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1. Introduction 
Modern software applications are composed of several inner connected modules enabling various 
features. Today’s complex business and market-driven environment constantly pushes the edge to deliver 
software application faster than ever. Developers are battling with delivery deadlines that are not driven 
by the complexity of software offerings rather by the go-to-market motivations. As a result, insecure code 
has become a leading security risk and, increasingly, the leading business risk as well. It’s irresponsible at 
every level to ignore this risk while doubling-down on anti-virus solutions and firewalls — neither of 
which protects applications [1]. 

It is important to have holistic view to software protection that provide check points and resolutions 
throughout the development cycle. It is also equally critical to empower the developers with technologies 
and methods to be able to automatically identify and detect certain types of attacks. There are commercial 
software security tools that transform cryptographic credentials so that they cannot be easily extracted. 
Other tools can make software reverse engineering very hard by sensing a debugger and transforming the 
binary code logic such that it looks unintelligible even with a debugger attached. 

Dynamic Executable Verification (DEV) as described in this paper, provides low-impact dynamic 
integrity protection to applications that is compatible with standard code signing and verification 
methods. Further we discuss a system architecture where components of the Dynamic Executable 
Verification are placed into a secure cloud-based service which can only be configured by an authorized 
security administrator. To set the context, we discuss secure boot, tampering attacks and methods to 
perform static and dynamic analyses. Then we dive into details of DEV techniques that aim to ensure that 
software cannot be tampered with either statically or dynamically, without detection. The cloud aspect of 
the DEV makes it even easier for developers as the burden of configuring security tools is moved into a 
cloud service and the risk of releasing an application with lower than intended security is reduced. We 
will then present a couple of application use cases before concluding the paper.  

2. Secure Boot Example and Limitations 
Secure boot implies that each successive stage of software is authenticated – including BIOS or first-stage 
boot code, successive boot stage, Operating System kernel and all of the applications that execute on top 
of the OS.  Authentication of each of the software layers is repeated every time that a system is re-
initialized or rebooted.  The very first set of instructions executed by a device after a reboot (first stage 
boot) may be protected in hardware as read-only (e.g., in ROM or a locked sector or flash) and may not 
need to be authenticated (since it cannot be changed). 

Secure boot prevents physical tampering attacks that include opening up a device and re-flashing all of 
the software with unauthorized code that has not been digitally signed by an authorized party.  If any 
piece of software is missing a digital signature or if its digital signature is invalid, the device will not boot 
– or at least that piece of software will fail to execute. 

That’s quite distinct from secure software download where a software image is authenticated once prior to 
being persistently installed in the device, into flash or a hard drive.  Following a successful secure 
software download, that software is no longer validated even after a device reboots.  A fully secured 
device would typically include both: secure software download for secure software updates and secure 
boot to prevent physical tampering with the device. 
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There are many different ways to achieve secure boot, but one example is illustrated in the figure below: 
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Figure 1 - Example of Linux Secure Boot 
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In this example, a standard UEFI BIOS that is now commonly available in Windows and Linux PCs as 
well as embedded devices has UEFI security turned on.  It is assumed that UEFI BIOS is HW-protected 
and cannot be easily modified.1  The figure shows the standard UEFI key/certificate hierarchy where the 
top-level Platform Key is used to verify the KEK (Key Exchange Key) which in turn is used to 
authenticate: 

- DB (Allowed Signatures Database) that may for example contain a list of certificates that are 
permitted to validate a PKCS#7 signature. 

- DBX (Revoked Signatures Database) may contain a list of code signatures that are on a 
prohibited list (e.g., due to security vulnerabilities in the corresponding code) 

- DBT (Timestamping Database) – a list of certificates that may be used to validate signed 
timestamps, utilized to establish when a particular code release was signed.  Timestamps may be 
utilized to reject an older version of the code with an earlier timestamp. 

In this example, EFI Shim is first validated by a certificate inside DB and then launched and executed by 
the BIOS.  EFI Shim in turn validates a signature on the Linux kernel (also using a certificate inside the 
DB) which is subsequently allowed to execute. 

This is what is sometimes referred to as UEFI secure boot, but it is incomplete since none of the 
application code is authenticated and may be easily replaced by an adversary.  One way to complete a 
Linux secure boot (as illustrated above) would be to: 

- Place all applications, scripts and executables into a read-only file system such as a Linux rootfs. 
- Configure the Linux kernel such that it contains a table of hashes of each page of the rootfs file 

system, using a facility called dm-verity [2].  Every time that a rootfs page is brought into RAM, 
its hash is validated.  Any tampering to any of the code stored in rootfs will be eventually 
detected when the corresponding page is brought into RAM and it no longer matches the original 
hash of that page. 

Such secure boot design can be achieved on some devices with custom firmware such as digital set-tops 
but in some cases, it is not possible to isolate all the executable code into a single read-only file system.  
Some devices by design have both executable code and data files stored within the same file system, some 
pages need to be dynamically changed and therefore page-level authentication techniques such as dm-
verity do not apply.   

In those cases, one cannot rely on secure boot to validate all of the binary code, especially application 
code, that may need to execute on a particular device.  Techniques described in sections 6 and 7 of this 
paper provide alternative means to validate the more security-sensitive application code – even in the 
environments where full or even partial secure boot is not available. 

3. Software Based Secure Boot Example 
This next example of a software-based secure boot is simplified and has less software boot stage than you 
would normally see, but it illustrates how a software-based secure boot may be applied: 

 
1 Security guidelines for secure UEFI BIOS are provided in NIST SP 800-147 
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Flash-resident boot code

Verify an RSA or 
ECDSA signature and 

decrypt

Verify hash of a page
(dm-verity)

Rootfs

 
Figure 2 – Software Based Secure Boot Example 

 

This device is relying on authenticity of the flash-resident boot code to verify integrity of the Linux kernel 
which in turn utilizes dm-verity to authenticate all the application code which is isolated in a read-only 
rootfs file system.  This software boot architecture can provide secure boot only if we can be assured that 
the flash-resident boot code cannot be modified (e.g., by skipping a signature check on the Linux kernel). 

Techniques presented in sections 6 and 7 of this paper may be utilized to prevent unauthorized 
modifications to the flash-resident boot code.  Furthermore, this flash-resident boot code may be hiding a 
decryption key for the Linux Kernel using white box techniques to transform a cryptographic key.  An 
attacker would have a hard time making changes to a self-validating version of the flash-resident boot 
code. However, replacing it completely would mean that the Linux kernel cannot be decrypted and 
extracting the decryption key for the Linux kernel is also made hard by white box techniques [3]. 

4. Static vs dynamic analyses 

4.1. Static and dynamic analyses concept  

Static and dynamic analyses of a software program are essential ways to discover software security 
vulnerabilities. They are both important elements of software security analyses and if done correctly, 
could expose cases that are more costly to resolve once the software is released to market. According to 
Wikipedia, “Static program analysis is the analysis of computer software that is performed without 
actually executing programs, in contrast with dynamic analysis, which is analysis performed on programs 
while they are executing.” [4] 

Static analysis requires a good knowledge of software architecture and its internal structures of the 
software application. It is certainly the more thorough approach and may also prove more cost-efficient 
with the ability to detect bugs at an early phase of the software development life cycle. It goes deep into 
the software providing peace of mind that each and every line of source code has been thoroughly 
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inspected. It potentially can examine all possible execution path without running the program [5]. In a 
more sophisticated cases, static analysis can be performed on the binary version of the software revealing 
valuable information about all branches of the code. 

Dynamic analysis, on the other hand, is capable of exposing a subtle flaw or vulnerability too complicated 
for static analysis alone to reveal [6]. It can generate real-time results of execution paths and provides 
valuable information to security analysts about the software behavior in the runtime environment. In the 
dynamic analysis, a set of canned input data are typically being supplied to analyze the behavior and 
expected outputs/results. If done in the controlled and configured settings, it can expose valuable security 
vulnerabilities in the runtime. 

Static and dynamic analyses are only effective if they become part of the software development cycle and 
performed on every release. This requires certain security policies and practices to be in place per each 
software release iterations. Policies and practices are evaluated during the design phase from a security 
point of view. Then static analysis is performed by each developer per each development cycle to identify 
any leaking security holes. The process continues into the application execution phase where dynamic 
analysis is conducted in the runtime [3]. 

As part of this iterative process, developers and security engineers review the analysis report and come up 
with appropriate recommendations for the development team to consider. The process has to account for a 
systematic way to feed back the analyses results to the development team and make it a routine practice to 
adopt. The recommended changes will then be funneled thru the cycle as any other software features or 
bugs. This systematic and comprehensive process is essential part of any successful static and dynamic 
analyses practice. 

4.2. Static and dynamic analysis tools 

The quality and coverage of the analysis dependent on the sophistication of the analysis tools. It varies 
from those that only consider the behavior of individual source code statements and declarations, to those 
that include the complete source code of a program in their analysis. Tool can be deployed at unit level, 
system level or integration level. For a complete list of tools targeting various types of software 
applications refer to [7] and [8]. 

A comprehensive evaluation of analysis tool is beyond the scope of this paper. However, it is worth to 
mention the following criteria in choosing analysis tools: 
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Table 1 Static and dynamic analysis tools 
Criteria Description 

Programming language C/C++; Java; Perl; Python, etc. 
Complexity of the code and inner logics Code implementing mathematic, crypto and other 

complex algorithms 
Input/output data media Ways input and output data flow in and out of the 

application  
Transport, network and communication 
mechanisms 

TCP/IP, HTTP, etc. 

Targeted Operating Systems Linux, eLinux, Windows, Mac, etc. 
Build environment Host machine and cross compilers 
Deployment platforms Devices, servers, browsers, etc. 
Virtual machines and containers JVM, Docker, etc. 
Obfuscation tools Source code level or binary obfuscation 
Configuration scripts Settings and deployment scripts 
Error handling and logging mechanisms How errors and logs are exposed 
Tool reporting capabilities Reports and results of the analysis tool 

5. Tampering Attacks and Threats 
A consumer electronic device faces two types of general threats: 

1) Outsider attacks performed by an attacker on the Internet or a public WiFi network.  The attacker 
is for example able to scan the network for vulnerable devices containing outdated versions of the 
OS, web server, web browser or other commonly utilized applications which have not been 
recently patched. 
 
Once such a vulnerable device is found, at attacker is able to place her own attack software on 
that device.  Attack software may be utilized to: 

o Compromise user’s privacy – search user’s system for passwords, credit card numbers 
and other private user information.  Even if your own PC and electronic devices are well-
protected, your private information may be stolen from one of many online banks, 
storefronts or other websites where your personal information is exposed.  There are 
numerous and frequent examples of large-scale breaches, including Facebook [9], Yahoo 
[10], Google [11] and many-many more.  And you are not always in control of protecting 
your personal electronic devices as security flaws may be exploited for a considerable 
period of time until the security flaw is discovered and patched by the manufacturer. [12] 

o Steal user’s computing resources for attacker’s own use such as Bitcoin mining (called 
Cryptojacking).  User’s device will appear to be very slow while much of its memory and 
CPU resources are utilized by this attacker [13]. 

o Launch a distributed denial of service attack (after compromising many vulnerable 
devices) onto popular Internet services or storefronts – for political motives, a personal 
vendetta or just to create chaos on the Internet.  Examples of such attacks that were 
carried out against GitHub, independent media sites in Hong Kong, CloudFlare security 
provider and content delivery network, Spamhaus anti-spam service and U.S. banks [14]. 

 
Frequent patching of the OS and applications in the devices that you own and setting up perimeter 
security with firewalls and IP address filtering (including restricting ports and services) would 
provide a significant deterrent at least against direct attacks against you or your enterprise.  
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2) Insider attacks performed by a subscriber against electronic devices that are owned or leased by 

the subscriber – in order to rip off digital content, including making illegal copies of movies, 
songs and games after stripping off or disabling DRM protection. 
 
Additional insider attacks may be performed by disgruntled or dishonest employees, contractors 
or vendors.  Such attacks are generally mitigated with authorization techniques – each person has 
restricted access only to the computing resources, applications and digital information that are 
required for that person to perform his or her job. 
 
 

 

The focus of this paper is on advanced techniques for protecting software applications against tampering 
attacks during execution in runtime. Section 6 describes techniques to make software tamper-resistant 
independent of underlaying platform-related code signing protection and without requiring any HW 
security capabilities on the device where it executes.  Section 7 goes further to protect key security 
parameters that are utilized in the generation of tamper-resistant code on a cloud server with restricted 
access.  Developers are able to utilize a cloud service for creating self-verifying tamper-resistant code 
without direct access to security-sensitive parameters. 

6. Dynamic executable verification design and concept 
Any software application is potentially vulnerable to tampering attacks aimed at defeating their security 
measures [15] [16] [17]. Tampering attacks are a particularly low effort way to achieve license 
circumvention and software piracy. In particular buffer-overflow and hooking attacks are common 
dynamic tampering attacks that regular code-signing methods cannot detect or prevent. The last line of 
defense (and in many cases the only line of defense) is for applications to be capable of strongly 
defending their intellectual property and secrets against any such attacks. The goal of integrity protection 
is to increase the level of effort and complexity of such attacks.  

We begin with a brief survey of integrity protection mechanisms in common use. We then describe a 
novel construction of dynamic executable verification.  

6.1. Related work  
In this section we briefly survey the methods of integrity protection in common usage:  

6.1.1. Static code signing  
The majority of integrity protection methods in commercial use are targeted at preventing static 
tampering attacks, which involve unauthorized modifications to a program’s binary code prior to 
execution:  

• Apple code signing [18].  
• Microsoft code signing [19].  
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6.1.1.1. Drawbacks of static code signing  

Code signing and verification methods do not detect dynamic modifications made to the executable code 
at runtime, such as with buffer overrun attacks [20].  

6.1.2. Self-checking  
Horne et al. [16] and Chang and Atallah [21] present self-checking techniques, in which a program 
repeatedly checks itself to verify that it has not been modified. These techniques consist of the dynamic 
(or runtime computation) of a cryptographic hash or a checksum of the instructions in an identified 
section of code, which is compared with a precomputed hash or checksum value at various points during 
program execution. Detected tampering will then trigger a response mechanism; such as a silent-failure-
mode.  

6.1.2.1. Drawbacks of self-checking  

While such methods reliably detect unanticipated changes in the executable code at runtime, it is 
relatively easy for an attacker to identify the verification routine due to the atypical nature of the 
operation; since most applications do not read their own code sections [22].  

Once detected, these schemes can usually be defeated with simple conditional logic modifications [21] or 
via hardware attacks [23]; and more recently by virtual machine debugging attacks [24], where the 
address ranges in a program’s code section may be translated to an unchanged static image of the code so 
that any hash or checksum values are always computed correctly despite modifications to the underlying 
program code.  

6.1.3. Just-in-time code decryption  
Aucsmith [15] and Wang et al. [25] utilize the notion of self-modifying, self-decrypting code, where any 
tampering with the encrypted image will result in the decryption of “garbage” instructions, which leads to 
a catastrophic runtime failure.  

6.1.3.1. Drawbacks of just-in-time code decryption  

Several constructions using variations of this technique have been proposed and implemented [26] [27] 
[28] with varying results; however the widespread adoption of memory protection standards such as 
PAE/NX/SSE2 [29], and more recently, Intel’s MPX [30] with support in mainstream operating systems 
and toolchains [31], limit this method to legacy and non-standard implementations. For example, since 
version 18.x of the Microsoft CL compiler/linker, the specification of a writeable attribute on executable 
code sections is ignored at both compile and in link time.  

6.1.4. Oblivious hashing  
Chen et al. [17] proposed a technique called oblivious hashing, where the idea is to hash an execution 
trace of a code section. The main goal is to blend the hashing code seamlessly with the code block, 
making it locally indistinguishable. An oblivious hash is active in the sense that the code to be protected 
must run (or be simulated) in order for the hash to be produced. An oblivious hash also depends on an 
exact path through a program, as determined by the program’s inputs.  
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6.1.4.1. Drawbacks of oblivious hashing  

Since an oblivious hash depends on a specific control-flow pathway in the executing program, this 
technique has limited applicability to specialist algorithms with simple linear control-flows. Additionally, 
since the computation of the oblivious hash is independent of other instructions being executed, 
tampering attacks that do not affect the internal control-flow of the program, such as hooking attacks [32], 
will remain undetected by this method.  

6.1.5. Post-link executable modification  
Many approaches involve the modification of executable code post-linking, so as to inject code or data 
elements used for the purposes of runtime verification, such as hashes or checksums.  

6.1.5.1. Drawbacks of post-link executable modification  

• Incompatibility with standard code-signing and verification methods.  
• Limited toolchain compatibility due to possible conflicts with compile-time or link-time 

optimizations.  
• Conflict with technologies that modify binaries post-linking, such as Apple’s application thinning 

[33].  
• Potential dependency on external third-party tools to finalize binary representations.  

6.1.6. Other (intractable) approaches  
Some methods, such as self-modifying code [34], appear in commercial usage without tractable security 
descriptions.  

6.1.6.1. Drawbacks of intractable approaches  

If the security properties of these methods cannot be objectively assessed, they are unlikely to pass a strict 
security audit.  

6.2. Goals for integrity protection  
We state the goals of integrity protection that we wish to satisfy with our construction.  

1. Increase the cost of static and dynamic tampering attacks  
• Based on tractable principles that can be validated by a security auditor.  
• Resistant to real-word attacks.  
• Based on sound cryptographic principles.  

2. Lightweight  
• Low performance overhead.  
• Small memory footprint.  

3. Tunable  
• Fine-tunable percentage and locations of automatically generated integrity protection 

code.  
• Full manual control of integrity protection targets and the locations of verification code.  
• Automatic or custom detection responses.  

4. Compatibility with standard code-signing  
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• Compatibility with standard code-signing and verification methods.  
5. No frozen/finalized binaries  

• Frozen/finalized binary representations are not required.  
6. Support a diverse range of use-cases  

• “Easy mode” where minimizing impact to existing processes is the primary motivation.  
• “Normal mode” for typical use-cases with reasonable expectations of security.  
• “Secure mode” for implementations where security is the primary motivation.  

7. Future-proofed formats  
• Use of formats that provide future-proofing against changes to key sizes and 

cryptographic schemes, such as X.509.  
8. Broad platform compatibility  
9. Broad toolchain compatibility  

 

6.3. Dynamic Executable Verification  

In this section we describe a Dynamic Executable Verification (DEV) construction and its security 
properties.  

 
Figure 3 Dynamic executable verification generic use-case 

1. Dynamic executable verification is added to an application at build-time to protect against 
tampering before and during runtime.  

• The tamper protection tool generates protected binaries along with a dynamic code 
signing certificate (CER). 

• The tamper detection code in the protected binaries is stealthy, diverse and spread 
throughout the application to mitigate discovery and circumvention of the tamper 
protection mechanics. 

• Unlike a static code signing certificate, the CER allows signing of dynamic code blocks 
within an executable to activate dynamic executable verification of that application. 

2. Linking is done by a standard linker, which may incorporate unprotected binaries built by other 
toolchains. 

3. Activation of dynamic executable verification is achieved by the executable using the CER to 
self-sign. This should be done in a secure environment to prevent the certificate from being 
leaked. 
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• If the certificate is valid and matches the protected portions of the executable, it generates 
a dynamic code signature (SEC) to be deployed along with the executable to the runtime 
environment. 

• The executable is unchanged post-linking. This ensures maximum compatibility with 
sandboxed runtimes and traditional code-signing methods. 

4. A runtime failure mode will be triggered if the executable or the SEC has been tampered with in 
any way before or during execution. 

6.4. Construction 

DEV protection is applied to a program (denoted by the symbol P) during compilation by the Dynamic 
tamper protection toolchain, resulting in a protected program (denoted by the symbol P ′). 

 
Figure 4 The DEV module injects random function prefixes (middle), check functions 

(left), an opaque jumptable (right), and a bootstrap (bottom) into the protected binary at 
build-time. 

6.4.1. Random function prefixes  

As depicted in Figure 4: 

1. For each function/method f in the input program P, a random 16 byte function prefix fprefix is 
prepended to f during compilation, using a standard LLVM operation [35]. We have verified that 
this method is compatible with all target platforms and toolchains; and with compiler and link-
time optimizations.  
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2. LLVM ensures that the function prefix is aligned to the function’s entry point, so that the injected 
checking code starts from the prefix address (typically flagged as an innocuous data section) 
rather than the actual address of the function f. This is designed to evade detection by automated 
and manual analysis techniques to identify self-referential tamper detection code [22].  

3. At only 16 bytes per function, the use of a random function prefix is lightweight in terms of 
footprint, and has negligible impact on performance.  
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6.4.2. Randomly generated check functions 

As depicted in Figure 4: 

One or more check functions fc (denoting the check function c of f) are randomly generated and 
injected at random locations in the protected binary P ′ 

6.4.3. Opaque jumptable 

As depicted in Figure 4: 

1. The relationship between the calling function f, and check function fc is obfuscated via the use of 
an opaque jumptable J.  

2. For each randomly generated opaque identifier o ∈ O, the opaque jumptable computes the 
mapping J(o) =  fc so as to conceal the relationship between the calling function f and the 
checking function.  

3. Each checking function fc references the prefix fprefix of f rather than f itself, thus avoiding any 
direct reference to calling function f from the checking function fc.  

4. For added security, the mapping J(o) may be implemented as a complex Boolean expression 
based on a reduction to a known hard problem, such as 3-CNF-SAT [36].  

6.4.4. Bootstrap 

As depicted in Figure 4: 

1. If the signature (.sec) data does not exist, and if a valid X.509 certificate is passed to the 
bootstrap, then the bootstrap will activate DEV protection by calling each checking function 
fc ∈ P ′ (via the opaque jump table J) to generate the secure signature data.  

2. Activation is carried out one-time per implementation instance.  
3. Post activation, the bootstrap reads the .sec data into memory for use during runtime verification.  
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6.5. Runtime verification 

 
Figure 5 Dynamic executable verification happens during runtime execution, where each 

checker function is called according to the mapping defined in the opaque jumptable. 

1. After DEV protection has been activated, the .sec data is used at runtime to enforce DEV integrity 
protection on all specified functions and methods.  

2. Detected tampering with the executable or .sec data will result in a failure mode.  
• By default, the failure response should initiate a delayed system crash that is difficult for an 

attacker to track back to the detection code.  
• This failure mode may be overridden with a custom callback function by specifying the  

6.6. Security  

We have identified two primary security modes that can be utilized in conjunction with the activation 
method to achieve variable levels of security vs implementation overhead. 

6.6.1. Mode 1 

In mode 1, DEV protection is activated on the first run of the protected executable program. DEV 
protection does not modify this executable at any time. During activation, the DEV bootstrap validates the 
supplied DEV X.509 certificate (.cer) data. If valid, secure signature (.sec) data is generated, which is 
used by the executable to enforce integrity protection at runtime. 
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6.6.2. Mode 2 

In mode 2, DEV protection is activated by a setup executable, which is separate from the runtime 
executable. DEV protection does not modify either executable at any time. During activation, the DEV 
bootstrap validates the supplied DEV X.509 certificate (.cer) data. If valid, secure signature (.sec) data is 
generated, which is used by the runtime executable to enforce integrity protection. 

 

Security level  Mode  Activation  Runtime  

Highest  2  Trusted  Untrusted  

High  1  Trusted  Untrusted  

Medium  1  Privileged  Untrusted  

Low  1  Untrusted  Untrusted  

Table 2 A range of security levels are attainable under different use-cases. 

1. Activation in a trusted environment coupled with the splitting of activation vs runtime (in mode 
2) provides the highest security level. 

2. For high security applications in mode 1, DEV activation should be carried out in a trusted 
setting, so that the X.509 certificate remains confidential.  

3. A medium security level is attainable with mode 1 if DEV activation is carried out in a factory 
setting or in a privileged runtime mode.  

4. A low security profile is obtained in mode 1 if DEV protection is activated on-the-fly when the 
application is first executed at runtime.  

7. Cloud-based architecture for dynamic executable verification 
We present a cloud-based dynamic executable verification architecture to strengthen the overall 
security properties of DEV. In particular this will offer improved security of the dynamic code 
signing certificate (CER). 

• The cloud service will only permit dynamic code signing request from authorized parties for 
authorized applications. 

• The cloud service consists of two scenarios:  
1. Cloud virtual machine-based activation 
2. Local activation utilizing cloud-based code signing 

• This service will be able to interact with other cloud-based security services to offer detailed 
reporting, metrics, and security alerts. 

o Detailed tamper protection coverage. 
o Activation failures. 
o Runtime metrics. 

• Cloud-based dynamic code signing cannot be carried out by developers without cloud credentials 
or with insufficient permissions. 
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o A correctly defined permissions structure will ensure that only parties with the 
appropriate credentials can request dynamic signing for production deployment and that 
signing will only be permitted for applications built with valid developer credentials. 

o There is no path to input manually generated CERs from non-cloud tamper protection 
tools into the cloud-based dynamic code signing. This is by design to prevent 
unauthorized developers from signing executables for production deployment. 

 
Figure 6 Cloud-based dynamic executable verification 

1. At build-time, the cloud dynamic executable verification tool sends a unique Build ID and 
dynamic code signing certificate (CER) securely to the build registration cloud endpoint as 
depicted in Figure 6. 

• Cloud endpoint authenticates user’s credentials before accepting the Build ID and CER 
over an encrypted link(e.g. using user name/password, digital certificate, one-time 
password, etc.). 

• Build registration will send a failure response if the request is not authentic or the 
developer credentials are not authorized for dynamic code signing.  

• Failure responses will abort the tamper protection tool with an error condition. 
2. At activation time, the executable is securely sent to a dynamic code signing endpoint post-

linking.  
• An authenticated connection to this endpoint is assumed to exist. 
• Cloud service runs executable in a secure VM to obtain a dynamic code signature (SEC). 
• If the executable is invalid, the dynamic code signing fails, or if the developer 

permissions associated with the Build ID are insufficient, the endpoint will abort with an 
error condition. 

• Otherwise, the endpoint returns the SEC for runtime deployment. 
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• Note that the dynamic code signing cloud endpoint does not accept a CER as input, thus 
preventing non-cloud protected executables from being signed. 

3. A failure mode will be triggered if the executable or the SEC has been tampered with in any way 
before or during execution at runtime. 

• Note that the executable remains unchanged post-linking. 

 
Figure 7 Cloud-based dynamic executable verification (no cloud VM) 

1. In this scenario, the customer must set up a secure runtime environment to carry out the 
following.  

• Run a linked executable to generate a Dynamic Code Signing Request (DCSR).  
• Send the DCSR to the dynamic code signing cloud endpoint (via an authenticated 

connection). 
2. The dynamic code signing cloud endpoint evaluates the DCSR. 

• An authenticated connection to this endpoint is assumed to exist. 
• If the request is not authentic, the DCSR is invalid or the developer permissions 

associated with the Build ID are insufficient, the endpoint will abort with an error 
condition. 

• Otherwise the endpoint returns a dynamic code signature (SEC) for runtime deployment. 
• As with the base scenario, the executable remains unchanged post-linking. 
• Note that the dynamic code signing cloud endpoint does not accept a CER as input, thus 

preventing non-cloud protected executables from being signed. 
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8. Application use cases 
Dynamic executable verification discussed in this paper opens a great potential with a lot of oversights to 
designers/developers in protecting their applications. This technology provides ability to delivery 
software application with self-contained protection against tempering attacks without depending on the 
targeted platform security offerings. The ability to sign a portion of your software binary and dynamically 
verifying it in the runtime is applicable to any software application. A wide range of applications can 
utilize such techniques in their security software development practices and immediately obtain visibility 
into their application protection. Here we highlight a couple of these use cases. 

8.1. Browser-based application 

Browser-based application is a piece of software running in the browser context. It usually comes in a 
form of extension (i.e. Chrome) or plug-in (i.e. Edge) or even natively compiled binary (i.e. web assembly 
in Firefox). As a result, its live time and resource capabilities are limited to the browser session and prone 
to its attacks. Dynamic executable verification provides independent detection of browser session attacks 
to the application running in that context no matter which browser is hosting the application. 

8.2. Container-based server application 

As containers become more widespread and acceptable way of deploying server applications, more and 
more companies are migrating their application to utilize such environment. That of course comes with its 
own security risk and again dependency on the container provider. As a result, the application security 
relies on the security of underlaying container technology. Dynamic executable verification provides 
independent detection of attacks leaking out of hosting containers to applications. This provides a peace 
of mind to companies virtualizing their application to cloud. 

8.3. DRM application 

DRM agents or libraries hosted in an application can be subject for tampering attacks to lift and later user 
credentials and authorizations. Dynamic executable verification with cloud-based feature can actively 
detect and provide visibility to these types of attacks. It gives device/platform independent integrity 
protection and verification to strengthen the very core features of DRM applications. 

9. Conclusion 
In this paper, we discussed a software protection technology that can fill in the gap in securing 
applications without any dependencies on the targeted platform. Dynamic executable verification with 
cloud-based addition helps security engineers and developers to detect tempering threats throughout the 
code (as needed) in the runtime and take appropriate measures to remedy against them. This enables 
companies to deploy iterative security analysis processes with independent verifications in their software 
development practices, utilizing feedback received from attack surface analysis in runtime. There are all 
kinds of applications in various domains with different use cases that can benefit from this technology and 
take advantage of its features immediately. CommScope has deployed Dynamic executable verification 
technique in several products including DRM agents already and in the process of using cloud-based 
variation in near future.   

 

 



      

 © 2020 SCTE•ISBE and NCTA. All rights reserved. 22 

 

Abbreviations 
3-CNF-SAT A Boolean satisfiability problem (SAT) in 3-Conjunctive normal form (CNF). 

CER Code signing certificate. 

CSR Code signing request. 

DCSR Dynamic code signing request. 

DEV Dynamic executable verification. 

LLVM Refers to the LLVM compiler infrastructure project. 

SEC Code signing signature. 

UEFI Unified Extensible Firmware Interface. 
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