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1. Introduction 
In this paper we will explain the outcomes of our research project on the detection of anomalies in the home. 

The goal of our experimentation is to be able to detect such anomalies as unexpected sounds (dog barking, 
gun shot, baby cry …) and reports from simple sensors measuring temperature or humidity for example. 

1.1. Exceptional sounds recognition 

Because listening to in-home sounds 24/365 is very critical regarding privacy, all the processing is done 
locally, and only recognized events are sent to the cloud / backend.  

The technology we are using (neural networks) requires very large sound databases during the model build 
(10000+ sounds per class), therefore, the models are pre-calculated offline and are downloaded to the 
recognition brick. We can attain extremely good recognition rates although we can’t learn new sounds nor 
improve the model locally. 

1.2. Multimodal sensors, abnormal situations detection 

Another strong constraint is that we do not want to force users to create scenarios for controlling the device 
behavior regarding sensors management. We have developed a self-learning, non-supervised technology 
that will allow our product to learn from “know good” situations and to report events that are outside of this 
zone without the user having to configure the product. 
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2. Exceptional Sound Detection 

2.1. Introduction 

This section aims to provide some insight into the tremendous gap that Neural Network (NN) architecture 
has delivered, over the last several years, in the sound classification space. This paper will also include a 
more detailed focus on current NN architectures, and their performances compared to one of the most 
popular classifiers relying on the Support Vector Machine (SVM). 

2.2. Some definitions  

First, let’s provide the reader with some definitions that should be considered as well as the device 
requirements of a sound detector. 

2.2.1. Rare/exceptional sound events 

A rare/exceptional sound event is defined as a sound event that occurs once within a fixed period of time 
which is significantly longer than the event duration itself. A typical example is a glass breaking that would 
last less than a few seconds and would only occur at most once every couple of months. In the acoustic 
Machine Learning (ML) domain it signifies that there is a significant unbalance ratio between positive 
(occurrence of sound) and negative (no occurrence of sound) samples. Some years ago, the ML algorithms 
were trained on almost continuous and well-balanced audio samples which give good results with controlled 
test configurations but not so good in a real situation. This imbalance situation constitutes a challenging but 
more realistic problem to solve for a Machine Learning which must learn on few positive samples. 
Furthermore, it involves the usage of a supervised leaning approach to build a satisfactory acoustical model. 
For comparison purposes an unsupervised learning approach would need regular and recurrent positive 
samples which are not compliant with exceptional sound detection requirements.  

2.2.2. Sound detector 

A sound detector is a device whose purpose is to detect a sound event within a fixed temporal but sliding 
window. As shown in the upper rare/exceptional definition, the sound detection has a coarse sound detection 
granularity which means that the exact time of the sound event occurrence presented figure 1 (onset and 
offset time) is not provided. Additionally, the sound detector will operate in a domestic environment in 
which background noise may exist. As will be detailed further in this paper, this will have some 
consequences on both the training performance of the ML and the audio dataset composition. 
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Figure 1 acoustic onset, offset time 

This means that the ML must learn within an ambient noise environment and with a weakly annotated 
dataset. More specifically, a weak annotation means that, for each sample of sound used for training, the 
ML will only know that the sound of each class to recognize is present but without any indication of when 
it occurs within this audio sample. That is an important parameter to pay attention to as it makes easier to 
build the audio dataset, while another more complex approach, involving a detailed temporal annotation, 
would be too time consuming and not cost effective at the end. 
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2.3. ML based sound detection demystified 

2.3.1. Sound detector service architecture 

 
Figure 2 Sound Detector Service Architecture 

This figure presents an example of a sound detection service architecture that would rely on a mono modal 
service approach (i.e. only the sound modality) but that could be easily integrated into a multi-modal 
approach, as exposed in the anomaly detection section (see section 3). In this simplified figure 2, the sound 
detector would provide the sound class label for each processed temporal window (i.e.: every 6 seconds) 
without sending and saving any audio samples captured in the household. The sound detector has been 
optimized to be embedded in small footprint hardware to preserve data privacy of the user (refer to §5). 
Such a local processing approach has a significant advantage versus cloud-based audio recognition systems 
like Alexa Guard because it protects user’s privacy: the backend, with no access to the user data, will 
manage only the transmission of the notification to the user and/or the service provider and will not have 
access to audio samples. A smart notification system could be deployed according to the nature of the 
detected sound. 

2.3.2. Sound detector functional architecture 

As an introduction to a more detailed description of the sound detection system based on ML, an 
overview of a functional architecture of the system is presented in the figure hereafter: 
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Figure 3 Functional Architecture 

What can be noticed in figure3 is an architecture based on two blocks that operate two separate and 
sequential processing sessions. As in any ML system, those two required processes are first the training 
part, usually performed off-line and once to build the acoustic multiclass model, and then the acoustical 
detection part. As mentioned in paragraph 2.2 the ML approach is based on supervised learning which 
means that the acoustic model is trained on annotated dataset audio samples. This approach will justify 
building a huge dataset that is as diversified as possible (see paragraph 2.3.2.1). 

Let’s focus now on the sound detector functional architecture presented in Figure 4 Sound Detector 
Functional Architecture and a more detailed description of the design: 

 
Figure 4 Sound Detector Functional Architecture 

2.3.2.1. Dataset 

Prior to training the supervised ML, getting the multiclass model and then evaluating its performance, a 
sound dataset shall be carefully built by following the typical folder organization: 
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 A folder for the training set and a folder for the test set. Each of those 2 folders is subdivided into 
a number of folders according to the number of sounds to detect. Usually the file number ratio between 
training and test sets are 80% and 20% respectively as the learning effort must be put on the training session 
to get the best acoustical model as possible. 

Each sound of the dataset is a mix of the sound event occurrences to detect and different background 
noises that fit with a realistic acoustical household environment. Many data sources are freely available like 
https://freesound.org/ or https://research.google.com/audioset/ for which a very convenient search engine 
tool is available. But even with such huge sound libraries, the acoustical diversity and sometime quality 
criteria are not reached, especially with sound classes that are not as popular (i.e.: hand clapping, snapping 
or coin rolling on a table). More recently, a new technique has emerged that uses data augmentation to 
dramatically diversify the dataset by adding in random manner small signal perturbations on the initial 
training set. Simple algorithms perform such synthetic data augmentations by adding noise, stretching time, 
changing pitch or speed or even adding acoustical room reverberation.  This enriched training set is now 
much more suited to reflect the acoustic sound diversity present in different household environments. 

2.3.2.2. Audio pre-processing 

This function aims to capture audio samples from the microphone or the array of microphones with fixed 
parameters such as sampling rate, number of channels, compression algorithm if required and bit depth (i.e: 
44.1 kHz, mono, uncompressed, 16bits). Optionally, frequency filtering is applied to the audio signal to 
minimize the effect of sensitivity dispersion and non-linearity of the microphone. A rms input power level 
estimation may also be performed to disable the classification process when the input power audio signal 
is under a fixed threshold value. 

2.3.2.3. Features extraction 

This function is essential in ML usage as it will extract the relevant acoustic characteristics that will be used 
to train the ML.  There are different techniques available, the most popular of which is the computation of 
MFCC [1] (Mel Frequency Cepstrum Coefficient) presented hereafter: 

 
Figure 5 MFCC Computation Pipeline 

Prior to computing the features, framing and windowing functions are required. This is based on applying 
a sliding temporal window that divides the incoming audio samples into small frames (ranging usually from 
10 to 50 ms). The frame duration determines the temporal resolution targeted by the system. To avoid 
acoustical artefact on the edge of the frames, a Hann or Hamming algorithm is applied with an overlapping 
ratio of 50%. The signal is then ready for FFT processing. As the signal is now transposed in the frequency 
domain, a filter bank is applied with a Mel frequency spacing scale. The number of digital filters 
constituting the filter bank fixes the number of Mel coefficients that are computed. The Mel coefficients 

https://freesound.org/
https://research.google.com/audioset/
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are followed by a normalization function that usually uses a logarithm function, but more recently, the 
normalization of Mel coefficients has been improved by using PCEN [2] (Per channel Energy 
Normalization) that have a better signal saliency property in the presence of background noise. The number 
of coefficients is a parameter to fix to a value usually ranging from 10 to 100 depending on the targeted 
spectral frequency resolution.  

2.3.2.4. Audio classification 

This function is critical as it performs the probabilistic classification of sounds per captured audio samples. 
In other words, it will provide a probability value per audio class for which the sum must equal to one. The 
detected sound will be the one which gets the highest probability value. A threshold can be applied at the 
output based on the maximum of the computed probabilities. From a satisfactory user experience 
prospective, the threshold must be determined carefully to get a fair balance between an acceptable low 
level of false positive (wrong classification of a sound event occurrence) and an acceptable low level of 
false negative (missing of a sound event occurrence).  

To provide more focused insight on the state-of-the-art classification algorithms, only SVM (Support 
Vector Machine), the most popular one, and NN (Neural Network) approaches will be presented.  

2.3.2.4.1. SVM based algorithm classification 

The SVM (Support Vector Machine) is part of a family of algorithms well suited to classification, regression 
or anomaly detection problems. They were initially developed in the 90s and rely on finding the simplest 
way to separate the classes of data by maximizing their distance. The edge of separation of those data is 
also called the margin. For audio purpose classification problems, the classes of data correspond to the 
different type of sound to recognize. The acoustical data are represented by vectors which are the extracted 
features computed in §2.3.2.3. In a simple binary classification problem, the vectors located on the edge of 
the separation of the 2 classes are named the support vectors as illustrated in figure 6: 
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Figure 6 SVM Vector View In The Case Of A Binary Classification 

In this simple example, the data are represented in a 2-dimensional space, where the edge of separation of 
data is the black line and the margin is the range between the black line and 2 blue and yellow lines. The 
support vectors that are closest to the edge are represented by circled blue and yellow dots. In this particular 
case, a linear separation is possible but in most actual cases this is not true, and other techniques are 
required. They are named kernels and allowed to separate data by projecting them in a higher dimensional 
space. Those kernels are based on polynomial or gaussian functions. SVM is convenient to setup as it 
requires few hyperparameters that are usually the regularization function, the kernel function and C which 
is a coefficient that penalizes more or less the cost of misclassification. 

2.3.2.4.2. NN based algorithm classification 

As an introduction, we will present the NN principle. Shown hereafter is a typical NN architecture: 
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Figure 7 Typical NN Architecture With 2 Hidden Layers 

The circle represents the neuron for which a weight and a bias are applied, and the arrow represents the link 
between one neuron to the next one, also going from the previous layer to the next one. In ML, a neuron 
makes a linear combination of input data (i.e.: extracted feature vectors) on which a bias value is added. 
The resulting output data value goes through a non-linear activation function (i.e.: hyperbolic tangent or 
sigmoid). This is performed for all neurons of the first NN layer (input layer). Then those output values are 
transmitted to the next NN layers (hidden layers) which will perform the same data computation and, finally, 
will  end with an output layer that will provide an example of a classification problem, allowing the 
probability of each label to correspond with the audio classes that are necessary to be recognized.  

What is remarkable is the simplicity of the elementary computation functions that are a combination of 
addition and multiplication. However, their number could be large as they increase from one layer to the 
next, except for the last layers. Compared to SVM, NN requires the selection of many hyperparameters to 
finally get to the most accurate multiclass model.  The most common of those are typically the number of 
hidden layers, the type of layers (convolutional, recurrent, fully connected, …), the number of neurons per 
layer, the activation function, the number of epochs, the optimization function. In addition to that some 
other intermediate functions are added like batch normalization, dropout or pooling for which specific 
parameters must be selected as well. 

2.3.2.4.2.1. Full trained NN model 

Full trained NN model means that the model is trained and tested with the entire available dataset (see 
§2.3.2.1). The NN architecture used for training relies on CNN for which a simplified architecture is 
presented below followed by several acronym definitions: 
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Figure 8 Exemplary Of A Two CNN Layers Architecture 

The input is a 2-dimensional acoustic features matrix with columns and rows respectively corresponding to 
the number of acoustic features coefficients and frames.  Then the NN architecture is split into 2 parts, the 
feature learning one including the CNN layers and the classification one including the fully connected layers 
that ultimately provide the probability of each sound class required to be recognized.  

Feature maps are the result of convolutional operations using a small filter matrix performed at each location 
of the CNN layer. The number of filters determines the level of granularity you would like the NN to be 
trained on. 

BatchNormalization is a normalization function performed on the incoming features to adjust and scale the 
activations. If helps learning in stabilizing the NN weight computation especially when the dataset is 
diversified and for which the feature values vary a lot from 1 class to the other.  

Pooling (also named MaxPooling) is a downsampling function to reduce feature dimension and minimize 
overfitting. Usually the maximum value of a subpart of the filter matrix is computed which is the reason 
the name usually has the prefix of Max. 

Dropout is a regularization function that randomly deactivates some neurons. The effect is that the NN 
becomes less sensitive to the specific weight of neurons. As a consequence, the NN model is capable of 
better generalization and is less likely to overfit on training data. 

FC (Fully Connected) layer also named Dense layer executes a linear operation on the input vector and is 
located at the end of the architecture to transition from CNN layers. In a multiclass classification problem, 
for which a probability per class is required, a softmax function is applied in the last Fully Connected layer. 

Another type of NN layer, less popular for sound classification because of the occurrence of model 
convergence problems and of a much longer training time, is the RNN (Recurrent Neural Network).  The 
main difference from the CNN approach is that the next vector value depends not on the previous one but 
also on all the previous history. RNN has a memory of what happened in the past compared to CNN. The 
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last generation of RNN uses LSTM (Long Short-Term Memory) that improves during the training phase 
model convergence problem like gradient vanishing effect. Some results will be exposed in § 2.3.2.4.3. 

2.3.2.4.2.2. Pre-trained NN model 

The pre-trained NN model has become more popular meaning the model is already trained on a large dataset 
and is by consequence very well generalized for most of the classification/segmentation/object detection 
problems. Many pre-trained models exist for image processing (Xception, VGG19, ResNet50, InceptionV3, 
MobileNet, etc…) and fortunately some are available for sound classification as well like: 

• VGGish(https://github.com/tensorflow/models/tree/master/research/audioset). It uses CNN 
architecture and it takes as a spectrogram an input dimension of 96 x 64 followed by 4 CNN and 
maxPooling layers. It ends with a 128-wide fully connected layer ready to be linked for example to 
a last FC layer for sound classification purpose. 

• soundNet(https://github.com/eborboihuc/SoundNet-tensorflow). Its architecture is presented 
below: 

 
Figure 9 SoundNet NN architecture 

SoundNet [3] is composed of up to 8 CNN layers and 5 maxPooling layers. As shown on figure 9, SoundNet 
addressed the acoustic scene/object classification and significantly improved the state-of-the-art results. 

The main advantage of using this technique is to benefit from the quality of the model that is well 
generalized because it was trained on a large dataset with many NN layers. Typically, VGGish used the 
audioset (https://research.google.com/audioset/) database which contains more than 2 million annotated 
videos representing around 6000 hours of sounds. What constitutes the main constraint is you must strictly 
follow the same input data format that was used for training the model.  

Those pre-trained models could be used in 2 ways: first, as a feature extractor or second, to fine tune the 
pre-trained model to better fit it to your own dataset. In the first case it means you don’t care anymore about 
how to extract features because the pretrained model, based on NN, will do it for you. The other benefit is 
the significant reduction of training time as only the last fully connected layers are required (with optionally 
the dropout function) because the NN layers were already used in the pre-trained model. In the second case, 

https://github.com/tensorflow/models/tree/master/research/audioset
https://github.com/eborboihuc/SoundNet-tensorflow
https://research.google.com/audioset/
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there is not that much training time saved as the pre-trained weights of the model not only have to be 
updated on all or a part of the NN layers but also on your own dataset. 

An interesting comparison on performance of classifiers, based on the usage or not of a pre-trained model, 
is summarized in this paper [4]. In this case, when using it as a feature extractor in a binary acoustic 
classification problem, it clearly demonstrates the accuracy improvement: 

Table 1 : Classification results on the training, validation and test set using different 
audio feature extractors 

 

2.3.2.4.3. NN versus SVM performance comparison results  

 Another comparison was performed to justify the significant improvement of using NN versus SVM 
approaches. That was a performance evaluation conducted on 2018 for each classifier in using the same 
rare sound database extracted from the acoustic challenge DCASE2017 
(http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection).  

The generated dataset consists of isolated sounds (Baby cry, Glass breaking and Gunshot) mixed with 
different types of background noise (Beach, Bus, Cafe/Restaurant, Car, City center, Forest path, Grocery 
store, Home, Library, Metro-station, Office, Park, Residential area, Train, Tram). The sound event occurred 
only once over the 30 second duration of incoming sound and located randomly within the file. The signal 
to background noise ratio was also adjustable and randomly chosen among 3 values, -6, 0 and +6dB. 500 
files per class were generated both for training and test phases. The challenge relied on the low level of the 
event occurrence and the level of background noise. It meant the model had to be trained on a very 
unbalance training set with a lot of negative data (no event) or very little positive data (event). The results 
are summarized in the table 2 hereafter: 

Table 2 :  SVM versus NN classifier performance comparaison 

 

CRNN is an architecture that combines CNN and RNN layers. The metrics used during the test phase are 
listed as follows: 

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-rare-sound-event-detection
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• the event F-score ratio computes the ratio of successful event detections and positioning per audio 
test file 

• the Event error rate computes the ratio of misclassification and bad positioning per audio test file 

Table1 clearly shows that, in this particularly challenging but realistic audio dataset, the NN architecture 
outperforms the SVM one by at least 10% for the event F-score.  

2.4. Conclusion 

Exceptional sound detection, that a decade ago was a difficult ML challenge to overcome, has now 
demonstrated promising results thanks to the availability of NN architectures. The emerging usage of the 
pre-trained models inspired from the last tremendous advancements done on imaging computation (face 
recognition and tracking, object detection and tagging, etc...) is another track to explore by refining the 
detection of more complex sequences of sounds composed of multi labelled occurrences. 
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3. Anomaly Detection 

3.1. Introduction to Anomaly Detection 

3.1.1. Introduction 

Machine Learning is an essential tool to implement Artificially Intelligent systems, that is systems 
analyzing and making decisions about their environment. The most well-known problems in Machine 
Learning are: 

• Supervised Learning: learning to recognize classes of objects from examples, 
• Unsupervised Learning: learning to find similarities between objects, learning to group or to 

represent objects without a class objective, 
• Reinforcement Learning: learning to select the most profitable actions. 

Aside from these points, Anomaly Detection is a lesser known subject that however has a huge interest for 
IOT devices. The idea is to learn to detect unusual or anomalous situations without examples of these 
situations. Put more clearly, the idea is to learn the normal behavior of a system and to trigger alarms when 
an unusual situation occurs. 

This is particularly interesting for IOT as it is impossible for the end user to produce examples of anomalous 
situations (think of glass breaks or gunshots at home), or to label them. In addition, the variety of anomalous 
situations may be so huge (think of the different ways an old person may fall at home), that it looks much 
more reasonable to carefully model the normal situations and to trigger an alarm when the situation 
measured by the sensors deviates from normality. 

It should be noted that the objective of these methods is to detect anomalous situations, and not to identify 
them. When an alarm is risen it will be necessary for the end user, or a third party (relative, neighbor, 
operator…) to check what happens, and see if there is really an urgency or if it is a false alarm, and to select 
the appropriate action. 

3.1.2. An example of Anomaly Detection algorithm 

Being able to detect anomalous situations without having seen any of them may seem puzzling. Let us 
however present an algorithm that will convince the reader that this is feasible. The objective of an anomaly 
detection algorithm is to compute a score that is expected to be low (or even negative) in a normal situation, 
and high (and generally positive) in an abnormal situation. The k-nearest neighbors can be used for anomaly 
detection as follows. Let us suppose that all the inputs to the algorithm are vectors in a n-dimensional space, 
for instance a set of n simultaneous measures. Let us suppose that we have a collection of N normal points 
at our disposal. For a new point one measures the distance to the k-nearest neighbor, that is the distance of 
the k closest point. This distance is clearly an interesting candidate for being an anomaly score, as a point 
close to many others is likely to be a normal point, whereas a point remote to all the other points is likely 
to be an anomalous point. 
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Figure 10 k-NN algorithm 

In general, one will take k equal to a few units or tens, to avoid producing a low score for repeated 
anomalous points. 

3.1.3. Different kinds of anomalies 

The anomalies are unexpected events or situations occurring in the input stream. Following Chandola [5] 
we distinguish three kinds of anomalies. 

• Point anomalies occur when an input vector is clearly different from all normal input vectors. This 
occurs for instance when a sensor is out of order and returns erroneous values, or an excessive 
temperature is measured, indicating a possible fire. 

• Contextual anomalies correspond to situations which are abnormal in the context in which they 
occur. For instance, somebody preparing their breakfast in the middle of the night if this is not their 
habit. 

• Collective anomalies occur when each measure in a segment of a series is normal, but the whole 
segment is anomalous. For instance, a fridge consuming no electricity for many hours. 

It will appear that detecting point anomalies can be readily implemented, whereas the two other kinds of 
anomalies are more difficult to tackle. 

3.2. Anomaly Detection Algorithms 

Anomaly detection algorithms aim at computing a score that will characterize the likelihood that a situation 
is abnormal. It is expected that a low (or negative) score will be produced in normal situations, and a high 
(positive) score will be produced in anomalous situations. 

Algorithms can be divided in two kinds. Many algorithms consider samples independently. However, in 
IOT situations, it is reasonable to hypothesize that there is a continuity between the successive measures of 
a sensor (for instance the temperature in a house is not likely to change very fast in normal situations). 
Therefore, it is interesting to use this continuity principle to characterize normal situations. 
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Below, we present examples of these two kinds of algorithms, after a reminder on algorithm performance 
evaluation. 

3.2.1. Algorithms performance evaluation: the ROC curve 

ROC curves are the classical way to evaluate detection algorithms, since the early days of radar technology. 

A detection algorithm produces a score f (x) signaling the likelihood of a detection. If we fix a threshold S 
on the score this defines a classification function D (x): 

D(x) = � 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 f 
(x)  >  𝑆𝑆

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 𝑖𝑖𝑖𝑖 𝑖𝑖 (𝑥𝑥)  ≤  𝑆𝑆 

Knowing a ground truth on the objects, it is possible to characterize the performance of the classification 
by the numbers of: 

• True Positives (TP): objects which should be detected and are actually detected, 
• True Negative (TN): objects which should not be detected and are actually not detected, 
• False Positive (FP): objects which should not be detected and are actually detected, 
• False Negative (FN): objects which should be detected and are actually not detected. 

The performance of the classification function for a value S of the threshold is defined by the two ratios: 

• True positive rate: tpr = TP
TP + FN

 

• False positive rate:  fpr = FP
FP + TN

  

Letting the threshold S vary defines a curve named the Receiver Operational Curve, located in the square 
[0, 1] × [0, 1]. The area under this curve AUC is the measure of the performance of the algorithm. It 
shows if the algorithm can have a high true detection rate with a low false positive rate. 
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Figure 11 Receiver Operational Characteristic 

The AUC is expected to be as close as possible to 1.0. If AUC is equal to 0.5 then the algorithm behaves as 
a random decision. 

3.2.2. Algorithms not using the temporality 

Many algorithms can be used to define an anomaly score, considering the successive measures as 
independent realizations. 

Gaussian mixture models (GMM) model the series of samples as realizations of a mixture of Gaussians. 
Each sample is supposed to be produced by a two-step process: first select a Gaussian in a set of n Gaussians, 
each having a probability, and then draw a sample using this probability. The parameters of the model can 
be learned using the EM (Expected Maximization) algorithm [7]. 

 
Figure 12 GMM Model 



  

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 21 

One-Class SVM is another example of classical algorithms aiming at detecting anomalies. The idea here is 
to separate the examples from the origin in a high dimension space, using a non-linear transformation. 

Neural algorithms (see 2.3.2.4.2) have been used for detecting anomalies. A well-known example is the use 
of autoencoders. In this algorithm the parameters of the neural network are optimized to reconstruct the 
input vector on the output, after a projection in a lower dimension space in the middle of the network. In 
this case the anomaly score will naturally be the reconstruction error. 

 
Figure 13 Autencoder 

In an autoencoder the parameters of the network are optimized to make the input X of the network as close 
as possible to output Y, despite a projection on a lower dimensional space.  

In general, these algorithms exploit the fact the input vector in normal situations does not take all the 
possible values of the sensors, but rather confines to specific regions of the input space, such as regions 
around specific points. In other words, this signal is compressible. 

3.2.3. Algorithms using the temporality 

In IOT situations the sensors tend to measure continuous data, such as temperature or pressure. The next 
temperature measure is in general very close to the previous one, and a deviation to this is generally a hint 
that something abnormal is happening. It is therefore pertinent to set-up a prediction algorithm that will try 
to estimate the next sensor measures, and to use to prediction error as the anomaly score. 

 
Figure 14 Training and Detection using Temporality 
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In this case a segment of the input signals is used to train a predictor. This predictor is used for a certain 
period, until the input signal has changed or after a fixed amount of time, when the predictor is re-trained. 
At each time step the already known examples are used to predict the next measures. The actual measure is 
compared to the prediction, and the deviation is the anomaly score. Many algorithms can be considered to 
implement the predictor. 

Classic non-neural algorithms have been used for a long time to implement predictions. 

The moving average is an example of such a simple algorithm. In this case the next sample is predicted by: 

𝑥𝑥𝚤𝚤� =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖−𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

This simple algorithm does not imply any training phase. Similarly, the exponential smoothing uses the 
previous measures and the previous prediction to produce the estimation of the next measure. 

𝑥𝑥𝚤𝚤� = α 𝑥𝑥𝑖𝑖−1 + (1 − α)𝑥𝑥𝚤𝚤−1�  

In this case all the previous measures (potentially an infinite number) have an influence on the measure, 
with an exponentially decreasing weighting. 

Holt-Winters algorithms are an example of multi-level regression, enabling it to consider seasonality effects 
in the data. 

We have evaluated many neural architectures for providing the estimation of the next measure. The simplest 
architecture is a fully connected neural network, which takes the already known measures as input and 
produces the estimation of the next measure. See paragraph 2.3.2.4.2 for a description of dense neural 
networks. 

Such a network can be implemented using a well-known library such as Tensorflow or Pytorch, trained 
using a retro-propagation algorithm. 

Convolutional networks are an evolution of these networks, where weights are shared on the first layers to 
implement convolutional filters. 

Finally, LSTM (Long Short-Term Memory) is a recurrent architecture, where the output of the network is 
reused to make the next prediction. 

3.3. Evaluation 

We have evaluated the algorithms on a dataset provided by EDF [6], the French electricity provider. This 
dataset is composed of measures of voltage, intensity and power in different part of a house, one measure 
per minute over a duration of four years. Each measure point is composed of seven individual measures. 

We have introduced known anomalies on this dataset to measure the performance. The anomalies are: 

• Out of order sensor: random values in the same min/max interval that the initial distribution, 
• Activities at unexpected times: permutate some segments of the data, 
• The fridge is stopped: subtract the fridge consumption from the meter in the related room. 

We recognize here instances of point anomaly, contextual anomaly and collective anomalies. 
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Different algorithms were tested on this dataset and the anomalies specified above. The algorithms are not 
optimized to try to obtain the best results for each of them, but are rather parametrized to operate in 
comparable conditions: 

• The temporal algorithms use a buffer of one-hour length (60 measures) to make the prediction, 
• The algorithms are periodically retrained after 60x24x61 = 87840 measures, that is every two 

months, 
• The dataset for training the algorithms (for the ones that need a training) is equal to at most eight 

months. 
• The algorithms are trained on the normal data and the performance is measured on anomalous data. 

This is to avoid the problem of deciding what to do in the training with the data that is declared 
anomalous: skip it? Replace it by most probable values? This renders the evaluation of the 
algorithms far easier. 

The conditions seem to be realistic for the data that we have used: we expect to operate the different 
algorithms on a small device, with limited memory and computation resources, as described in section 5.  

This enables us to estimate what is the relative performance of the different algorithms in comparable 
conditions. It does not give the optimal performance that could be reached if the parameters of an algorithm 
were optimized using for instance a grid search method. 

The algorithms are implemented using Python 3.7, Scikit-learn, Keras and Tensorflow. The detailed 
parameters of each algorithm are as follows: 

• Moving average: 
o The prediction is the moving average of the series on the prediction window, that is one 

hour (60 elements). 
• Exponential smoothing: 

o The alpha factor (see paragraph 0) is equal to 0.01 
• GMM likelihood: 

o The number of kernels is equal to 16, the covariance for each kernel is a full matrix. 
• Dense Neural Network: 

o The size of the input layer is always 420 (60 samples of size 7). The output layer is always 
of size 7. Different number of intermediate layers with 60 or 420 neurons have been tested. 
Different activation functions: relu, tanh, sigmoid have been tested. 

o The network noted 60 relu sigmoid below corresponds to a network with 420 neurons on 
the input layer, then relu as activation function on an intermediate layer of 60 neurons, 
then. sigmoid as activation function, then the output layer which has size 7. 

o The network noted 420-60 tanh, tanh, tanh is a network with 420 neurons on the input 
layer, a first hidden layer of 420 neurons, a second hidden layer of 60 neurons and an output 
layer of 7 neurons. The activation function between the input and the first hidden layer, the 
first hidden layer and the second hidden layer, the second hidden layer and the output layer 
are all tanh. 

• Convolutional Neural Network: 
o The network is composed of an input layer with 420 neurons, a convolution layer Conv1D 

with 20 or 40 filters of length 8, a max pooling layer (pool size = 2), a second Conv1D 
layer with the same configuration as the first one, a max pooling layer (pool size = 2), and 
a dense layer with 7 neurons. The activation function is the relu function. 

• LSTM: 
o The network is composed of two layers of LSTM functions with 60 units. 
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The AUCs measured for each algorithm are reported hereafter. We have retained only the best results for 
each algorithm to limit the data. 

 

Table 3 : AUC of the scoring algorithms 

Algorithm Anomaly 1: 
Point 
anomaly 

Anomaly 2: 
Contextual 
anomaly 

Anomaly 3: 
Collective 
anomaly 

Moving average 0.832 0.663 0.507 

Exponential smoothing 0.817 0.629 0.505 

GMM likelihood 0.961 

 

0.496 0.503 

Dense Neural Network 60  relu, sigmoid 0.936 0.603 0.518 

Dense Neural Network 60 sigmoid, tanh 0.923 0.622 0.511 

Dense Neural Network 420-60 relu, relu, relu 0.818 0.521 0.492 

Dense Neural Network 420-60 tanh, tanh, tanh 0.929 0.595 0.508 

Dense Neural Network 420-420-60 relu, relu, relu, relu 0.855 0.536 0.448 

Dense Neural Network 420-420-60 tanh, tanh, tanh, 
tanh 

0.866 0.568 0.507 

Dense Neural Network 420-420-420-60 relu, relu, relu, 
relu, relu 

0.850 0.529 0.469 
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Dense Neural Network 420-420-420-60 tanh, tanh, tanh, 
tanh, tanh 

0.925 0.579 0.509 

Convolutional Neural Network 20 filters, filter length = 
8 

0.900 0.647 0.513 

Convolutional Neural Network 40 filters, filter length = 
8 

0.907 0.648 0516 

LSTM nb_units = 60 0.967 0.569 0.529 

3.4. Conclusion 

3.4.1. Choice of the algorithm 

The LSTM is the best algorithm (AUC = 0.967). The dense neural networks performance is lower (AUC = 
0.929). 

The GMM is nearly as good (AUC = 0.961), but its training time is far lower than the Neural Networks. 

The numbers are not the optimal performance attainable with these algorithms, but it is reasonable to think, 
that for this problem of anomaly detection, considering that the training that must done on a small device, 
the GMM is the solution to choose. 

3.4.2. Kind of anomalies detected 

We see that the algorithms are good at detecting point anomalies but have virtually no performance for the 
other kinds of anomalies, contextual and collective. We have not tried to make any specific adaption of the 
algorithms to these kinds of anomalies. But it is clear that: 

• Contextual anomalies, here where the context is the time, could be detected if we would use specific 
models for specific times of the day (the day is divided in three of four periods for instance). 
However, the learning time would be much longer. 

• Collective anomalies could be handled here using the integration of the features on different time 
periods. This would help to detect a null consumption if the normal consumption is generally not 
null. However, this would entail a large delay in detection. 
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4. Usage examples 

4.1. Problem to solve 

Users are interested in home systems that will report events, mostly abnormal ones. For example, an un-
expected sound inside their home could be reported (glass breaking …). 

4.2. Existing solutions 

4.2.1. Pre-configuration requirement 

Existing “security” or “elderly care” systems already properly report events but are limited to detecting pre-
configured situations that have been programmed by using, for example, a scripting language.  

By default, all “non-pre-programmed" situations will be either ignored or reported, by default, as abnormal. 

4.2.2. Cloud vs. Local processing 

Existing solutions generally use cloud-based processing, local HW is limited to sensors + sensor interface 
to the cloud (backend). This is for example the case for the “Hive” solution. Note that this solution is 
extremely intrusive in term of privacy as, for example, 24/365 sound capture could be sent to the cloud for 
recognition. 

We provide LOCAL processing thus protecting privacy and limiting the volume of data flowing to the 
backend. This solution might appear as more costly because it requires a larger CPU. In fact, modern GW 
or STB or IoT-dedicated SoCs are now powerful enough and can run neural networks algorithms locally.  

4.3. Proposed approach 

The system will use AI to learn from a known-safe situation during a long period of time. A model will be 
created by polling all the sensors that are available. Notice that only the anomaly detection model is trained 
at home. The acoustic classification model is trained in lab by the manufacturer. 

When the model being created is considered to be good enough, all the sensor data will be monitored and 
any data that drifts from the “normal behavior” will be reported as “abnormal”. 

This two-phase-model (learning / operational use) will be continuously updated with new data. 

The system is able to report events that are outside of the automatically learned “normal situation” and will 
do that without any user-level configuration or programming (no scripting language). 

The system also proposes a more complex sensor dedicated to the recognition of exceptional sounds. This 
brick uses neural networks technology and requires 10’s to 100’s of thousand sounds to create a good 
enough model. It is not possible to learn from user inputs because of this huge data requirement, it is also 
not possible because, for some sounds, it is not possible to ask the user to produce the targeted sound (glass 
breaking …). 
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4.4. Use cases 

4.4.1. Sensors 

The system is sensor-agnostic, any continuous variation data can fit. In the following use cases, we will 
consider these sensors: 

• Temperature 
• Light (color & level) 
• Atmospheric pressure 
• Sound level (sound pressure) 
• Humidity 
• Organic volatile gas 
• Presence detector (passive infrared detection, PID) 
• Geophone (very low frequency microphone (< 100Hz), vibration detector). OPTIONAL 

(expensive) 
• (time / date): not really a sensor but a crucial element. 

4.4.2. Audio recognition 

We will also use the output of the audio sound recognition brick that can detect pre-trained abnormal 
sounds:  

• Dog barking 
• Glass breaking 
• Gun shots 
• Baby cries 
• Alarm (CO, fire …) 
• Human voice (no speech recognition, just “someone is speaking” information) 

4.4.3. Actors, entities 

• NN Audio recognition + pre-trained sounds models recognize rare sounds (dog barking, glass 
break …). The NN model is prepared offline (require huge computing capabilities) 

• Sensor interface: drivers 
• Unsupervised learning + NN model: local learning model aimed at detecting abnormal situations 
• Post processing: prepares the data, does filtering if needed 
• Backend interface: interfaces to the cloud  
• (sensors) 
• (clock): time & date 
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Figure 15 simplified system-level architecture 

4.5. Possible usages 

Table 4 : Possible usages 

What? Detected as ... Comments / limitations 

Fire detection Very fast temperature rise 

High temperature is reached, for instance 
above 50°C 

And/or 

Fire alarm sound detection 

Direct sunlight on the sensor might 
be detected as fire and can happen 
only a few days per year (high 
seasonality) 
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Freeze warning In case of heating failure, the temperature 
falls under 5°C. There is a danger of frozen 
pipes in the house. 

 

Flood Very fast humidity rise  

Device reliability Magnetometer / gyroscope: device is moved If the device is moved, its previous 
learning is not relevant anymore 

Open window 

Heater / AirCo issue 

Temperature rise / fall above limits – maybe 
with a humidity modification at the same 
time 

 

Dog barking for too 
long 

Dog barking detection + time Dog barking from the sound 
recognition brick filtered with 
“normal” duration by the 
unsupervised learning  

Glass breaking, gun 
shots, fire alarm sound 

Rare sound recognition No filtering 

Baby cry for too long Rare sound recognition + time Filtered by the unsupervised 
learning / time 

Presence at wrong time Presence detector + time + unsupervised 
learning 

Presence detection at unusual 
time/date 

Smoke / CO² / Gas Smoke detector (if any) and/or alarm sound 
detection  

No filtering? 

Abnormal noise level 
(too loud, too long), for 
example, faucet kept 
open 

Sound energy detector (not managed by the sound 
recognition) 

Detected by measuring sound 
energy (average), any loud and 
lasting sound will be recognized 
the same way 

Door slamming Pressure and/or loud sound Abnormal pressure rise / fall 

Shutters not opening or 
opened at the wrong 
time 

Light / light color detector  
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Light kept switched on 
at the wrong time 

Light detector + time/date  

 

4.6. More difficult usages, Geophone-related & others 

Table 5 : Possible usages (2nd level) 

What? Detected as ... Comments / limitations 

Earthquake / explosion Geophone activity The geophone is optional 

Steps  Geophone activity The geophone is optional 

Steps at the wrong time Geophone activity & time Steps at the wrong time (night?). 
Geophone is optional 

Everything related to 
power (mains) usage 

Currently, no sensor Could be easy to use, needs adding 
a dedicated sensor (or set of 
sensors) on mains 

Abnormal steps Geophone activity The geophone is optional. 
“abnormal” steps might be “too 
loud”, “too slow”, “too fast” … 
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5. Possible Implementations 
The recognition bricks have been designed in order to run on relatively low-performance hardware while 
keeping the important goal of running all the AI software locally. 

Simplified requirements are: 

• CPU: between 50 and 100% of one 32 bits ARM core (Cortex A53 class, ARMV7 instruction set). 
Note that most A53 implementations have 2 or 4 cores. 

• Linux or Android. 256~512MB extra RAM required 
• Between 2 and 4GB of storage / code space 

Using 64 bits implementation (ARMV8) can improve the porting, having access to a TPU (or a GPU) can 
also help but it is not a strong requirement. 

Several implementations are possible: 

• Run the SW bricks inside a CE equipment, for example a set top box 
• Run the SW bricks inside a gateway 
• Create a dedicated standalone accessory 
• Run the SW at the Edge / inside the cloud 

Table 6 : Possible implementations 

Solution Pluses Minuses Potential improvement / 
remarks 

Set Top Box Cheap. STB CPUs are fast 
enough. Ample RAM/Flash. 

Not necessarily well located. 
Might be switched off at random 
time. Sensors might be missing 

Add remote mics 

Gateway Very cheap (but remote 
mics/sensors will add cost) 

CPU & RAM might not be 
enough. Remote mics are 
required (can be costly). Always 
ON device. 

Dedicated USB key (including 
CPU, RAM and sensors/mics) 

Standalone 
device 

Very convenient, multiple 
devices might cooperate. 
Sensors can be part of the 
accessory. 

Somewhat expensive (but not so 
much compared to remote 
sensors + mics devices). 

One intelligent accessory 
connected to simpler sensors 
boxes. 

Cloud / Edge No CPU/RAM/Storage limit 
while being cheap 

Still need local sensors/mics 
(expensive). Does not meet the 
privacy constraint 

Less privacy protection is a 
major issue inside the EU 
(GDPR). Privacy protection is 
one of the main differentiators 
of the technology. 
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6. Conclusion 
The technology we developed allows seamless anomaly detection and reporting for many home-based 
situations. 

Privacy is preserved because no data is sent outside of the home, with only event notifications uploading to 
the cloud. 

Exceptional sounds detection is done using world class AI with models that are created using thousands of 
sounds for each class, thus achieving extremely good recognition levels. 

Installation is simplified because the system can learn by itself from a “normal” situation and then can 
report any event that is not sufficiently in line with this situation. 

Implementations can be either as a standalone accessory or as a SW brick running in existing CE-grade 
equipment. 
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Abbreviations 
ML Machine Learning 
RMS Root Mean Square 
PCEN Per Channel Energy Normalization 
FFT Fast Fourier Transform 
SVM Support Vector Machine 
NN Neural Network 
CNN Convolutional Neural Network 
FC Fully Connected 
RNN Recurrent Neural Network  
LSTM Long Short-Term Memory 
RBF Radial Basis Function 
EM Expectation Maximization 

 
Bibliography & References 

 

[1] Distance measures for speech recognition, psychological and instrumental, Paul Mermelstein, 1976 

[2] Trainable frontend for robust and far-field keyword spotting, Wang, Y., Getreuer, P., Hughes, T., Lyon, 
R. F., & Saurous, R. A. (2017, March). In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE 
International Conference on (pp. 5670-5674). IEEE 

[3] SoundNet: Learning Sound Representations from Unlabeled Video, Yusuf Aytar, Carl Vondrick, 
Antonio Torralba, 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, 
Spain. 

[4] DISCRIMINATE NATURAL VERSUS LOUDSPEAKER EMITTED SPEECH, Thanh-Ha Le1;2, 
Philippe Gilberton1 and Ngoc Q. K. Duong, Technicolor and Eurecom, ICASSP2019, Brighton, UK 

[5] Anomaly Detection: A Survey, Varun Chandola, Arindam Banerjee and Vipin Kumar, ACM Computing 
Surveys, vol. 41, no. 3, July 2009. 
 
[6] Individual Household electric power consumption data set, Georges Hebrail, and Alice Berard, in UCI 
Machine Learning Repository,  
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption  

[7] A.P. Dempster, N.M. Laird et Donald Rubin, « Maximum Likelihood from Incomplete Data via the 
EM Algorithm », Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no 1, 1977, 
p. 1–38 (JSTOR 2984875) 

https://books.google.com/books?id=wW9QAAAAMAAJ&q=%22Distance+measures+for+speech+recognition,+psychological+and+instrumental%22&dq=%22Distance+measures+for+speech+recognition,+psychological+and+instrumental%22&lr=&as_brr=0&as_pt=ALLTYPES&ei=zdRmSZjKLoH4lQTfqaXhBg&pgis=1
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

	Table of Contents
	1. Introduction
	1.1. Exceptional sounds recognition
	1.2. Multimodal sensors, abnormal situations detection

	2. Exceptional Sound Detection
	2.1. Introduction
	2.2. Some definitions
	2.2.1. Rare/exceptional sound events
	2.2.2. Sound detector

	2.3. ML based sound detection demystified
	2.3.1. Sound detector service architecture
	2.3.2. Sound detector functional architecture
	2.3.2.1. Dataset
	2.3.2.2. Audio pre-processing
	2.3.2.3. Features extraction
	2.3.2.4. Audio classification
	2.3.2.4.1. SVM based algorithm classification
	2.3.2.4.2. NN based algorithm classification
	2.3.2.4.2.1. Full trained NN model
	2.3.2.4.2.2. Pre-trained NN model

	2.3.2.4.3. NN versus SVM performance comparison results



	2.4. Conclusion

	3. Anomaly Detection
	3.1. Introduction to Anomaly Detection
	3.1.1. Introduction
	3.1.2. An example of Anomaly Detection algorithm
	3.1.3. Different kinds of anomalies

	3.2. Anomaly Detection Algorithms
	3.2.1. Algorithms performance evaluation: the ROC curve
	3.2.2. Algorithms not using the temporality
	3.2.3. Algorithms using the temporality

	3.3. Evaluation
	3.4. Conclusion
	3.4.1. Choice of the algorithm
	3.4.2. Kind of anomalies detected


	4. Usage examples
	4.1. Problem to solve
	4.2. Existing solutions
	4.2.1. Pre-configuration requirement
	4.2.2. Cloud vs. Local processing

	4.3. Proposed approach
	4.4. Use cases
	4.4.1. Sensors
	4.4.2. Audio recognition
	4.4.3. Actors, entities

	4.5. Possible usages
	4.6. More difficult usages, Geophone-related & others

	5. Possible Implementations
	6. Conclusion

	Abbreviations
	Bibliography & References

