby all the application intelligence is centralized and possibly assisted 
by smart devices. From an application perspective, the edge tier can play a dual role to deliver network 
services and application services. In a 5G RAN, the edge can host radio signal processing functions and 
user plane functions (UPF) for local traffic breakout and termination at the application layer. Another key 
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role is to bring compute resources closer to the device tier to improve application response time, reduce 
unnecessary data transfers to the cloud tier and enhance communications security.  

3.2.2. Elements of the Edge Tier 

The edge tier’s functional role also varies according to the capabilities and ownership of the underlaying 
communications network. The edge compute tier sits between the enterprise LAN and operator’s metro 
core to leverage last mile networks and enable local traffic breakout functions for general traffic off-load, 
time-sensitive end-user applications as well as network-centric protocol processing supporting higher-
level applications. As a result, the edge tier can be further decomposed into the Device Edge and the 
Infrastructure Edge as illustrated in Error! Reference source not found..  

The purpose of the Device Edge is to host a Device Edge Cloud or sometimes referred to as On-Prem 
Edge Cloud where enterprise owned devices can benefit from proximity and security of an on-net cloud 
environment for local application processing and storage serving the enterprise environment. This is 
particularly useful where enterprises need to retain control of their network traffic and where their data is 
processed and stored.   

The Infrastructure Edge is located on the operator side of the last mile network and typically hosts an 
Edge Cloud environment for Telco-centric workloads, or what is commonly called a Telco Cloud. These 
environments are owned and operated by last mile network operators and are becoming increasingly 
attractive to offer internal network services, shared infrastructure wholesale services and enterprise 
business services in collaboration with hyperscale cloud providers. The infrastructure edge is where we 
see the potential for MSOs to differentiate their network services by creating access on-ramps onto an 
edge cloud for running gaming, AR/VR, Smart City IoT and other real-time analytics intensive 
applications near the data source.   

The Edge Cloud represents not just an architectural choice, but also a system that encompasses storage 
and compute assets located at the edge of the network, and interconnected by a scalable, application-
aware network that can sense and adapt to changing needs, securely and in real-time. 

 
Figure 5 - Edge Cloud Network Reference Model 
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From an infrastructure perspective, the same cloud networking model can be applied to an MSO network, 
with the device tier defining the subscriber’s domain and the edge tier encompassing the outside plant 
passive equipment, RPD/RMD nodes as well as hub locations hosting vCCAP systems. The hub and 
headend locations are equipped with data center infrastructure such as server clusters and cloud-native 
platforms to deliver the compute and networking environment for virtualized packet core and video 
functions. These are considered edge data centers due to proximity to the subscriber, footprint 
requirements and variety of network functions requiring specialized hardware depending on DAA design 
choices. 

On the other hand, RPD/RMD nodes are not multi-server clusters, but they can be considered generalized 
compute node extensions of the infrastructure at the hub or edge data center, and therefore can participate 
in the end-to-end orchestration of resources allocated to user plane network functions in the last mile. Due 
to the nature of MAC/PHY processing functions, such as FEC and MAC scheduling, these nodes can 
benefit from having specialized accelerators like GPU, TPU, FPGA and smart NICs with very efficient 
techniques for pooling and scheduling micro-workloads is a distributed fashion. These edge nodes are 
typically in space and power constrained locations but can also be deployed in edge data center 
environments where a remote CMTS is desired due to population density. 

One key property of these edge nodes and small edge data centers is their highly dispersed physical 
locations, which require high degrees of autonomous operation and resilience. Given the underlying 
Ethernet/IP fabric, there is an opportunity to turn a mesh of edge nodes and data centers into one pool of 
resources for dynamic orchestration of virtualized edge functions, when and where they are needed, 
thereby reducing the total cost of ownership for the operator.  

 

4. Cloud Native Technologies 

4.1. Cloud Native Applications 

With the development and proliferation of hyperscale cloud platforms from Amazon, Microsoft, Google 
and others, a new kind of software development and delivery paradigm has emerged called cloud native 
applications. This approach is based on the principle of decomposing an application into a set of 
microservices that can be developed and deployed independently to accelerate & optimize the DevOps 
life cycle of software systems. These microservices are packaged into light-weight containers which are 
scheduled to run on compute nodes by a container orchestrator. There are many advantages of containers 
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vs virtual machines, but the principal ones are portability, low resource usage, dynamic horizontal 
scalability, and fast restarts. 

Cloud native applications are built to run and scale in public, private, and hybrid clouds and they use the 
following constructs to deliver on the promise of a developer-centric approach to enable cloud scale 
agility, scalability and flexibility of software systems. See Figure 6 - Cloud Native Constructs. 

 

 
Figure 6 - Cloud Native Constructs 

 

Containerization is an operating system virtualization paradigm in which the kernel supports multiple 
isolated user space instances or namespaces. From an application perspective, a container is an executable 
binary packaged with its lib dependencies and intended for execution in these private namespaces with 
resource constraints such as CPU, memory and storage. The lifecycle of a container is managed by what 
is commonly called a container runtime.  There are several container runtime implementations, each with 
their own approach at managing the end-to-end lifecycle of a container.  In Linux, the execution phase of 
a container is generally performed by runc (github.com/opencontainers/runc, n.d.), an Open Container 
Initiative compliant implementation, but alternatives such as rkt, pronounced “Rocket” (coreos.com/rkt/, 
n.d.), are also available.  The configuration and image management are performed by applications such as 
docker, containerd and cri-o which interact with runc.  In an effort to simplify the integration with the 
different container runtime flavours, the Kubernetes Container Runtime Interface (CRI) offers an 
abstraction layer to interact with the underlaying container runtime. 

Using containers instead of virtual machines increases CPU utilization and significantly reduces disk 
space requirements. This is because containers running on the same host share the operating system (OS) 
while virtual machines have their own OS, providing complete isolation between apps. This property 
makes containers a more attractive choice for running software-based network functions and applications 
at the Edge Tier’s compute, power and space constrained hardware.  

Service mesh is a dedicated infrastructure layer for service-to-service communication. This infrastructure 
includes not only network connections between containers and services they form, but also a means of 
discovering services. This layer makes possible direct communications between containers under policy 
control (therefore the term mesh). 

Microservices are loosely coupled fine-grained services with lightweight communication protocols. This 
architectural style was developed as an alternative to large, tightly coupled services. It brings not just 
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modularity and scalability vital for applications at the edge cloud, but also supports incremental 
integration with legacy systems and distributed, parallel development of software (Namiot & Sneps-
Sneppe, 2014). 

Immutable infrastructure is the concept of never requiring server infrastructure to be modified to support 
new requirements, but rather new servers are built to replace the old ones. This approach reduces 
operational complexity by eliminating the need to deal with differently upgraded systems and makes 
possible quick and fully automated recovery from faulty software that was rolled out to customers. Also, 
when implemented as the foundation for container images and their workloads, immutable infrastructure 
removes from consideration the difference between development, test, and production environments. 

Declarative Application Programming Interface (API) is a design style that avoids specifying how to 
perform described functions, instead, it describes what needs to be done. This style allows understanding 
and consuming of services without knowledge of the services implementation. This reduces integration 
complexity and promotes service modularity and scalability, simplifying operations. 

Cloud native applications consist of loosely coupled, resilient, manageable, and observable container-
based microservices. DevOps teams use automation to make high-impact changes frequently and 
predictably with minimal effort within large scale data centers. Applications designed for the Edge Tier 
infrastructure use the same cloud-native principles, but must take into account the resource constraints 
and location context characteristics mentioned in Properties of Distributed Edge Computing. 

Edge Native applications are impractical or undesirable to run in centralized data centers at public, 
private, and hybrid clouds. These applications are developed with proximity and specialized resources in 
mind as well as different security, compliance and networking requirements due to location. Edge-native 
applications use the infrastructure edge to provide large-scale data ingest, data reduction, real-time 
decision support, bandwidth savings or to retain sovereignty over critical data. 

In the spectrum between Edge Native and Cloud Native Applications, Edge Enhanced is a set of 
applications that can operate in a centralized data center, but would gain performance, typically in terms 
of latency, or functionality advantages when operated using edge computing. These Edge Enhanced 
applications may be adapted from existing cloud native applications or may require no changes if the edge 
cloud environment is abstracted by the container runtime engine and associated container networking 
facilities. 

4.2. Virtual and Cloud Native Network Functions 

Cloud-native principles can be applied to enterprise and consumer-oriented applications, as well as 
communications and networking software that we refer to as Telco or MSO workloads. These workloads 
can be broadly classified according to the function and services offered in the network operator’s stack: 

• Management: Business Support System (BSS) and Operations Support System (OSS) are 
software solutions that help operators manage the customer experience, network offerings and 
network operations for planning, engineering, ordering, activating, and assuring communications 
services. This type of application is non-real-time and does not interact with the user / data plane 
& network traffic directly.  

• Control: network management, signaling & control plane software solutions provide network 
device inventory, discovery, configuration, performance, fault and resource management 
capabilities in support of user / data plane services, but are not directly involved in processing the 
subscriber’s / customer’s traffic. This includes systems such as user authentication & session 
management, service policy enforcement, and DHCP services for IP address assignment. These 
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network functions are considered management and control functions that can be deployed as 
virtualized or containerized applications without significant differences in network user plane 
performance. 

• User plane: these are multi-layer network traffic processing functions that operate at the network 
layer and below for the purposes of packet inspection, encapsulation, transformation, QoS 
treatment, forwarding, and filtering among other functions. These are the most-real-time intensive 
network functions that can operate in a subscriber’s cable modem or uCPE, RPD/RMD node or 
headend location. This is the type of networking software stack that is impacted the most when 
migrated to a virtualized or containerized environment due to its performance and reliability 
requirements, but more importantly the life-cycle management processes and techniques used by 
the vendor and network operator community.  

Network Function Virtualization (NFV) has been in production networks for several years now, including 
data plane functions such as virtual routing (vRouter), virtual firewall (vFW) and virtual Broadband 
Network Gateway (vBNG). These software-based data plane functions, or Virtual Network Functions 
(VNF), evolved from their dedicated physical appliance counterparts. When a network function is 
implemented as a software stack that runs in a virtualized compute environment, as a Virtual Machine 
(VM), it is referred to as “virtual” or “virtualized network function” (VNF). In many cases, several VNFs 
will operate in an edge cloud as part of a network service chain that provides a composite service to the 
end customer.  

Network functions can run inside a virtual machine or a container. When a network function is built and 
deployed as a cloud-native application it is referred to as “cloud native network function” (CNF) or 
“containerized network function”. See Figure 7 - VNF vs CNF. This means that the software is 
distributed as a container image and deployed, managed, and orchestrated by tools like Docker and 
Kubernetes. Both VNFs or CNFs support lifecycle operations that enable frequent and automatic 
deployment and updates of the software; this is fundamentally different from traditional processes where 
network operations update network elements on a controlled and infrequent basis.  

 
Figure 7 - VNF vs CNF 

It is important to note that even though the software capabilities of a VNF may be containerized, the VNF 
itself is not orchestrated as a containerized application because the delivery mechanism for deployment is 
a VM image. In other words, containers inside the VM are not exposed to an external container 
orchestration system. Container orchestration or lifecycle management inside a VNF is typically 
handcrafted by the VNF vendor using tools like Docker compose and therefore container resource 
management is limited to the resources allocated to the VNF instance at deployment time. The 
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implication is that mechanisms for the operator to deploy, scale, monitor and heal these software-based 
network functions are very different and they operate at different abstraction levels, VM-based VNFs 
running on virtualization systems such as OpenStack or VMware vs container-based CNFs running on a 
container runtime such as Docker and orchestrated by Kubernetes.  

These differences are critically important at the infrastructure edge where real-time user plane functions 
need to make optimal use of resources and require direct access to acceleration hardware, where 
containers can be much more efficient. Another key consideration for edge network functions is the 
location of the control plane responsible for lifecycle operations across a distributed set of compute 
elements hosting VNFs or CNFs. In the case of containerized functions, this control plane is increasingly 
based on Kubernetes which is based on a collocated server cluster concept. More on this in the next 
section, but the reliability and make-up of underlaying network infrastructure will impact the control 
plane design. 

4.3. Container Orchestration 

4.3.1. Kubernetes 

Kubernetes is one of the most widely used container orchestration and management platforms in the 
Enterprise IT industry (Alusha, 2019).  The rise of Kubernetes (K8s) has enabled cloud providers to offer 
managed K8s services that allow enterprises to create a hybrid / multi-cloud environment for their 
applications. K8s is an open-source system for automating deployment, scaling, and management of 
containerized applications (Kubernetes, automated container deployment, scaling, and management, 
2020). K8s simplifies the deployment of scalable, distributed applications by managing the lifecycle of 
containers, including scheduling, load balancing and distribution across different server nodes. 

Kubernetes was designed for large scale cloud environments, and it works well out-of-box only when the 
infrastructure edge consists of one or more Kubernetes clusters and their master nodes have a fast and 
reliable connection to worker nodes. The Kubernetes master node (or control plane) is relatively heavy, 
and while its worker nodes are less resource demanding, they are still not lightweight at all. While 
specific sizes vary depending on its distribution and version, Kubernetes best practices for running large 
clusters (Kubernest Best Praactices, n.d.) recommends at least 4 GiB of RAM and a single core Intel 
Xeon CPU for a master node that controls up to 5 worker nodes. When the number of nodes grows, so 
grows the RAM and CPU requirements for the master node, getting to 60 GBytes and 36 Intel Xeon CPU 
cores for more than 500 nodes. 

A Kubernetes cluster consists of the components that represent the control plane and a set of machines 
called nodes, sometimes referred to as worker nodes (Kubernetes Overview, n.d.). See Figure 8 - 
Kubernetes Components, taken from (Kubernetes Components, n.d.).  

A pod is the smallest scheduling unit in Kubernetes and represents a set of containers that are tightly 
coupled, share resources and therefore run in the same worker node. Kubernetes runs workloads by 
assigning pods to nodes based on the resource usage and limits from the application. Each pod has its own 
IP address, and a default Kubernetes control plane runs its own DNS service for service to address 
resolution. 
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Figure 8 - Kubernetes Components 

The Kubernetes control plane (master node) consists of: 
• the database (etc. by default) that stores all cluster data,  
• the API server (kube-api-server) that exposes the Kubernetes API and serves as its frontend, 
• the scheduler (kube-scheduler) that watches for newly created pods and selects a node for them to 

run on, 
• the controller processes runner (kube-controller-manager) that runs node, replication, endpoints 

and other controllers responsible for managing different elements of the cluster, 
• the cloud-specific processes runner (cloud-controller manager) that runs processes specific to the 

cloud provider, 
• for high availability deployments, the master node is configured on three separate machines. 

The Kubernetes data plane (worker node) consists of: 
• kubelet is the agent that accepts pod specifications from the control plane and runs them on the 

local container runtime (e.g. docker), 
• kube-proxy is a network proxy that implements the Kubernetes Service concept, where one or 

more pods can sit behind a network service for load balancing purposes. 

Kubernetes uses Network Plugins that run at the node level to configure container & pod network 
interfaces in the Linux OS and perform IP address management. By default, the kubelet is assigned with a 
plugin that supports a cluster-wide IP network. Container Network Interface (CNI) is a CNCF project that 
provides the specification and tools required to implement plugins to manage the allocation and 
deallocation of network resources for a container.  Kubernetes supports plugins that adhere to the CNI 
specification and support can be extended as required by introducing new plugins for specific network 
functionality such as supporting container communications over VXLAN and MACVLAN 
(github.com/containernetworking, 2020).  

Vanilla container-level networking is not suitable when orchestrating containerized data plane network 
functions (CNF) in a service chain or when more complex network overlays are required, such as creation 
and management of VXLAN tunnels that extend beyond a single Kubernetes cluster. Network Service 
Mesh is a cloud-native project that adds network capabilities to the Kubernetes ecosystem to enable 
dynamic cross-connections between local and remote CNFs (network service mesh, 2020).  It offers an 
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API to establish connectivity between network services in an abstract way and provides policy-based 
service function chaining. 

 

4.3.2. Kubernetes Distributions 

Since a default Kubernetes installation (often referred to as “vanilla” Kubernetes) cannot be used without 
installing additional components, it is recommended to use one of the free or commercial Kubernetes 
distributions. A well-chosen Kubernetes distribution instead of the “vanilla” one reduces the operator’s 
dependency on Kubernetes experts and offloads a lot of installation and configuration work, this is 
definitely a preferable choice, at least until the operator develop in-house expertise and automation tools 
with Kubernetes. A broad categorization of distributions is illustrated in Figure 9 - Kubernetes 
Distribution Models. 

There are several dozen Kubernetes distributions recognized by the (CNCF), and it is recommended to 
select from this list according to the operator’s requirements (CNCF Cloud Native Landscape, n.d.). We 
describe a couple of distributions below that are relevant for edge cloud. 

 
Figure 9 - Kubernetes Distribution Models 

4.3.3. Vanilla Kubernetes Distribution 

Kubernetes sources are available at GitHub (https://github.com/kubernetes/kubernetes) and many 
organizations take this source “as is”, build it for different platforms and distribute it without any 
significant addition. This form of distribution makes it more convenient than building it from the source 
and has a clear correlation between such distribution and a tagged Kubernetes version (see 
https://github.com/kubernetes/kubernetes/tags). Canonicals “Charmed Kubernetes” distribution 
(https://jaas.ai/canonical-kubernetes) is an example of a vanilla distribution. This distribution has broad 
applicability across Telco and MSO workloads without specialized compute requirements for containers. 

4.3.4. Kubernetes with Value-add Capabilities 

Some commercial organizations take the Kubernetes source and add significant functionality to it, making 
a commercial distribution with dedicated support. Kubernetes distributions such as Red Hat OpenShift 
(https://www.openshift.com/) and Rancher (https://rancher.com/) provide installers for fully automated 
cluster deployment as well as abstractions and tools for DevOps processes and CI/CD pipelines.  

Both Red Hat OpenShift and Rancher use special, container-oriented Linux distributions for worker nodes 
(CoreOS and RancherOS respectively). Some of these distributions offer a Cluster API capability to 
manage multiple Kubernetes clusters that can be deployed on-prem, private cloud or public cloud. 

https://github.com/kubernetes/kubernetes/tags
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4.3.5. Kubernetes as a Service 

Kubernetes as a service is offered by all major cloud providers, AWS, Microsoft Azure, IBM and Google 
Cloud Platform. In this kind of distribution, the cloud service provider takes care of everything related to 
the Kubernetes version, allocation, and installation of master (control planes) and worker nodes, and all 
the underlying compute, storage and network resources. This type of managed Kubernetes service is 
managed from the cloud providing the ability to unify on-prem and cloud hosted clusters and flexibly 
deploy containers across a hybrid cloud. 

This type of Kubernetes deployment makes practical sense for back-end management workloads that 
oversee an operator’s network but are not suitable for infrastructure edge user plane workloads. In some 
cases, the cloud provider supports edge cloud environments that can be collocated in a hub/headend or 
operator edge data center to run enterprise services or network control plane functions at the metro level. 
When considering this service, one must clearly understand the operational benefits, managed services 
costs and the tradeoffs associated with lack of control and visibility of the underlying infrastructure. 

4.3.6. Lightweight Kubernetes for Edge Cloud and IoT 

A Kubernetes cluster consists of one or more master nodes and one or more worker nodes. Each node has 
Kubernetes binaries that dictate the role and behavior of the node. These binaries come with significant 
overhead, which makes them impractical for certain edge deployments where the underlying hardware is 
limited in compute and memory resources. Lightweight Kubernetes distributions address this class of 
hosting environment by stripping off functionality that is not required in small scale, single node use 
cases. 

One of such distribution is k3s by Rancher built for IoT and edge compute (k3s.io, 2020). This 
distribution builds Kubernetes from a reduced source tree and changes its binaries structure with the 
single goal of making it as small as possible. It replaces the etcd database with reduced storage based on 
sqlite3 and removes in-tree storage drivers and cloud providers. Also, it reduces the memory footprint by 
running many components inside a single process. This results in a “lightweight” distribution that is 
suitable to run both control and user planes on devices with limited resources, making it a great fit for 
Edge Cloud nodes to coincide with RPDs/RMDs. 

Canonical makes another “lightweight” Kubernetes distribution called MicroK8s (MicroK8s, 2020). This 
distribution also targets IoT and edge computing. It makes most of Kubernetes options default, resulting 
in simplified installation, configuration, and updates.  

4.3.7. Kubernetes for Distributed Node Clusters 

One more specialized Kubernetes distribution (or at least its approach) that should be considered. By 
default, Kubernetes requires a reliable connection between its master and worker nodes. KubeEdge is 
designed for environments where this connection may be intermittent and the Kubernetes master node (or 
control plane) is at the Cloud Tier while worker nodes are at the Edge Tier. 

This distribution replaces the worker node’s kubelet software with its own lightweight node agent called 
edged, and adds a special software layer on top of the master node. It changes how a worker node 
communicates with its master node located at the Cloud Tier, enabling it to work across non-reliable 
network conditions which the default Kubernetes control plane cannot tolerate. 
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Consider this alternative when there is a requirement for hosting the control plane in a central cloud 
location. The tradeoff for this is increased complexity and a significant deviation from the default 
Kubernetes, which locks the operator to this specialized distribution. 

 

5. Building out a Distributed Edge Cloud 
It is important to highlight the technical considerations in the deployment of virtualized infrastructure and 
network software applications such as in a DOCSIS DAA network. A proposed framework for this 
discussion is shown in Figure 10 - DAA Orchestration Framework. 

 
Figure 10 - DAA Orchestration Framework 

5.1. Cloud vs Edge Orchestration 

As discussed before, Kubernetes orchestration of containers/pods has some underlying assumptions about 
homogeneity, network underlay and proximity of worker / compute nodes. The Kubernetes scheduler 
needs reliable and fast connectivity to its compute nodes, in this case across the access network to reach 
Hub and RPD/RMD nodes. Kubernetes networking also assumes that the underlying switching 
infrastructure support a flat IP domain interconnecting the physical host nodes.  

There are primarily three design alternatives: 
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1. Define Kubernetes clusters according to homogeneous resource type and functional requirements: 
e.g. nodes with specialized resources to support RPD/RMD functions belong to the same cluster. 
This means multiple edge clouds consisting of either general purpose compute or specialized 
compute & accelerator are managed by different Kubernetes instances. This adds complexity to 
managing distinct clusters, but it allows for independent scaling of cluster and the interconnection 
network 

2. Define Kubernetes clusters according to a flat physical topology of the interconnection network 
and including heterogenous resources within the same cluster, i.e. general and special purpose 
resources. This simplifies the management of the centralized Kubernetes control plane itself, but 
complicates the scheduling algorithms needed to make container/pod placement decisions  

3. Hybrid approach of the above two options to allow for incremental scaling and performance 
management of the network as services and subscriber density increases. 

Similar issues arise with the default deployments of OpenStack because it was not designed for 
distributed edge clouds; resource heavy control planes need to be deployed at multiple locations with 
another management layer required to coordinate between different clouds. An end-to-end network 
service orchestration capability can be used to unify and stitch together services across multiple edge 
clouds.  

5.2. Network Functions and Runtimes  

One of the most important techniques for working with network functions at the edge is to treat them as 
individual building blocks or “microservices” with well-defined interfaces for configuration and user 
plane stitching. This provides operational flexibility to introduce new services and software updates, 
when and as needed, in an automated fashion. 

Whether network function is control or user plane oriented, they will rely on standard communications 
protocols for interfacing with platform services or other network functions. Data transfers using RESTful 
mechanisms is the most widely used style implemented as JavaScript Object Notation (JSON) over 
HTTP/1.1. While this provides simplicity for clients, it does require a web server embedded in the 
network functions. Messaging using Remote Procedure Call (RPC) is protocol agnostic and offers direct 
communication between clients and server applications. Brokered messaging is another alternative 
usually used in high performance publish-subscriber communication models that requires a message 
broker. And lastly for monitoring applications the Message Queuing Telemetry Transport (MQTT) 
protocol is typically used. It is critical that VNF and CNF vendors align on standard protocols and 
interfaces to simplify integration and allow for optimization of messaging systems in the runtime 
environment.  

Selection of the runtime environment for VNFs and CNFs is dependent on whether network functions are 
optimized for central cloud, edge cloud or specialized appliance environments. While these choices 
provide similar deployment agility from a Kubernetes scheduler, the runtime OS, guaranteed priority 
scheduling, and HW acceleration abstraction capabilities are critical for real-time sensitive network 
functions. Servers with accelerators (GPUs, FPGAs) or specialized ASIC-based appliances with 
generalized compute need a high reliability runtime to guarantee network and CPU resources, and provide 
a high-performance data channels between VNF/CNFs. RPD and RMD nodes with limited resources can 
use lightweight Kubernetes distributions and a specialized runtime for access to packet processing, HW 
acceleration features and policy-driven CNF chaining. 
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5.3. Automated Operations & Business Network Intent 

Manual deployment and operation of edge cloud infrastructure is not practical, especially with the scale of 
MSO networks, services and subscribers. Software delivery, VNF/CNF instantiation and replacement 
must be fully automated by a software services, orchestration, and monitoring layer. This is one of the 
reasons Kubernetes adoption has risen quickly; changes in the infrastructure, application scale up/down 
and recovery on failures are fully automated based on application intent provided through a manifest. 

Modern automation tools can be classified as supporting declarative or imperative style of programming. 
With declarative style, the infrastructure is described as “what” needs to be built, vs the imperative – 
“how”. In order to support immutable infrastructure concepts described earlier, a declarative “what” style 
of tools (like Terraform) that support the notion of “Infrastructure As Code” should be used for managing 
infrastructure. This approach decouples infrastructure description from the tools used to build it, making it 
possible to automate across different compute and network systems. This is beneficial to maintain a 
common baseline of infrastructure software across a heterogeneous environment of Headend/Hub and 
remote RPD/RMD nodes. 

A network fabric supporting edge cloud needs a holistic, data-driven closed loop approach that automates 
key business processes that span IT systems like planning, fulfillment and assurance and network 
lifecycle operations such system connectivity & network functions configuration, scaling and healing. 
Describing network intent in the form of operational state allows network algorithms to determine 
whether or not the network is deviating from its intended state and therefore take corrective actions, such 
as proactively re-routing traffic to avoid congestion or alerting the operator of impending network outages 
before they occur. Kubernetes intent-driven orchestration of containers is well suited to support this 
model as long as the scheduling of end-user applications can influence the allocation of the underlying 
network infrastructure, whether physical or virtualized. This enables optimal use of network resources 
based on application needs from core cloud to edge cloud to access.  

One key area that requires special extensions to Kubernetes is the scheduling & placement of 
containerized functions based on not only CPU, memory, and specialized HW availability but also 
networking constraints that exist in a distributed edge cloud environment across headend/hub and remote 
nodes. The basic Kubernetes scheduler assesses in real-time CPU and memory resource requests and 
limits to decide on resource allocation and contention management. This works well in data center 
applications where the cluster fabric is overprovisioned and fully meshed, so placement decisions can be 
made virtually ignoring available bandwidth or effective round-trip-time between nodes. A network 
aware scheduler is required to maintain not only container resource usage and limits for compute and 
memory, but also topological constraints, specialized accelerators, network capacity, packet loss, latency 
and jitter metrics.   

5.4. Application Repositories 

Each application and virtual network function need to be placed in one or more repositories where the 
orchestration layer can retrieve and deploy across the infrastructure. This repository provides a controlled 
place where version-controlled artifacts can be maintained. This capability is vital for mitigation of issues 
that arise after a botched deployment. Automation must be able to restore a system to the last working 
state without network operator intervention. It is highly desirable to have this repository integrated with a 
software development Continuous Integration/Continuous Delivery (CI/CD) process or vendor pipelines 
to accelerate tactical deployment of new features and fixes. 
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Another proven practice in automated software operations is the blue-green model of deployment, where 
two identical software stacks are maintained, with the first (blue) being alive and the second (green) being 
on standby. Switching between stacks should be automated and without any downtime to the end-user or 
network service. When new components are released, they are added only to the green stack which 
becomes operational, while the blue remains on standby. Once the green stack has demonstrated no 
production issues, the blue stack is updated. However, if the green stack fails, then “old” blue stack 
becomes operational, while the green one is taken offline for troubleshooting. 

 

5.5. Undercloud Architecture 

In advanced software-driven networks, there is an expectation that the end-user applications riding over 
the network can influence network behavior and resource allocation to meet QoS, security and reliability 
requirements. The dynamic nature of containerized multi-cloud applications necessitates a flexible and 
intent-driven approach to automatically allocate, configure, monitor and scale compute and network 
connectivity resources between the physical infrastructure underlay and the network functions overlay as 
depicted in Figure 11 – Intent-Driven Undercloud. 

The Physical Infrastructure Underlay (PIU) is made up of all the physical resources installed at 
headend/hub and remote node locations for the transmission, switching and processing of video and data 
services delivered to subscribers. This physical underlay is SDN-controlled and highly instrumented to 
enable high fidelity telemetry to be used by the Containerized Network Overlay (CNO) to ensure network 
applications and functions are meeting the demands placed on them by the End-User Application Service 
Mesh (ASM).  

The CNO is made up of CNFs, and VNFs where appropriate, to deliver network control and user plane 
services such as vBNG, 5GC and UPF, vRouting and vCMTS. Due to the multi-layer nature of the 
Converged Interconnect Network (CIN), a Network Service Mesh (NSM) associated with the networking 
Kubernetes clusters can be used to drive policy-based service chaining and configuration of the CNO and 
PIU layers. These service chains, both control and user-plane centric, support specific services that are 
specified as “network intent” by the Application Service Mesh. This technique ensures that the CNO layer 
is making closed loop decisions with dynamic network information to operate within the policies 
specified by the operator while maintaining the intent of the network services specified by the ASM. This 
coordination of intents is based on the use of application manifests that specific resource requirements 
and constraints to the Kubernetes control plane. 

It should be noted that the CNO and ASM layers are orchestrated and managed by different Kubernetes 
control planes which may be operated by the network operator or a separate application/cloud provider 
with integration into the operator’s Intent-Driven Undercloud (IDU) and direct network peering into the 
Headend/Hub sites.  

The Intent-Driven Undercloud (IDU) is a policy layer that maps application networking intent into a 
Network Service Mesh (NSM) intent that oversees multi-domain, multi-vendor, multi-layer functions 
such as available inventory and capacity of resources, resource management, orchestration and 
monitoring of end-to-end connectivity services. The IDU initiates real-time deployment & configuration, 
automatically allocating physical compute, store and network resources and stitching an end-to-end 
connectivity service that supports the CNO layer. 
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Figure 11 – Intent-Driven Undercloud 

 

5.5.1. Undercloud Control Plane 

When orchestrating the undercloud with Kubernetes, each cluster is part of a headend/hub data center, 
where the master nodes (or control plane) reside. This control plane site uses the undelay CIN network for 
reliable and fast connections to the remote worker nodes or RPD/RMD nodes. This centralized 
architecture enables the master nodes to be configured for high availability and to scale where compute 
resources are homogeneous and plentiful. 

Two approaches can be used to cluster compute nodes in the DAA network: 

1. Organize clusters by resource type constraints 
2. Organize clusters by physical connectivity constraints 

The first approach, as illustrated in Figure 12 - Homogeneous Resource Scheduler, takes advantage of 
native Kubernetes scheduling features for deploying CNFs within the same pool of resources allowing an 
external end-to-end service orchestration component to abstract the physical topology dependencies in the 
access network and request CNF deployments according to network centric constraints such bandwidth 
availability, latency, packet loss, and jitter. This method allows for independent scaling & replacement of 
cluster nodes, clear separation of concerns between localized compute functions and decentralized 
network connectivity and enables independent scaling of the CIN topology. The end-to-end Service 
Orchestration component is responsible for calculating network paths and ensuring application intent is 
met through the interconnection of physical and virtual/container functions across clusters. 
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Figure 12 - Homogeneous Resource Scheduler 

 

The second approach, as illustrated in Figure 13 - Heterogeneous Resource Scheduler, requires that 
Kubernetes be aware of network topology to make pod scheduling decisions. As discussed before, when 
Kubernetes is used for orchestrating the CNO across a heterogeneous network pool, its scheduler assigns 
pods to remote nodes based on CPU and memory resources only, potentially making sub-optimal 
decisions due to dynamic network latency and performance characteristics that it is not aware of. 

To overcome this problem, the Kubernetes scheduler can be extended with capabilities to make network-
centric decisions (Kubernetes Scheduler Extensions, 2020). This network-aware scheduler can use 
labeling mechanisms across the physical underlay to build a view of network topology, latency & BW 
utilization underpinning worker nodes. Additionally, it can label specialized resources such as FPGAs,  
GPUs and smart NICs to filter and select nodes given the CNF resource requirements. 

 
Figure 13 - Heterogeneous Resource Scheduler 
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This label-based, custom scheduler extension mechanism can be used to place CNFs to highly optimized 
nodes with run-time operating systems, available specialized software as Data Plane Development Kit 
(DPDK), Single-root input/output virtualization SR-IOV and various accelerators. 

5.5.2. Undercloud Resources & Edge Optimized Runtime 

The resource-constrained reality of the distributed edge cloud nodes means careful consideration must be 
given to CPU, memory, and storage requirements for Kubernetes. Since centralization of the control plane 
is possible, the remaining concern is with the runtime environment footprint and Kubernetes agents to 
coordinate with the centralized master. 

We have discussed several options in this paper, including lightweight Kubernetes distributions such as 
k3s, MicroK8s and KubeEdge to address Kubernetes agents running on worker nodes. The other 
challenge is addressing the container runtime itself, as discussed in Virtual and Cloud Native Network 
Functions. This runtime package should be based on a real-time Linux distribution built using the Yocto 
Project (Yocto Project, 2020). 

As mentioned above, highly optimized resource nodes with real-time operating systems and specialized 
software and hardware can be included into pod scheduling decisions using Kubernetes labels and custom 
scheduler extensions. 

Within CableLabs, there is a new initiative, called Project Adrenaline, which is harnessing momentum to 
address the management of heterogeneous accelerators available at different locations in the cable access 
network. This project aims to promote technologies and architectures that enable a distributed & 
heterogeneous edge compute fabric to support dynamic placement of workloads (Levensalor & Stuart, 
2020). The ability to orchestrate workloads and abstract the use of accelerator resources through an edge 
optimized Kubernetes runtime is extremely beneficial for the application developer community; this 
initiative will accelerate application design cycles and deployment of new features and bug fixes, 
independently of the underlying infrastructure allowing for concurrent innovation and cloud-style 
delivery. 

 

5.6. Open-Source Building Blocks 

In previous sections, we have described the use of certain open source software components to build edge 
cloud infrastructure. In this section, we will provide a high-level overview of relevant open source 
projects and pointers for additional information. Open source software greatly reduces the price for 
solutions and components when the same codebase is used by several businesses, and these businesses 
coordinate the development effort and prioritization of features. Several organizations provide a means 
for coordination of development of open source software, usually in the form of a membership. The Linux 
Foundation is one of the largest and best known open source organizations and it includes several 
“suborganizations” with focus on specific areas of technology, one of which is edge. 

5.6.1. LF Edge 

The Linux Foundation Edge was announced in Jan 2019 as an “umbrella organization to establish an 
open, interoperable framework for edge computing independent of hardware, silicon, cloud, or operating 
system” and includes over 30 “Premier” members from the operator, cloud and vendor community and 
over 40 “General” and “Associate” members (Linux foundation edge, 2020). 
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One of the most relevant for cable MSOs is the Akraino Edge Stack project. 

5.6.1.1. Akraino Edge Stack 

The Akraino Edge Stack intends to develop a fully integrated edge infrastructure solution for the Edge tier 
(LFEdge Akraino, 2020). This project consists of two main elements: 

1. Blueprints as declarative configurations of entire software stacks to address specific use cases, 
2. Software for common components declared in blueprints 

The Akraino edge stack is an open-source software stack that improves the state of edge cloud 
infrastructure for operators, service providers and IoT networks. This edge stack can be viewed as the 
runtime and infrastructure layers for VNFs and CNFs. Akraino Blueprints are divided into two groups: 
approved and proposals, that are structured into several families. Each blueprint targets a very specific use 
case and a very specific deployment size, referred to as “Point of Delivery” (Akraino PODs, 2020). 

Each blueprint uses the Akraino reference software stack illustrated in Figure 14 - Akraino Software 
Stack (The New Intelligent Edge - Akraino Edge Stack Overview, 2018). 

 
Figure 14 - Akraino Software Stack 

 

Akraino uses an edge cloud architecture model with the full control plane located at the infrastructure 
edge. A blueprint represents a standard model of deployment for various operator sites: central regional 
and edge. While the blueprints cover a wide range of use cases with Multi-access Edge Computing 
(MEC) and 5G vRAN (Virtualized Radio Access Network) applicable to cable MSOs, there are no 
blueprints to address different control plane deployments. 
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A relevant blueprint for this paper is the Kubernetes-Native Infrastructure (KNI) Blueprint Family. The 
KNI is optimized for Kubernetes-native workloads and also allows hybrid deployments (CNF & VNF) 
using KubeVirt, a technology that allows VMs to run as a pod inside a Kubernetes cluster. There are 
currently two KNI blueprints in progress: 

• Provider Access Edge (PAE) optimized for real-time and high performance vRAN and MEC 
workloads 

• Industrial Edge (IE) optimized for small footprint and low latency for IoT, serverless and 
machine learning workloads 

 

It is noteworthy that KNI uses a commercial Kubernetes distribution called “Red Hat OpenShift” 
(https://www.openshift.com/) and the Cluster API (https://cluster-api.sigs.k8s.io/) to deploy a Kubernetes 
cluster. The Cluster API is declarative and uses tooling to simplify provisioning, upgrading, and operating 
multiple Kubernetes clusters. This makes it much more suitable for the distributed edge computing 
deployments. 

5.6.2. Cloud Native Computing Foundation 

The Cloud Native Computing Foundation (CNCF) hosts open-source software components for cloud 
native applications (https://www.cncf.io/). CNCF hosts Kubernetes, however there are over 1,400 
projects, product, or technologies under the CNCF umbrella, see (CNCF Landscape). It is recommended 
to get familiar with categories of technologies and products and to see how CNCF suggests combining 
them into a solution. 

5.7. Commercial Cloud Platforms for Edge Computing 

In its simplest form integration with a cloud platform is a matter of accessing specific endpoints on the 
internet, but most of cloud platform providers offer more tightly coupled software supporting 
computations at the Edge Tier. 

When looking at this software it helps to understand that the Internet of Things (IoT) was the very first 
use case for edge computing that was offered by commercial and open-source cloud platforms. The IoT 
use case requires very specific cloud-based components (like a thing registry) and messaging protocol 
(MQTT), and Edge Tier nodes usually serve as IoT gateways. Also, this use case requires data processing 
as close as possible to the source. Such processing can be done as a dedicated process at the edge node, in 
the form of a standalone application, a container, a virtual machine or a serverless application. Serverless 
application frameworks are increasing in popularity because they do not require packaging, easily fit into 
event-driven design and use compute resources only when active. 

5.7.1. AWS IoT Greengrass 

The AWS IoT Greengrass consists of a binary that is installed on a node (a Linux server, for instance) at 
the Edge Tier. After installation and registering with the AWS IoT cloud service, it provides MQTT 
messaging service to IoT devices. Messages can be processed right at the node by a serverless application 
(integrated with AWS Lambda service) or forwarded to the cloud for consumption by other AWS 
services. AWS IoT Greengrass also integrates with artificial intelligence software, providing means to run 
models pre-trained at AWS or elsewhere. 

https://www.cncf.io/
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5.7.2. AWS Outpost  

AWS Outpost is a ready-to-use edge cloud infrastructure. It provides several compute, storage and 
networking services that are enough to run an Edge Tier based datacenter. Typically, an Outpost rack of 
server is deployed on the enterprise premise or the operator’s network to peer directly with access 
networks such as 5G and perform real-time edge processing functions. Outpost is offered as a managed 
service and is considered an extension of AWS cloud regions, making it possible to seamlessly deploy 
applications across core and edge clouds.  

5.7.3. Azure IoT Edge 

Microsoft Azure IoT Edge is a binary that extend the Azure IoT Hub to the edge. As AWS IoT 
Greengrass, it can serve as IoT gateway, and can run containers and artificial intelligence software, all 
integrated with respective Azure services. 

5.7.4. Azure Stack Hub 

Microsoft Azure Stack Hub is another ready-to-use edge cloud offer, very similar to AWS Outpost, 
except that it is only a software stack that run on commodity servers. It provides several compute, storage 
and networking services that are enough to offer IaaS and PaaS services at edge locations or local zones. 

5.7.5. Google Cloud Anthos 

Google offers a different approach to enable edge and multi-cloud environments. Google Anthos is a 
control plane and run-time Kubernetes environment that unifies delivery of containerized applications 
across a wide variety of public (e.g. AWS) and private cloud (e.g. VMware) environments.   

6. Conclusion 
Cable operators’ investments to modernize access networks and move towards DAA is opening up new 
opportunities to transform their operations models and differentiate their network services with support 
for edge-centric Enterprise applications. Embracing cloud-native principles and an applications-first 
mindset is critical to the success of this transformation while simultaneously creating new revenue 
streams for Edge Cloud applications. Adapting Kubernetes orchestration and containerization of network 
and application functions are foundational first steps, which when coupled with an Intent-Driven 
Undercloud as defined in this paper, creates an adaptive and application aware network built for dynamic 
scale, business agility, operational efficiency and service innovation. This strategy enables low-latency 
and high bandwidth on-ramps to edge cloud resources at Hubsites and DAA locations where dynamic 
application demands can be satisfied through intelligent placement of network & application topologies.   

 

Abbreviations 
5G Fifth Generation cellular network technology 
AMQP Advanced Message Queuing Protocol 
API Application Programming Interface 
AWS Amazon Web Services 
BSS Business Support System 
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CIN Converged Interconnect Network 
CMTS Cable Modem Termination System 
CNCF Cloud Native Computing Foundation 
CNF Cloud-native Network Function 
CNI Container Network Interface 
CNO Containerized Network Overlay 
cRAN Centralized Radio Access Network 
CRI Container Runtime Interface 
DEC Distributed Edge Computing 
DPDK Data Plane Development Kit 
ENF Edge native Network Function 
GCP Google Cloud Platform 
gRPC gRPC Remote Procedure Calls 
HTTP Hypertext Transfer Protocol 
IT Information technology 
IoT Internet of Things 
IP Internet Protocol 
JSON JavaScript Object Notation 
K8s Kubernetes 
KNI Kubernetes-Native Infrastructure 
KVM Kernel-based Virtual Machine 
LAN Local Area Network 
LF Linux Foundation 
LLD Low Latency DOCSIS 
MAN Metropolitan Ares Network 
MEC  Multi-access Edge Computing 
MQTT Message Queuing Telemetry Transport 
MSO Multiple-System Operator 
NIC Network Interface Card 
NFV Network Function Virtualization 
NSM Network Service Mesh 
OCI Open Container Initiative 
ONAP Open Network Automation Platform 
OPNFV Open Platform for NFV 
OVN Open Virtual Network 
OSS Operations Support System 
PIU Physical Infrastructure Underlay 
POD Point of Delivery 
REST Representational State Transfer 
RMD Remote MACPHY Device 
RPC Remote Procedure Call 
RPD Remote PHY Device 
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VNF Virtualized Network Function 
vBNG Virtual Broadband Network Gateway 
vFW Virtual Firewall 
vRAN Virtualized Radio Access Network 
WAN Wide Area Network 
XML Extensible Markup Language 
YAML YAML Ain't Markup Language 

References 
Akraino PODs. (2020). Retrieved from https://wiki.akraino.org/pages/viewpage.action?pageId=1147248 

Alusha, D. (2019). Cloud-native computing in 5G networks. Oyster Bay, NY: ABI research for 
visionaries. 

CNCF Cloud Native Landscape. (n.d.). Retrieved from CNCF: 
https://landscape.cncf.io/category=certified-kubernetes-distribution&format=card-
mode&grouping=category 

CNCF Landscape. (n.d.). Retrieved from Cloud Native Computing Foundation: https://landscape.cncf.io 

coreos.com/rkt/. (n.d.). Retrieved from coreos.com/rkt/: https://coreos.com/rkt/ 

Evolution to Distributed Access Architectures. (n.d.). Retrieved from COMMSCOPE: 
https://www.commscope.com/solutions/fixed-access-networks/distributed-access-architecture/ 

github.com/containernetworking. (2020). Retrieved from https://github.com/containernetworking/cni 

github.com/opencontainers/runc. (n.d.). Retrieved from https://github.com/opencontainers/runc 

k3s.io. (2020). Retrieved from k3s.io: https://k3s.io/ 

Kubernest Best Praactices. (n.d.). Retrieved from Kubernest.io: https://kubernetes.io/docs/setup/best-
practices/cluster-large/#size-of-master-and-master-components 

Kubernetes Components. (n.d.). Retrieved from Kubernetes.io: 
https://kubernetes.io/docs/concepts/overview/components/ 

Kubernetes Overview. (n.d.). Retrieved from Kubernetes.io: 
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/ 

Kubernetes Scheduler Extensions. (2020). Retrieved from https://kubernetes.io/docs/concepts/extend-
kubernetes/#scheduler-extensions 

Kubernetes, automated container deployment, scaling, and management. (2020). Retrieved from 
Kubernetes, automated container deployment, scaling, and management: https://kubernetes.io/ 

Levensalor, R., & Stuart, C. (2020, July). The Modular, Virtualized Edge for the Cable Access Network. 
Retrieved from Adrenaline™ Project: https://openadrenaline.com/ 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 30 

LF Edge. (2020, June 20). Open Glossary of Edge Computing 2.1.0. Retrieved from LF Edge: 
https://github.com/State-of-the-Edge/glossary/blob/master/edge-glossary.md 

LFEdge Akraino. (2020). Retrieved from lfedge.org: https://www.lfedge.org/projects/akraino 

Linux foundation edge. (2020). Retrieved from Linux foundation edge: https://www.lfedge.org 

MicroK8s. (2020). Retrieved from MicroK8s: https://microk8s.io/ 

Namiot, D., & Sneps-Sneppe, M. (2014). On -Micro-services Architecture. International Journal of Open 
Information Technologies, 24-27. 

network service mesh. (2020). Retrieved from network service mesh: https://networkservicemesh.io/ 

The Converged Interconnect Network. (2020). Retrieved from https://www.ciena.com/insights/white-
papers/the-converged-interconnect-
network.html?aliId=eyJpIjoiMGFuUG9ZeTFwV2djdlR0TyIsInQiOiJsb3hSd05oZnZ4d2V5bGV
ZTXlnVG9BPT0ifQ%253D%253D 

The New Intelligent Edge - Akraino Edge Stack Overview. (2018). Retrieved from https://object-storage-
ca-ymq-1.vexxhost.net/swift/v1/6e4619c416ff4bd19e1c087f27a43eea/www-assets-
prod/summits/24/presentations/21275/slides/Akranio-OverviewOpenStackv2.pdf 

Whie, G., Sundaresan, K., & Briscoe, B. (2019). Low Latency DOCSIS: Technology Overview. Retrieved 
from https://www.cablelabs.com/technologies/low-latency-docsis 

Yocto Project. (2020). Retrieved from https://www.yoctoproject.org/ 

 


	1. Introduction
	2. Drivers for Access Network Modernization
	3. Cloud Native and Edge Computing Architectures
	3.1. Distributed Edge Computing
	3.1.1. Properties of Distributed Edge Computing

	3.2.  Cloud Tiering Reference Model
	3.2.1. 3-tier Cloud Model
	3.2.2. Elements of the Edge Tier


	4. Cloud Native Technologies
	4.1. Cloud Native Applications
	4.2. Virtual and Cloud Native Network Functions
	4.3. Container Orchestration
	4.3.1. Kubernetes
	4.3.2. Kubernetes Distributions
	4.3.3. Vanilla Kubernetes Distribution
	4.3.4. Kubernetes with Value-add Capabilities
	4.3.5. Kubernetes as a Service
	4.3.6. Lightweight Kubernetes for Edge Cloud and IoT
	4.3.7. Kubernetes for Distributed Node Clusters


	5. Building out a Distributed Edge Cloud
	5.1. Cloud vs Edge Orchestration
	5.2. Network Functions and Runtimes
	5.3. Automated Operations & Business Network Intent
	5.4. Application Repositories
	5.5. Undercloud Architecture
	5.5.1. Undercloud Control Plane
	5.5.2. Undercloud Resources & Edge Optimized Runtime

	5.6. Open-Source Building Blocks
	5.6.1. LF Edge
	5.6.1.1. Akraino Edge Stack

	5.6.2. Cloud Native Computing Foundation

	5.7. Commercial Cloud Platforms for Edge Computing
	5.7.1. AWS IoT Greengrass
	5.7.2. AWS Outpost
	5.7.3. Azure IoT Edge
	5.7.4. Azure Stack Hub
	5.7.5. Google Cloud Anthos


	6. Conclusion
	Abbreviations
	References

