

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 1

Convolutional Neural Networks for Proactive Network

Management

Developing Machine Learning Models to Detect and Classify
Impairments in D3.1 OFDM Channels

A Technical Paper prepared for SCTE•ISBE by

Jude Ferreira
Principal Data Scientist

Comcast
215.286.4070

jude_ferreira@cable.comcast.com

Maher Harb
Director, Data Science

Comcast
267.260.1846

maher_harb@comcast.com

Karthik Subramanya
Research Engineer

Comcast
267.260.2289

karthik_subramanya@comcast.com

Bryan Santangelo
Executive Director, Data Eng and Science

Comcast
918.640.8936

bryan_santangelo@cable.comcast.com

Dan Rice
Vice President, HFC Architecture

Comcast
720.512.3730

 daniel_rice4@comcast.com

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number

1. Introduction .. 3
2. Data Collection: OFDM Receive Modulation Error Ratio (RxMER) .. 4
3. Labels and Supervised Learning .. 4
4. Data Preprocessing ... 5
5. Model Evaluation ... 6
6. Convolutional Neural Networks(CNNs) ... 8
7. Modeling .. 9
8. Results .. 10
9. Machine Learning Pipeline ... 11

9.1. Data Lake .. 12
9.2. Compute Engine .. 12
9.3. Integration layer: .. 13

10. Conclusion/Next Steps ... 13

Abbreviations... 14

Bibliography & References .. 15

List of Figures
Title Page Number
Figure 1. Different types of impairments seen in D3.1 OFDM Channels ... 3
Figure 2. Screenshot of the RxMER Pattern Labeling UI .. 5
Figure 3. Number of samples by label (impairment type). ... 6
Figure 4. Distribution of number of impairments/samples ... 7
Figure 5. Convolution Neural Network (CNN) components ... 8
Figure 6. Network Architecture CNN model that had best performance on validation dataset [2] 10
Figure 7. ROC Curves ... 11
Figure 8. Machine Learning Pipeline Layers... 12

List of Tables
Title Page Number
Table 1. Hyperparameters, Ranges evaluated during training .. 9
Table 2. Subset Accuracy, Hamming Loss for models .. 10
Table 3. CNN model with average MER padding - Individual classes performance metrics on validation

data ... 11

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 3

1. Introduction
The signal quality on HFC networks can degrade over time, from an impairment perspective, if not
proactively maintained. Comcast manages hundreds of thousands of miles of network throughout the
world in which we experience a wide array of conditions that can degrade the performance of the
network. From connections loosening and cracks forming, to lines getting cut, destructive energy and
signal impediments are part of maintaining modern networks. Early detection, mitigation, and routing fix
agents efficiently, to the right location, can not only improve customer experience but also enable
operational efficiency.

Adaptive Profile Management Application (PMA) systems continue to be deployed to manage
downstream and upstream network capacity and network stability. However, and perhaps ironically, PMA
systems can mask the degradation of the network, as an inherent function of the optimization and
mitigation process. It therefore has become increasingly important to develop systems that can support
automated Proactive Network Maintenance (PNM) to reduce the impact of network impairments on
customer experience and enable the highest possible capacity and performance.

In this regard, Comcast has invested heavily in data platforms and data science functions across
organizations, to become more data driven and to incorporate Machine Learning (ML) approaches into
the network. In this paper, we will describe the use of Convolutional Neural Networks (CNNs) to identify
network impairments within DOCSIS 3.1 (D3.1) channels with a high degree of accuracy.

Figure 1. Different types of impairments seen in D3.1 OFDM Channels

It is beneficial to classify the various network impairments (shown in Figure 1) as they may warrant
different responses from techs in the field to enable fastest possible Mean Time To Repair (MTTR). In

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 4

addition, clustering of these impairments across geographic locations and network topology may be
exploited to identify the root cause impacting multiple customers that share common points in the
network. Note that the latter requires a second layer model to be built on top of the classification model
described in the paper.

The model we describe improves on the rule-based approaches currently being used to identify Mobile
Wireless Ingress and Sweep Generator patterns. Notifications from the current rule-based model for
detecting Mobile Wireless Ingress are sent across a notification bus to other Comcast OSS tools, to ensure
that technicians are dispatched to the right hubs, network segments, and homes to remediate issues. The
rule-based approach also provides a baseline for evaluation for the ML approaches. We also developed a
real time version of the algorithm that techs can use to check that issues have been fixed after
remediation. The same workflow described in this paper could also be used with alternate CNN-based
models.

2. Data Collection: OFDM Receive Modulation Error Ratio (RxMER)
The underlying data for the model comes from a data collection platform, which acquires telemetry from
cable modems and CMTSs for various performance-related measures, as well as other characteristics,
such as make, model, hardware and software versions. The API platform runs both on pre-determined
intervals as well as on-demand to collect data from the entire access network. Real time use cases are
typically focused to specific groups of cable modems or interfaces with higher periodic rates. The
collection platform also provides synchronous and asynchronous API requests so that response from cable
modems and CMTSs can be returned back to the consumer, sent on a message bus for multiple
consumers, and captured into our data lake.

Comcast supports millions of D3.1 devices. The data collection captures high resolution Receive
Modulation Error Rate (RxMER) data from these devices at regular intervals. The methods described to
identify various impairments for OFDM Channels in this paper are based on this high resolution RxMER
measure per subcarrier (as shown in Figure 1). Modulation Error Ratio is an important measure for
consideration, as it not only picks up on core signal-to-noise (SNR) characteristics but also all signal
imperfections. Therefore, high resolution (high frequency and per-OFDM subcarrier) captures of RxMER
is the primary measure and focus for characterization of impairments.

3. Labels and Supervised Learning
Methods for training models with well labeled data sets are well established and vastly varietal. While
initial attempts focused on non-supervised machine learning methods, such as clustering, to separate out
impairments into similar groups, the results were not promising. Thus, we recognized the need to label a
set of training data to be applied to supervised machine learning methods. Labeling can be labor-intensive
activity that, in this paradigm, would also rely on subject matter experts to examine and classify the
impairments based on their expertise. In order to make the labeling process robust, we developed a
Pattern Labeling user interface (UI) that makes RxMER samples available to labelers. To help capture
impairments, and given that a majority of RxMER samples do not have impairments, the sampling
strategy focused on capturing samples with high variance over OFDM subcarriers. When presented, the
labelers can examine and submit their assessment for the impairments within a few mouse clicks.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 5

Figure 2. Screenshot of the RxMER Pattern Labeling UI

Labels are a critical component to building a good performing classification model. Given the significant
value of enhancing capacity and improving customer experience by being able to identify and
characterize specific impairments, we aimed for a crowdsourcing approach involving field technicians
and other SMEs to generate labeled data using this UI. Once initial models are developed, we plan to pre-
populate the Labeling UI with the impairments predicted by the different models to make the process
more efficient.

D3.1 OFDM Channels are configured to extend from 24 to 192 MHz and often placed in the highest
spectrum of the Hybrid Fiber Copper (HFC) network above the video and D3.0 channels. In many service
groups, some portion of the OFDM channel is outside the HFC design, in what is often referred to as the
“roll-off” spectrum. Given the size of the channels and where the OFDM channel may be located, it is
possible that some cable modems could experience multiple impairments. Thus, the Labeling UI allows a
sample to be labeled with multiple impairments. Also, when impairments exist, the level of severity (low,
medium, high) needs to be specified. Future versions may allow for more nuanced severities. Note that
characterizing severity will likely increase the number of training samples needed to build good models.
The labeling effort is designed such that each sample would get multiple responses from different experts,
to resolve conflicting labels and to build confidence in the label value.

For the models described in this paper, we labeled approximately 4,000 RxMER samples. Severity of the
impairments was not considered while building these proof-of-concept models.

4. Data Preprocessing
OFDM channels in Comcast typically vary in width from 48-96 MHz. This results in an approximate
array of 940-1880 RxMER sub-carrier measurements per cable modem, per poll. Since the algorithms in
consideration of this paper require a fixed input shape, the following options were evaluated:

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 6

• Fixing the width of the spectra to 1,880 by padding the end point with the following options:

o Zeros
o The average MER value
o The last MER value

• Fixing the width of the spectra to a set value (e.g. 900) and applying a smoothing function to
transform the raw input to the fixed length input.

As will be seen in the results section, the option of fixed spectra width of 1,880 with average MER value
performed the best in our experiments.

5. Model Evaluation
The model evaluation strategy uses the typical train/test split, with 80% of the approximately 4k labeled
RxMER samples to be used for training, and 20% kept out for validation. Figure 3 shows the distribution
of samples by impairment. About 1,400 of the sample are normal -- i.e. they contain no visible
impairment -- while the rest are distributed over several categories. Figure 4 shows the distribution of
number of impairments by sample. Approximately 60% of the samples have a single impairment.

Figure 3. Number of samples by label (impairment type).

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 7

Figure 4. Distribution of number of impairments/samples

Since an RxMER instance for an OFDM Channel can have multiple impairments, detecting impairments
is a multi-label classification problem. Predictions for an instance is a set of labels, and therefore the
prediction can be fully correct, partially correct or fully incorrect. This makes model evaluation more
challenging than binary classification problems, where accuracy, precision, recall and receiver operating
characteristic (ROC) curves are typically used as evaluation criteria. In addition to determining accuracy,
precision, recall and ROC for individual classes, we will be using the following evaluation criteria:

1. Exact Match Ratio (subset accuracy) – This indicates the percentage of samples that have all their
labels classified correctly, given by:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸ℎ 𝑅𝑅𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅 =
1
𝑛𝑛
�𝐼𝐼(𝑌𝑌𝑅𝑅 = 𝑍𝑍𝑅𝑅)
𝑛𝑛

𝑖𝑖=1

2. Hamming Loss – This indicates the fraction of labels that are incorrectly predicted, given by:

𝐻𝐻𝐸𝐸𝐻𝐻𝐻𝐻𝑅𝑅𝑛𝑛𝐻𝐻 𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿 =
1
𝑛𝑛
� i = 1|n| xor(𝑌𝑌𝑅𝑅,𝑍𝑍𝑅𝑅)

|𝐿𝐿|

In the formulas above,
• n is the number of multi-label samples
• Yi is the ground truth
• Zi is the prediction
• L is the number of labels

The following are the definitions of Accuracy, Precision, Recall and F1 Score that will be used to
evaluate the predictions of individual classes by a model:

𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇)

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 8

𝑇𝑇𝐴𝐴𝑃𝑃𝐸𝐸𝑅𝑅𝐿𝐿𝑅𝑅𝑅𝑅𝑛𝑛 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

𝑅𝑅𝑃𝑃𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇)

𝐹𝐹1 𝑆𝑆𝐸𝐸𝑅𝑅𝐴𝐴𝑃𝑃 = 2 ∗
(𝑇𝑇𝐴𝐴𝑃𝑃𝐸𝐸𝑅𝑅𝐿𝐿𝑅𝑅𝑅𝑅𝑛𝑛 ∗ 𝑅𝑅𝑃𝑃𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅)

(𝑇𝑇𝐴𝐴𝑃𝑃𝐸𝐸𝑅𝑅𝐿𝐿𝑅𝑅𝑅𝑅𝑛𝑛 + 𝑅𝑅𝑃𝑃𝐸𝐸𝐸𝐸𝑅𝑅𝑅𝑅)

In the formulas above,

• True Positive (TP) – A true positive is an outcome where the model correctly predicts
the positive class

• True Negative (TN) – A true negative is an outcome where the model correctly predicts
the negative class

• False Positive (FP) – A false positive is an outcome where the model incorrectly predicts
the positive class

• False Negative (FN) – A false negative is an outcome where the model incorrectly predicts
the negative class.

6. Convolutional Neural Networks(CNNs)

Figure 5. Convolution Neural Network (CNN) components

CNNs are a class of neural networks that have proven to be extremely effective in recent years in the field
of perceptual problems, specifically image recognition. They can be used to process data that has a spatial
structure. In addition to being used for images that have a 2-D grid, they can also be used for 1-D
structures, such as time series. In our use case, we use CNNs to classify impairments based on the 1-D
RxMER per subcarrier array for OFDM Channels.

….

CLASS 1
CLASS 2
.
.
.

 FULLY
CONNECTED

INPUT CONVOLUTION
 +
NON-LINEAR ACTIVATION

POOLING CONVOLUTION
 +
NON-LINEAR ACTIVATION

POOLING FLATTEN SOFTMAX OR SIGMOID

.

.
 .

.
 .

.

FEATURE DETECTION CLASSIFICATION

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 9

The model architecture is shown in Figure 5. CNNs contain the following components in addition to the
input and output layers:

• Convolutional layers: Convolution layers use filters that perform convolution operations to scan
the input layers with respect to dimensions. Convolution layers perform several convolutions in
parallel, to produce a set of linear activations. Then, each linear activation is run through a
nonlinear activation function, such as the rectified linear activation function, to generate a feature
or activation map.

• Pooling layers: Pooling layers are typically applied after a convolution layer and perform a down
sampling operation. They replace the output of the feature map with a summary statistic, such as
max or average of the nearby outputs.

• Fully connected layers: Fully connected layers are typically present toward the end of a CNN
architecture, and operate on a flattened input where each input is connected to all neurons.

There is no single network architecture, and understanding the network architecture is an area of great
study. CNNs typically have a series of convolutional and pooling layers that are stacked together. The
features that the convolutional/pooling layers detect increase in complexity as we go further down the
network[1]. The convolutional and pooling operations provide translation invariance that uniquely
distinguishes CNNs from other types of neural networks. Invariance refers to being able to recognize an
object even when its appearance varies in some way.

7. Modeling
We experimented with CNN architectures that had between 1-3 convolution blocks and 1-3 fully
connected layers. A grid search was performed on the following hyper-parameters before selecting the
final model:

Table 1. Hyperparameters, Ranges evaluated during training
Hyperparameter Range Hyper-parameter

Type
Number of filters in convolutional
layers

[32, 64, 96, 128] Network Structure

Kernel size in convolutional layers [3,5,7,9] Network Structure
Pooling Size [2,3,4] Network Structure

Fully connected hidden layer size [100, 150, 200, 250] Network Structure

Dropout [0.3, 0.4, 0.5] Network Structure

L2 Regularization [0, 0.0001, 0.0005, 0.001, 0.005, 0.01] Network Structure

Learning Rate

[0.0001, 0.0003, 0.0005, 0.001, 0.003,
0.005, 0.01, 0.03]

Network Training

Batch Size [16, 32, 64, 128]

Network Training

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 10

In addition, we evaluated the different methods to get an input of fixed shaped described in the data pre-
processing section.

8. Results
We compared our models to 2 dummy models – one that has all labels assigned the most frequent class
and another that randomly assigns labels based on the distribution in the training data. These 2 data points
serve as benchmarks to compare against. In addition, we also compared the performance to a 3-layer
conventional neural network.

Table 2. Subset Accuracy, Hamming Loss for models
Model Subset Accuracy Hamming Loss
Model that predicts most frequent class 0.319 0.163
Model that randomly assigns labels based on distribution 0.146 0.202
Neural Network – 3 dense layers 0.645 0.047
CNN – Zero padding at end to get 1880 Subcarriers 0.778 0.031
CNN – Average MER padding at end to get 1880 Subcarriers 0.852 0.018
CNN – Last MER seen padding at end to get 1880 Subcarriers 0.824 0.022
CNN – Fixed width of 900 Subcarriers 0.809 0.024

As seen above, the CNN-based models significantly outperform the dummy and the neural network-based
models on the validation dataset. While all the CNN based models had results in the same range, the
model with average MER padding performed the best in our experiments.

Figure 6. Network Architecture CNN model that had best performance on validation

dataset [2]

All the classes have accuracy above 90% on the validation dataset. Apart from amplitude ripple, they also
have very good precision, recall and F1 scores. Due to its fine-grained nature, amplitude ripple does not
perform as well and probably needs more training samples to get better scores. Another observation from
the results is that incorrect classifications were often attributable to multiple impairments being present.
This also indicates the need for additional labeled data.

Analog TV distortion and adjacent channel interference had fewer than 5 samples in the validation dataset
and were not evaluated.

1880

1880

1880

940

940

940

940

470

470

64 64 64

64 96 96 96
96

45120 200 200 200

10

Conv1D MaxPooling1D Dropout Flatten Dense

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 11

Table 3. CNN model with average MER padding - Individual classes performance metrics
on validation data

Impairment Accuracy Precision Recall F1 Score
Normal – No Impairment 0.989 0.976 0.992 0.984
Ingress 0.980 0.975 0.935 0.954
Sweep 0.997 0.933 0.933 0.933
Roll-off 0.996 0.938 0.968 0.952
Suck out 0.974 0.939 0.911 0.925
Amplitude Ripple 0.939 0.912 0.715 0.802
Low MER 0.974 0.958 0.924 0.940

Figure 7. ROC Curves

9. Machine Learning Pipeline
At a high level, the platform driving proactive network maintenance consists of 3 layers – Data Lake,
Compute Engine and Integration Layer, as depicted in Figure 8.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 12

Figure 8. Machine Learning Pipeline Layers

9.1. Data Lake
Comcast’s cloud-based data lake storage solution plays a pivotal role in our efforts to apply data science
and develop analytical solutions to better understand and build a highly dynamic, resilient access network.
The data lake also acts as a source of truth for a wide variety of data streams across Comcast. While the
primary application of this data lake is to drive ML and analytical applications, custom integration and
other solutions built on top of this data lake help power a wide variety of use cases. The platform is highly
elastic, reliable and offers a rich set of tools for our analysts, engineers and data scientists to easily access
this data and form a unified view of our network, customers and devices. It helps them use this data for
analysis, visualization and ML applications, without the technical barrier of knowing the underlying
infrastructure. The queries on the underlying data run on a Spark-based distributed computation engine,
which is purpose-built to handle large data sources.

9.2. Compute Engine
The compute engine refers to the actual implementation of feature pipeline and ML models on polling
data from the data collection framework. The standard ML life cycle involves model development,
experimentation, training, test, validation and supporting model evolution. These ML models could be
custom implementations developed from scratch or based on popular ML frameworks. During the
development phase, the Compute Engine provides support to track and compare metrics for various
experiments involving different models, features, tuning hyperparameters, etc. It also helps track code,
data and model lineage while supporting promotion of models between different stages. To build the
Compute Engine, we use open source ML frameworks and enhance it with custom functionality to suit
our pipeline.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 13

9.3. Integration layer:
The integration layer provides support to successfully integrate the recommendations from the pipeline to
various OSS tools or directly to SMEs and technicians, through a broad set of interfaces and tools. The
more seamless programmatic integration involves APIs and streaming events that would integrate with
other OSS tools within Comcast. In severe cases, notifications could also be evented through Comcast’s
IM application, SMS and emails so they can be attended with greater urgency.

As a standard route, consumers would subscribe to the streams through Comcast’s streaming data
platform, which would event out our impairment notifications at pre-defined intervals. Once these events
are consumed, they result in tickets/work orders being created automatically. This event-driven
architecture enables any number of tools to easily integrate with our ML platform and track network
events in real time. The following data are provided as part of notifications to assist with event
prioritization and triangulation:

• Interfaces details such as PLC Location, Start/End Frequency, Total/Impacted cable modem
counts

• List of impacted nodes
• List of impacted cable modems with severity of impairments
• Interface impairment rankings at the national, divisional and regional levels
• Reference to the API for historical data stored in the data lake related to the event
• Reference for API to enable fix agents to collect real-time on demand data, to confirm the issue is

still present and to assist in isolation and confirm mitigation
• Other data sources to enrich the event, such as the mobile wireless carriers that overlap with the

OFDM Channel

We also provide a real-time API that OSS tools integrate with and can be invoked on an on-demand basis.
Once the impairments are attended to and a fix is identified, the network technicians can invoke the API
through the UI of the OSS tools. Once a request is made to our API, the devices on the relevant
interfaces/nodes are polled in real-time. Those polling results analyzed and scored through the model and
a response is sent back to the UI, which indicates if the identified fix resulted in clearing the impairment.
If the impairment is no longer seen, the OSS tool automatically clears the ticket. It is important to note
that the compute engine handles model management for both offline scoring of the models for the entire
footprint, and real-time scoring based on live polling data.

10. Conclusion/Next Steps
We’ve seen very promising results in being able to classify impairments for OFDM channels using CNNs
on our validation dataset, with a high degree of accuracy. However, we need to continue to iterate and use
additional labeled samples to address the following:

• The samples we’ve used may not cover the gamut of RxMER curves for the entire footprint
• There are some impairments that had very few examples
• Impairments that were incorrectly classified were often due to multiple impairments being present
• Detecting severity in addition to the impairment

A crowdsourcing approach to labeling that involves field technicians and other SMEs would be beneficial
and increase confidence in the models being developed. SMEs are also needed for addressing edge cases,
where the impairments were not always well-defined.

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 14

In the models/data pre-processing phase, there are a couple of areas that can be explored further:

• Increase the number of training samples by using data augmentation techniques such as flipping
the RxMER curves horizontally or scaling the entire sample. We’ll need to consider that some
augmentations cannot be applied to all impairments, as it would modify the RxMER curve in a
way that makes the impairment no longer applicable. For example, samples with roll-offs cannot
be flipped horizontally.

• Impact of data pre-processing techniques on models needs to be understood better. For example, a
sample having roll-off may be incorrectly classified as having suckout, due to the average MER
padding added to get to the standard width.

We will also be extending this effort beyond OFDM channels to cover upstream, video and D3.0
channels. For OFDM channels specifically, building models for classifying impairments that include both
RxMER and RxPower will be explored.

Abbreviations
API Application Programming Interface
CMTS Cable Modem Termination System
CNN Convolutional Neural Network
D3.0 DOCSIS 3.0
D3.1 DOCSIS 3.1
FN False negative
FP False positive
HFC Hybrid Fiber-Coaxial
MER Modulation Error Rate
ML Machine learning
MTTR Mean Time To Repair
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OSS Operational Support Systems
PMA Profile Management Application
PNM Proactive Network Maintenance
RxMER Receive Modulation Error Rate
ROC Receiver Operating Characteristic
QAM Quadrature Amplitude Modulation
SCTE Society of Cable Telecommunications Engineers
SME Subject Matter Expert
SNR Signal-to-noise ratio
TN True Negative
TP True Positive
UI User Interface

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 15

Bibliography & References

1. Visualizing and Understanding Convolutional Networks - https://arxiv.org/pdf/1311.2901.pdf

2. Net2Vis -- A Visual Grammar for Automatically Generating Publication-Ready CNN Architecture
Visualizations, Alex Bäuerle, Christian van Onzenoodt, Timo Ropinski
https://arxiv.org/abs/1902.04394

https://arxiv.org/pdf/1311.2901.pdf
https://arxiv.org/abs/1902.04394

	1. Introduction
	2. Data Collection: OFDM Receive Modulation Error Ratio (RxMER)
	3. Labels and Supervised Learning
	4. Data Preprocessing
	5. Model Evaluation
	6. Convolutional Neural Networks(CNNs)
	7. Modeling
	8. Results
	9. Machine Learning Pipeline
	9.1. Data Lake
	9.2. Compute Engine
	9.3. Integration layer:

	10. Conclusion/Next Steps
	Abbreviations
	Bibliography & References

