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Introduction 
Distributed Denial of Service (DDoS) attacks are among the preeminent threats facing the Internet today. 
Predicting where the next DDoS attack will emanate at an endpoint/subscriber level is a long-sought goal 
of the cyber-security community.  

This work evaluates attack data from five contributing members of the DDoS Information Sharing (DIS) 
project with the intent to provide an ISP/MSO the tools to predict at subscriber/endpoint granularity if 
they will start participating in a DDoS attack. The DIS data is combined with data from the Internet 
search engine, Shodan, to build a detailed dataset of recent/active attackers. Statistical and machine 
learning analysis of this composite dataset demonstrates that by evaluating network endpoints with certain 
features, it can be predicted that these endpoints will participate in a specific type of DDoS attack with 
accuracies between 91-98%.  

Finally, each feature of the attacking network endpoint that was used in the machine learning model is 
ranked by its predictive significance, lending insight into how ISP/MSOs might preemptively detect and 
mitigate an endpoint even before it starts participating in a DDoS attack. 

Background 
1. DDoS Information Sharing Project Overview 
The DIS project began as a pilot in early 2017 through the Messaging, Malware, Mobile Anti-Abuse 
Working Group (M3AAWG). At its core, its purpose is to allow large ISPs to share their attack data with 
the goal to help them remediate compromised and vulnerable systems running within their own networks.  

This is accomplished by using a trusted third party to aggregate attack data from participants and provide 
API access to this aggregated data in a way that the ISP can see the attacks that are emanating from within 
their own AS (Autonomous System) as shown in Figure 1. 

 
Figure 1: DDoS Information Sharing Overview 
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2. DDoS Introduction and History 
Distributed Denial of Service attacks are attacks that emanate from many different and distributed sources 
and usually target a single entity on the Internet. The goal of the attacker is to overwhelm a service 
provider and deny legitimate users’ access to the service.  

The first notable DDoS attack that was widespread occurred in February 2000 by a 15-year-old going by 
the handle MafiaBoy (Michael Calce) (HERSHER, 2015). MafiaBoy enlisted several University servers 
to send many simultaneous requests and brought down some of the biggest names in e-commerce at the 
time including Amazon, CNN, Dell, eBay and Yahoo. The attack itself was small in scale and simple by 
today’s standards, using only a handful of powerful computers to submit many legitimate requests 
simultaneously. The webservers of the time were overwhelmed and unresponsive for a span of several 
hours and in some cases several days.  

In 2007 one of the first documented cyber-warfare DDoS attacks crippled the government of Estonia 
(Goth, 2007). The attack was relatively small in terms of bandwidth and targeted only a handful of 
websites however the collateral damage overwhelmed Estonia’s network infrastructure effectively taking 
the entire nation offline. The politically motivated attack is largely blamed on Russian actors and resulted 
in the drafting of new international laws, notably the Tallinn manual on the international law applicable to 
cyber warfare (Schmitt, 2013).  

The Mirai botnet attack of 2016 was not only one of the largest DDoS attacks in terms of bandwidth at 
1.1 Tbps it, was also one of the most disruptive (Kolias, 2017). Composed of a botnet of over 600k 
compromised Internet-of-Things (IoT) devices, this attack targeted high-profile services such as the Dyn 
DNS (Domain Name Service) provider blocking access to many popular websites, such as Twitter, 
Netflix, Reddit and GitHub for many hours. 

As of this writing the largest ever published DDoS attack in terms of bandwidth was reported by Imperva, 
where in April of 2019 they reported a SYN DDoS attack of 500 million packet-per-second attack 
resulting in a phenomenal 3.4 Tbps (Crane, 2019)! 

2.1. Cost of DDOS 

Denial of service attacks are so effective because they are extremely cheap for the attacker and extremely 
expensive for the victim. The rise of DDoS as a Service (DDoSaaS) on the dark web has commercialized 
and commoditized these types of attacks, drastically lowering the total cost and barrier to entry required 
to launch them. An analysis by Kaspersky Labs examined several DDoSaaS providers on the dark web 
and found that a DDoS attack lasting 300 seconds with a bandwidth of 125 Gbps will cost as low as $6 
(US). Others advertise an hourly rate of $20 per hour for attacks in the hundreds of Gbps, and offer 
various plans and a simple pricing structure based on type and scope of attack (Makrushin, 2017). 

For victims the cost of a DDoS is much higher, Incapsula surveyed 270 North American organizations 
and estimated that a targeted DDoS attack costs a victim an average of $40,000 per hour (Mathews, 
2014). B2B International research firm estimated that a DDoS attack costs enterprises an average of $2 
million per incidence (Kobialka, 2018). 

3. Taxonomy of DDoS Attacks 
DDoS attacks can generally be divided into three broad categories, volumetric attacks, protocol specific, 
and application specific. The DIS data have examples of attacks from all three categories. 
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Volumetric Attacks 

Volumetric attacks are designed to saturate the target network by flooding it with traffic. Some examples 
of this type of attack include UDP floods, and ICMP floods. Volumetric attacks often have a broad affect 
even if they have a narrow target. For example, a flood of spoofed UDP traffic aimed at specific server 
could saturate many of the network paths leading to that server causing access to other websites and 
services to become unreachable. 

Protocol Attacks 

Protocol attacks take advantage of specific weakness in protocols and focus on depleting resources. 
Protocol attacks work against specific servers, or intermediary network equipment such as firewalls, load 
balancers and SDN controllers. 

Application Attacks 

This type of attack does not produce high levels of network traffic, instead the attack is targeted at 
specific server applications with the goal of making the service exhaust CPU or memory resources. 

3.1. Overview of DDoS Detection 

Detecting DDoS attacks is a challenging problem due to the heterogenous nature of how these attacks are 
carried out and requires an equally heterogenous set of solutions. There are three main categories that are 
used for DDoS detection, statistical methods, knowledge-based methods and machine learning based 
methods.  Often combinations of these three are used simultaneously. 

Statistical Methods 

Statistical methods generally attempt to model the normal traffic and then test any new traffic or flows to 
determine if it belongs to the normal set or is an anomaly.  

Knowledge Based Methods 

Knowledge based approaches to detecting attacks use predefined rules and patterns to determine if the 
traffic is an attack or not. Some examples of knowledge-based approaches can be as simple as threshold-
based systems to more complex state-transition and signature analysis. 

Machine Learning Methods 

Machine learning methods of detecting DDoS attacks apply machine learning enormous ability to absorb 
vast amounts of data and learn classifications across that data.  

Methods and Results 
This section is divided into two parts. Part one analyzes global statistics of attacks across all participants, 
giving a broad picture of the scope, scale and structure of attacks. A prediction algorithm that uses 
sequential data was run on the global data to predict the next attack in the sequence. 

Part two uses recent attack events from the DIS project to query Shodan, a search engine for connected 
devices. The Shodan query returns fine grained details such as port, service and operating systems of 
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active/recent attackers. These details are then composed into features and fed into machine learning 
predictive models.  

4. Global Attack Statistics 
Global statistics are generated from attack events submitted across all DIS participants. Attack events are 
purged by the system if they are older than 30 days; however, reports are generated on a weekly basis and 
sent to participants. These weekly reports store aggregated meta data such as top attack types, countries 
etc. The following graphs show data from the first six months of 2019. 

 
Figure 2: Top Attacks by Type 

Figure 2 shows the top attack types seen by the DIS system over the first six months of 2019.  
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Figure 3: Top Attacks Countries 

Figure 3 show the origin of attacks by county for the first six months of 2019. These countries and their 
rank are consistent with other sources and analysis. (Link) (Akamai, 2019) 

The following figures represent a sampling of data gathered between June 1, 2019, and June 30, 2019.  

 
Figure 4: Top Attacks by Bandwidth 

 
Figure 5: Top Attacks by Packets 

Figure 4 above indicates that most of the attacks are not volumetric in nature with the median attack only 
179Kpbs and the plurality (mode) of the attacks having a bandwidth of only 50Kbps.  

Figure 5 furthers this observation where the median packets per second is only 19 pps and the plurality 
(mode) is only 4 pps.  
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Figure 6: Top Attacks by Duration 

Figure 6 shows that the average attack is just over 20 minutes and the most frequent attack lasts only a 
little more than 7 minutes. Figure 6 also shows that the longest measured attack was almost 60 days long 
(active and ongoing attacks are not purged every thirty days). 

5. Attack Prediction 
Attack data from participants comes with a label (Table 3) generated by the Netscout Arbor system 
running on the participant’s network. This global data only contains a few usable features making it 
largely unsuitable for predictive analysis. However, some predictive analysis can be run using only the 
labels and the associated IP address.  

5.1. Long Term Short Term Memory (LSTM) Attack Prediction 

Recurrent Neural Networks (RNNs) are machine learning neural networks that are useful on time-series 
data. Long-Term Short-Term Memory (LSTM), are subset of RNNs that can learn long term 
dependencies and are particularly well suited to learning from large sets of sequential data and are used 
extensively on word prediction algorithms.  

The hypothesis in this analysis is that a host that is compromised by one malware is likely to become 
compromised by another malware. Each malware forms a botnet that propagates unique types of attacks. 
These attacks form a timeline of attacks such that a host that propagates attack type A, later propagates 
attack type B. The predictive model analysis then follows that if a HostX, that propagates a series of 
attacks, 

HostX: AttackA→AttackB→AttackC… 

how likely is that host to also exhibit AttackD?  
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Figure 7: LSTM Attack Prediction 

As can be seen in Figure 7, the blue line is the series of attack data from a single IP address that 
propagated several types of attacks (in order for the model to analyze the data, attacks names were each 
converted a number see Table 3: Attack Labels). The orange line represents the model being trained and 
the green line is the model’s prediction.  

Based on the graph, the LSTM prediction model did not accurately predict the attack type. The primary 
reason for an LSTM model to fail is that the data is too random in nature to be predicted. To confirm this 
hypothesis, the augmented Dickey-Fuller (ADF) test was run across the data (Dickey, 1979).  

The ADF test shows how strongly series-based data can be defined by a trend. If the ADF test results in a 
positive score, then the data has a series-dependent structure to it. If the score is negative, then the data is 
too random to predict. The ADF score for the DIS labeled data run across several hosts that had multiple 
attack types resulted in a score of -5.9611. This score implies that the data is too random to perform time-
series predictions.  

Why is the data random? It is believed that the DHCP assignment of IP addresses to attacking hosts 
introduces noise into the data that prevents any predictive analysis to be run. The LSTM model could be a 
viable method of prediction if host data could be statically tied back to a consistent IP address. For 
MSO/ISPs, this could be accomplished with internal hosts using current DHCP assignment logs.  

6. Shodan Data 
Shodan is a search engine that continuously scans the Internet for open and accessible ports. When 
Shodan successfully connects to a port it grabs the response from the host and stores and indexes the 
returned data, called the banner, along with the IP address in a database. Shodan offers an application 
program interface (API) to query this database.  
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For this research the most recent 100K events representing recent/active DDoS attacks from the DIS 
service were used. For each event the IP was extracted and then used to query the Shodan database. 
Queries that returned a recent record from Shodan are considered to be recent/active attackers. 

Of the 100K events in DIS, Shodan returned 2,388 recent records. By parsing the banner of each returned 
record, and transforming the categorical features (operating system, protocol, etc.) into numbers using a 
technique called one hot encoding, the data was expanded to 231,226 examples (rows) and 225 features 
(columns). From this new composite dataset some basic aggregation analysis was done across the dataset. 
Table 1 below shows a breakdown of the attackers based on operating system. 

Table 1: Top attackers by operating system 
Operating System (OS) Attacker Count 

Windows Server (various versions) 201 
Windows Desktop (various versions) 52 
Linux 3.x 48 
Windows Embedded 6 
Linux 2.6.x 4 
Darwin (MacOS) 3 

 
Figure 8: Top Attackers by Service 

 
Figure 9: Top Attackers by Protocol 

Figure 8 shows the breakdown of attackers based on service running on the host. It is notable that the 
MikroTik bandwidth test service is detected at a rate nearly five times more than the next nearest service, 
Microsoft’s IIS http (web) server. 

Figure 9 shows the breakdown of attackers by protocol. Each of the protocols was derived from the 
Shodan module that was used to detect it. Domain Name Service , a frequent source of DDoS attacks due 
to the high amplification potential of the protocol, takes the top two slots.  

The appearance of the ikettle protocol in the top four was a notable result. The iKettle protocol is a binary 
protocol that runs over UDP or TCP and port 2081. This protocol is used to control a smart WIFI-
connected kettle of the same name used to heat water for tea or coffee. iKettles come with a default 
password of “000000”. Once the iKettle is joined to the user’s network, it allows connections to port 23 
using Telnet. An attacker can connect to the iKettle and request it to list its settings, one of which is the 
WIFI password that is in plain text (hughes, 2015).  
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6.1. Random Forest Predictions on Shodan Data. 

The composite dataset has the label imported from the DIS data and many additional features from the 
Shodan data, so supervised learning classifiers can now be deployed to predict the type of attack using the 
weighted Random Forest classifier (Liaw, 2002). The weighted Random Forest classifier belongs to a set 
of classifiers that use an ensemble of decision trees to build a model of the data. 

The weighted Random Forest classifier works by building several predictive models and votes on the best 
one. This classifier is particularly useful when applied to unbalanced data, i.e., where the labels are not 
evenly split. The dataset derived from top six DIS attack types as labels combined with the Shodan host 
data had majority sets made up of attack types DNS amplification and NTP amplification with the other 
four belonging to minority sets. The weighted Random Forest model assigns a higher weight and 
misclassification cost to the minority classes this in turn reduces the bias toward the majority classes. 

The composite attack dataset was split into two parts where 80% was used for training and 20% was 
reserved for testing. Table 2 shows the accuracy of the classifier of predicting the correct label on the test 
data. 

Table 2: Classifier results on attack data 
Attack Label  Random Forest Classifier Accuracy 

DNS Amplification 98.036% 
NTP Amplification 98.468% 
CLDAP Amplification 95.055% 
IP Fragmentation 91.204% 
Total Traffic 96.265% 
UDP 98.234% 

 
Figure 10: DNS Amplification Top Features 

Figure 10 shows the top features used in predicting a DNS amplification attack, as would be expected port 
53 is seen. Echo refers to the echo protocol (RFC 862) that is associated with the init.d services on Linux. 
Based on Figure 10, this classifier utilized the ports feature predominantly in predicting the attack 
classification of DNS amplification. QOTD is a quote of the day service.  
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Figure 11: NTP Amplification Top Features 

Figure 11 shows the features for an NTP amplification attack. Features for the ntpd service, ntp protocol 
and port 123 make logical sense here. The figure shows a close ranking of feature importance, especially 
with the ntpd service, OpenSSH and the ports features. This implies these features are of relative equal 
importance to the attack classification of NTP amplification.  

 
Figure 12: CLDAP Amplification Top Features 

Figure 12 shows the features used in the CLDAP classification. CLDAP is associated with Microsoft 
Active Directory services and often serves as an application layer ‘ping’ for Active Directory.  Here the 
open ports were the predominant feature used by the classifier. 
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Figure 13: IP Fragmentation Top Features 

 

Figure 14: Total Traffic Top Features 

 
Figure 15: UDP Top Features 

Figure 13, Figure 14, and Figure 15 are grouped together as they have similar predominant features. 
Despite having similar features, the classifier was able to predict each attack classification with a greater 
than 90% accuracy rate. 
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Conclusion 
In this research, DDoS Information Sharing (DIS) data was explored showing the top attack types and top 
attack origins as seen by the participating members. Using the sequence of attacks from each IP address, 
the feasibility of using LSTM RNNs for predicting the next attack type in the sequence for a given IP 
address was examined. The current data is too random to pursue this method by itself, however, it is 
believed with the addition of DHCP lease logs, this remains a viable prediction model. 

Next, the latest events seen by the DIS service was used to query the Internet search engine, Shodan. 
From these queries, a detailed dataset was built for recent/active attackers that showed the top operating 
systems, services and protocols running on each attacker. 

This new dataset was analyzed using the Random Forest ensemble classifier to predict the attack type of 
an endpoint based on open ports and the information these hosts present when connecting to them. The 
model was able to correctly predict the DDoS attack type with accuracies above 90% for each type of 
attack. Lastly, a breakdown of each attack type and the features of the attacker that are most important to 
the predictive model was shown. 

The research presented in this paper could be directly applied by an ISP/MSO to predict which 
subscribers have a node that have been or can be compromised on their network. This in turn could be 
used in remediation efforts and upstream DDoS prevention services, preemptively, before the 
compromised node has started participating in a DDoS attack. 
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Appendix 
Table 3: Attack Labels Used 

# Attack Name # Attack Name 
1 UDP 12 NTP Amplification 
2 Total Traffic 13 SSDP Amplification 
3 DNS Amplification 14 chargen Amplification 
4 TCP RST 15 SNMP Amplification 
5 IP Fragmentation 16 MS SQL RS Amplification 
6 DNS 17 rpcbind Amplification 
7 TCP SYN 18 memcached Amplification 
8 TCP SYN/ACK Amplification 19 RIPv1 Amplification 
9 ICMP 20 mDNS Amplification 

10 CLDAP Amplification 21 NetBIOS Amplification 
11 TCP NULL   

 
Abbreviations 

API application program interface 
AS Autonomous System 
bps Bits per second 
CLDAP Connection-less Lightweight Directory Access Protocol 
DDoS Distributed Denial of Service 
DDoSaaS DDoS as a Service 
DHCP Dynamic Host Configuration Protocol 
DIS DDoS Information Sharing 
DNS Domain Name System 
Gbps Gigabits per second 
ICMP Internet Control Message Protocol 
IoT Internet of Things 
Kbps Kilobits per second 
LSTM Long-Term Short-Term Memory 
M3AAWG Messaging, Malware, Mobile Anti-Abuse Working Group 
NTP Network Time Protocol 
RNN Recurrent Neural Network 
SDN Software-Defined Networking 
Tbps Terabits per second 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
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