

 © 2019 SCTE•ISBE and NCTA. All rights reserved.

Kickstarting Proactive Network Maintenance with the
Proactive Operations Platform and Example

Application

An easy way to start your own PNM journey

A Technical Paper prepared for SCTE•ISBE by

Jason Rupe, Ph.D.
Principal Architect

CableLabs®
858 Coal Creek Circle

303.661.3332
j.rupe@cablelabs.com

Jingjie Zhu
Senior Engineer

CableLabs®
858 Coal Creek Circle

303.661.3312
j.zhu@cablelabs.com

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Table of Contents .. 2

Introduction ... 3

The Proactive Operations Platform .. 4
 Control & Schedule Worker .. 6
 Work Queues ... 7
 Workers and Workflow Description ... 7
 Config Files .. 9
 Data Stores .. 9
 Scheduling Considerations ... 10
 Additional Notes about ProOps .. 10

PNM Example Application for ProOps .. 11
 Base data polling (Pollers).. 11
 Triggers (Analyzers) ... 11
 Actions ... 12
 Modules ... 12

Configuring an Application ... 13

Envisioned Use Cases ... 22

Conclusion .. 24

Abbreviations... 25

Bibliography & References .. 25

List of Figures

Title Page Number
Figure 1 – A depiction of the ProOps platform on top of CCF and a network. .. 4
Figure 2 – The depiction of ProOps from Figure 1, with OODA overlaid and arrows showing the process

flow. ... 6
Figure 3 – Depiction of the example application that comes with ProOps today. 11
Figure 4 – Configuration management server web GUI index page (task queue configurations). 14
Figure 5 – Configuration management server – defined workers. ... 14
Figure 6 – Job scheduling. ... 15
Figure 7 – Configuring job scheduling. ... 16
Figure 8 – Configuring for T3 and T4 device event log errors. .. 17
Figure 9 – Configuring the RxMER statistics worker. .. 17
Figure 10 – Configuring a data collection worker. ... 18
Figure 11 – Channel estimation statistics worker. ... 19
Figure 12 – Top-level system monitoring. ... 19
Figure 13 – Detailed worker system monitoring. ... 20
Figure 14 – System monitoring graph. ... 21
Figure 15 – System monitoring graph of data collection. .. 22

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 3

Introduction
As part of its long standing proactive network maintenance (PNM) project, CableLabs® has been
assessing the needs of operators and vendors in the area of PNM with the goal of reducing adoption
friction for members and vendors. We identified a few main issues, an important one of which is
addressed by the work presented in this paper: the Proactive Operations (ProOps) platform.

ProOps is a platform (environment, framework) for turning data into operations action. That includes
proaction, when the data allow it. PNM data enables proaction, so we built an example application that
comes with ProOps, which serves multiple purposes: as an example to show how to use ProOps, as a
starting point for trying basic network data-driven PNM and reactive operations, and as a launch point for
implementing and sharing PNM best practices.

To turn data into action, most operators rely on engineering and technician expertise. It is common to
simply gather and plot the data, then look at the output. CableLabs built the cable modem validation
application (CMVA) for that latter purpose (as well as for cable modem (CM) certification test
automation and sharing). But without a human expert sifting through the data, not much can be done with
it. CMVA is great for developing PNM ideas, but it still requires experts to do the next step, and
developers to build solutions to try. That requires investment risk that we surmise is a roadblock to
implementation of PNM. But for many operators, and some vendors, there just aren’t enough available
experts to do the work manually. The industry needs help getting over the hurdle of turning the data we
exposed into action we can take with confidence.

ProOps was built to facilitate the automation of turning data into operations action. Generally, we
identified the steps to accomplish that task as 1) data extraction (observation), 2) analysis across time and
network elements (orient), 3) correlating problems and measuring severity (decide), and 4) defining work
items that are worthy of attention (act). The steps can be labled as observe, orient, decide, and act
(OODA) to roughly follow the OODA process or OODA loop, which is a cyclic process developed by US
Air Force Colonel John Boyd [1,2]. Combat operations resembles network operations more than we care
to admit perhaps, so the labels fit. Boyd systematized the combat operations process as a rapid cycle of
the OODA loop. Likewise, network operations follows a similar process, and the concept helps explain
how ProOps works.

In the future, we expect to release applications and modules to enhance existing applications, in the
ProOps environment. Once ProOps is installed, new applications will work like updates to ProOps,
making the operations impact even less. New applications and modules will interwork with existing
applications in the same deployment of ProOps, or parallel deployments utilizing the same common
collection framework (CCF) instance are possible too. Multiple deployment models are available today,
and more to come as vendor and operator members request.

ProOps is currently available for use by CableLabs members and vendors under nondisclosure agreement
(NDA) and intellectual property rights (IPR), with the additional common code collection (C3)
community agreement.

In the rest of this paper, we explain in-depth the structure and function of ProOps, and the example
application that comes with it today. This will lead us to explain some of the basic ways you can
configure and build your own solutions in ProOps to support your operations improvement experiments
and inventions. We also cover use cases for ProOps that we envision, which hopefully will interest you or
spur your own imagination to invent use cases we haven’t thought of yet.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 4

The Proactive Operations Platform
The ProOps platform is a framework for constructing applications that turn network data into action.
ProOps is simpler to understand in the context of an application, so we later explain it in the context of
the simple but complete example application that comes with ProOps. As a foundation, we first explain
the ProOps application environment as it stands alone, before an application has been constructed. We
also explain briefly here the elements of the environment, covering the details later in the application
context.

An important class of components of ProOps is the worker, which is a module of code which can be
tasked by the system. Some workers are a part of and come with ProOps, and some workers function for
the application. A worker is a module of code which is scheduled to execute according to the
configuration instructions, taking inputs as directed, and sending its output where directed. In software
development terms, it is like a microservice, but subscribed to a task queue instead of waiting for an
application programming interface (API) call. An application in ProOps is configured from workers that
execute the needed instructions.

Figure 1 shows the elements of the PNM application environment as a raw environment, without hosting
a working application, or any workers; the workers box represents just the worker organization without
the workers that make up the application.

Figure 1 – A depiction of the ProOps platform on top of CCF and a network.

We begin at the bottom of ProOps and work our way up. The descriptions of the network or CCF are
outside the scope of this paper. For the latter, we refer the reader to the CCF architecture document [3].
The remaining elements are all a part of ProOps, so are described briefly here.

• The configuration server (config server) hosts the configuration data which define the messaging
mechanisms and necessary additional configurations for workers. It describes the workers to be
connected, and any changes that affect the work they do. The user can control applications
through this interface for the most part, as the configuration is what defines the application from a

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 5

pool of workers. When workers start up, they request configurations from the configuration
server using RESTful APIs.

• The control and schedule section handles the scheduling of workers, and controls task creation
and ending as needed to handle the processing according to the configuration server. The tasks
describe the data that each worker is fed, the data that each worker outputs, where the outputs are
held, where the inputs are obtained from, and any additional information for specific workers
such as thresholds, Internet protocol (IP) addresses of cable modem termination systems
(CMTSs) and CCFs, etc.

• The work queues are a number of first-in, first-out (FIFO) queues of tasks that need to be done by
the workers according to the schedule dictated by the configuration server.

• The workers are held in the worker environment in the center of the figure. These workers simply
exist in a pool and are organized as dictated by the configuration server, but we recognize that for
PNM we will need the data from the network to be translated into actionable work. Therefore, we
have identified reasonable steps we expect are sufficient for most any application envisioned.
These steps are part of the design advantage of ProOps, but not a constraint to the solution
possibilities. Those steps are briefly described as follows. Note how they align to the well known
OODA loop or OODA process.

o Extraction takes place periodically as dictated by the initial schedule outlined in the
configuration. Because the same media access control (MAC) addresses are collected
multiple times on a(n) (approximate) schedule, we note that this step conducts data
collection of MAC by time (MAC x Time). The output at this layer goes to the log file,
but also decoded data and analysis results are held, too. Because this layer is focused on
data extraction, we align this layer to the Observe step of the OODA process.

o Trigger Analyzer will analyze the data from the extraction and determine whether a
change of action is triggered, such as obtaining new data elements, taking data elements
on a different schedule, collecting data from related network elements, and placing some
of these MAC addresses on a list that identifies further action. The analysis on this layer
likely evaluates data on a single MAC over time. For this reason, we note that this step
conducts data analysis by MAC. The output from this step consists of statistics, and a
determination of which MACs are triggered. Because this layer establishes some context
to the information, we align this layer to the Orient step of the OODA process.

o The Actionable step takes the MAC addresses that are flagged by the trigger analyzer
and determines the network section relevant to the identified MACs. For example,
clustering of MACs is possible here. But to make these actionable, we also have to
introduce a measure of performance and comparison for these MACs or clusters of
MACs, so that decisions can be made to bring the network section to actionable work.
Therefore, we note that this step conducts analysis on the network sections. The output
from this step can be clusters of MAC addresses, or single MAC addresses representing
network points or CMs, but will definitely be additional statistics to support decisions.
Because this layer makes our oriented view of the data something we can act on, it is
really the layer in which decisions are made. Therefore, we align this layer to the Decide
step of the OODA process.

o The Threshold Analyzer will look at the measure of performance and comparison,
introduce further analysis of other MACs in the cluster, look at historical information,
and decide which of the identified actionable network sections are good choices to act on
based on information provided in the configuration server. This step therefore conducts
analysis on work items, and provides output to the work list. Because this layer considers
the decision made that there is something that can be acted upon, and either selects or
allows the selection of work that will be acted on, we align this layer to the Act step of
the OODA process.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 6

• The data stores hold the data elements needed for the application as dictated by the configuration
server. The following elements are expected to be needed in many applications.

o Logs will hold output from the extraction layer.
o Decoded data and analysis results will be held in a data lake or database depending on the

needs of the application.
o Statistics, triggered lists, and clustering lists are captured in a database or tables as needed

by the application.
o The work list is likewise captured in a list or database as needed.

• Finally, a dashboard application is fed by the entire set of identified data, so that geographic
information system (GIS) maps, graphs, and detailed work packages can be assembled as needed
by whatever system this will feed. This approach allows most any operator to take the output
from the various steps of an application in this environment and tie it easily into its existing
ticketing systems and other operations needs.

The previous Figure 1 is revised now to show the flow of information and how the layers reflect the
OODA steps, in Figure 2.

Figure 2 – The depiction of ProOps from Figure 1, with OODA overlaid and arrows

showing the process flow.

Next, we discuss some of the detail in the sections of the ProOps architecture. In the explanation of the
architecture, we put workers in bold, data in italics, and configuration underlined to help keep it all
straight.

 Control & Schedule Worker
Control & schedule is a special worker that interacts at the system level to control the other workers,
follow the application and flow defined in the configuration file, and schedule work according to the task
description or conditions discovered from the other workers or their data output. The tasks are posted
periodically by the schedule worker to the task queue(s) and assigned to workers by subscription. If a

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 7

configuration instructs data collection to happen every x hours, then this worker will schedule work for
the queue based on this schedule. Further, if a result from a data poll and analysis indicates triggering a
rule given in the config file, then this worker will update the schedule it follows for those impacted CMs
accordingly, and therefore change the schedule that dictates how it places work in the work queue. It must
therefore hold state, but can always regain a lost state by reading the config data and the information in
the data stores, as those are sufficient to define the schedule.

Note that if this worker is responsible for monitoring a trigger condition to instantiate another worker,
such as a ranker worker, then it must have access to the data or worker output that triggers the follow up
work. If instead it is to act on a schedule only, then maintaining the time against that schedule is
important, but not catastrophic if state is lost. The log file could be used to capture time and a backup of
control & schedule state to avoid a loss of state at failure.

This special worker also regulates the system so to not tax the network too much, and to poll and archive
data based on scheduling requirements from the application configuration. The control & schedule
worker reads the config data, builds a schedule for how other workers are started for data collection, then
creates the needed polling workers at the appropriate time.

Note that the control & schedule worker is the one worker type that keeps track of timing; hence, it
needs to maintain state information.

 Work Queues
This entity is a number of queues of tasks to be handled by different workers in the system. The control
& schedule worker will place tasks on the queues for other workers, and likewise another worker can
generate a task for the control & schedule worker to handle. The work queues manage tasks and
assignments, holding the tasks to do like a pipeline connecting tasks to workers.

 Workers and Workflow Description
In this architecture, workers are created to handle tasks, and the work to be handled arrives to a queue. A
special control & schedule worker handles all timing for scheduling, and assigns work to the other
workers. Based on this concept, the following workers need to be defined, as illustrated in Figure 2. The
previous figures only show in some cases the worker classes, so more detail is described here than can be
shown in the figures. Further, other types of workers can be defined at will, and nothing precludes the
addition of layers, or the extension of function of identified layers, in this architecture. The layering is
simply a framework that facilitates action to support a network and services. The configuration file,
described later, is what enforces the construct of the overall system, and therefore the workflows or
applications built in the environment.

• Observe = Extraction [polling worker, translator, linear calculator]: This is a pool of workers
which form a linear processing of data from the CCF. The new polling workers interact with the
CCF to poll the data. The data received are then translated by translator workers if and when
necessary, and finally processed by linear calculator workers. The linear calculator worker is a
special calculator worker that is always applied to data right off of the CCF. The outputs are
cataloged into the decoded data and analysis results data lake or database by a catalog worker
(if needed).

• Orient = Trigger Analyzer [calculator workers, anomaly detector workers, machine learning
workers, trigger analyzer worker]: This is a pool of workers who evaluate data as it shows up
in the decoded data and analysis results, against the analyses invoked and configured by the
config file, placing statistics and a list of triggered MAC addresses into the Stats, Trigger List,

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 8

Cluster list database. The control & schedule worker will monitor the database for new data
which triggers the need for a specific worker type, or monitor a clock to trigger, based on the
config file. Then it will schedule the appropriate workers to complete the configured tasks.
Calculator workers will simply calculate statistics from the raw data and place the statistics into
the database. Anomaly detector workers will search a series of data (over frequency, time, etc.),
indicate the data included in a detected anomaly, and in some cases indicate the class of anomaly
detected. Machine learning workers will apply other machine learning techniques to data and
statistics. Both the latter worker types may contain or use calculator workers for example, too. A
trigger analyzer worker will assess these outputs against the triggers indicated in the config file.
The output from these analyses are tasks that can be to sample new data, or sample some data
sources for specific MACs more frequently, or to re-analyze older data, for example.

A note is warranted here about the role of the config file versus the changes decided: The
config file holds information about the frequency of data collection, but only for the
default data frequency; it also holds information about the triggers and actions from
triggers regarding data polling frequency, but only as conditions, not as system state.
Changes in system state are held in memory; or, in the case of MAC addresses subject to
frequent polling, in the stats, trigger list, cluster list database.

This means workers can relate to all other workers in a nesting, series, parallel, or other
configuration relationship. More worker types can be defined to fit into this pool as needed by
specific applications.

• Decide = Actionable Layer [severity calculator worker, ranker worker, cluster worker]: This
worker class likely only contains a few worker types (depending on the nature of the application
configured), tasked with translating the trigger list and collected statistics and data for triggered
MAC addresses, and providing the necessary performance measures with which to rank the MAC
addresses. It can work exclusively with the stats, trigger list database as it reads the information,
processes, then adds an updated measure of performance to the data, and provides an updated
ranking. That assumes the configuration file is set up to provide the needed data to supply the
measures needed for action. The work here can be done periodically, or triggered by a condition
such as a number of data updates on the triggered list, or a number of new entries to the triggered
list. The control & schedule worker will trigger action as directed by the config file, and trigger
a severity calculator worker based on the information in the config file which specifies what
triggers the calculation. Once the calculation is updated, the ranker worker will evaluate the
updated measures of performance and rank the MAC addresses by severity, placing the
performance measures and the ranked list back into the database. The cluster worker will
evaluate the information relating to the MAC addresses and attempt to cluster them by similarities
in the statistics and performance measures. Workers on this layer may need access to the raw data
or decoded data or analysis results in some cases too. Either on a schedule or as triggered by
conditions, as specified in the config file, the cluster worker is started to evaluate triggered
MAC addresses and their performance and other needed information, conduct clustering based on
multiple dimensions of data, and output clusters of MAC addresses that are likely experiencing
the same problem.

• Act = Threshold Analyzer: The threshold analyzer will examine the trigger clusters (which are
assumed to include clusters defined by single MAC addresses in many cases) and decide which of
the clusters are actionable. This can be done through the config file which holds the rules that
trigger the action based on an external financial model, operations rules, work load, number of
potential jobs on the list, etc. The control & schedule worker will read the configuration file to
determine when or under what condition to trigger a sorting of the opportunities in the trigger
cluster database (and potentially the trigger list). The sorting is done by the threshold analyzer

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 9

sorter worker which will read the config file to determine what measures to use in the sorting,
and then gather the information it needs, and finally sort the opportunities into a dispatch list. An
output of this group of workers is also a measure of performance that is used for ranking, but
potentially also additional measures for ranking or consideration including but not limited to an
estimate of the benefit achieved by completing the associated work package. This analyzer layer
can also call on external information such as available technicians in an area, day of week,
likelihood of access to the network elements necessary, etc.

 Config Files
One or more configuration files (config files) are necessary to define the application from the ProOps
elements, and to control how the application functions day to day. There are several types of
configuration information needed for this workflow, and that information could be stored in a single file,
or multiple files, or in a database, for example. It could be edited in a file editor, or through a graphical
user interface (GUI) defined for the application. The files could be separate or together or organized in
any way. As developed currently, there is an interface with organization to configure workers and general
parts of an application. We assume in this description that configuration will be read-in from a file, but
will consider each configuration type as a separate file for the sake of explanation.

� Extraction Config File: This config file specifies the frequency of polling for each data element,
and which data elements are polled as part of the application. It may also contain instructions for
how to handle missing data, timeouts, and other problems that may be encountered in data
polling.

� Trigger Analyzer Config File: This config file contains instructions of which analysis workers are
included in the application or workflow, and how they are started (such as when data appears in
the decoded data and analysis results database or data lake). It also includes the rules by which
CMs are triggered for action to the next level, and flagged for ranking, plus what workers need to
do to support the action layer.

� Action Config File: This config file contains the details of the model for the measure of
performance for CMs based on their statistics and trigger state. The model may be complex or
simple, depending on how data over time or missing data are treated, and whether a nonlinear
model is needed. It also specifies what to use for ranking. This config file also may provide
information for how to cluster CMs, essentially controlling the model for clustering, but also
specifying the worker that is used.

� Threshold Analyzer Config File: This config file provides the rules by which opportunities
(clusters or individual CMs) are ranked and sorted, included or excluded, on the dispatch list. It
also specifies how often the list is revisited and updated, which means how often the clusters and
individual CMs are analyzed.

 Data Stores
Several different data stores are needed, though they need not be distinct. However, as the nature of what
they store is different, it is likely advantageous to keep them in solutions suited best to their forms, and
therefore desirable to be distinct in at least some way.

� Raw PNM Data: The PNM data can be kept in the file system of the CCF, or in the trivial file
transfer protocol (TFTP) server used by the operator, or in a separate data lake. As the data held
here are disparate, it is not likely that a database is an appropriate solution. Therefore we refer to
the (Raw) PNM Data store as a data lake.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 10

� Decoded data, analysis results: The decoded data and analysis results can go into a data lake or
database, as long as the relations are held between MAC, time, and data to analysis. The data here
can be contained in a relational database as it can contain decoded data and statistics of multiple
types associated with individual CMs by type, time of day, etc.

� Stats, trigger list, cluster list: The data here can be contained in a relational database as it can
contain statistics of multiple types associated with individual CMs by type, time of day, etc., and
a separate related list of the CMs that meet the threshold for triggering based on the rules set in
the config file. The cluster information can be held in a list, a database, or other simple form as it
only needs to be a list of how the CMs are clustered in common groups for PNM work
opportunities. But all these separate elements are related, so a relational database is a good
candidate.

� Work (dispatch) list: This data store is simply a list of CMs or CM clusters which are
opportunities for work. Each item on the list has a performance measure that indicates how
critical the problem is, or how large the proactive opportunity is, so may even be an expected
benefit in dollars, for example. There should be links back to the supporting evidence for the
decision to add this work to a dispatch list, and to help with troubleshooting.

� Logs: The system will keep a list of system logs for overall system health. This may be a method
to maintain state under failure too.

 Scheduling Considerations
� A CM can usually only respond to one request at a time, or very few. But if a CM doesn’t

respond at the time data were requested, and there is reason to expect it should, then a retry may
be in order.

� CCF jobs have three states: accepted, complete, and failed. Some complete jobs may have
incorrect, errored, or incomplete data responses as well, so a complete job may still be a failed
job.

� The parsing of the data output may result in a new fourth state of complete but errored.
� Thus, the state of a completed job from the CCF will create subsequent requests to be scheduled

based on the final job status.
o If the job status is complete, and parsing yields a correct output, then schedule the next

job according to the instructions in the config file.
o If the job status is complete but errored, or failed, then schedule a new request

immediately, or after a short amount of time as specified by the config file.
o The config file should also state whether subsequent jobs are scheduled based on the

completion time of the last job, or based on a system clock. In other words, if a data type
is requested six times a day, and the first one is delayed by an hour, then does the next
data request happen in three hours or four hours? Both may be possible, but configurable
in the config file.

� The control & schedule worker will need to sort jobs on a common system clock. The control
worker handles this task.

 Additional Notes about ProOps
� The config file must account for missing data in the way we analyze and calculate performance

measures. A non-responsive CM may end up on a separate list.
� RabbitMQ is our choice for the first version of ProOps for managing the worker queue.
� We stagger polling to get the data we need and manage the poller resources.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 11

PNM Example Application for ProOps
Here we define the example application that comes with ProOps. Out of the box, very little
configuration is necessary to get the system running with the example application. However, the
utility of the example application is highly dependent on the user’s ability to configure it for their use
case specifically.
The first version of the example application that comes with ProOps does not do clustering; the
identified CMs will go directly to the threshold analyzer as single CMs. This can be reflected as each
CM is its own cluster, and the cluster algorithm doing no work, but still following the diagram in
Figure 3.

Figure 3 – Depiction of the example application that comes with ProOps today.

 Base data polling (Pollers)
� Pull T3 and T4 errors from CM logs every hour (configurable).
� Pull forward error correction (FEC) stats every hour (configurable).
� Pull receive modulation error ratio (RxMER) every four hours (configurable).
� Pull channel estimation every four hours (configurable) at same time.

 Triggers (Analyzers)
� Repeating errors at a configurable frequency, say more than three per day, configurable.
� Uncorrectables higher than 0.1%, correctables at 99% or higher for over an hour, all configurable.
� RxMER and SpecAn results with a slope greater than 10 dB, configurable. Also, trigger any

RxMER with a 95% confidence interval greater than 5 dB (calculated from percentile responses),

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 12

configurable. Also look for ripples in either or both by inverse fast Fourier transform (IFFT) with
an energy spike. Take the largest continuous segment of data from either and transform (IFFT) it
into time domain, then search for local maximum. Each result with more than one local maximum
is triggered (this removes the high frequency main energy). Transform to distance and severity of
echo tunnel, trigger anything higher than 10 dB, configurable.

� ChEst indicating a range greater than 10 dB, configurable. Also look for ripples in either or both
using same method as above. Transform to distance and severity of echo tunnel, trigger anything
higher than 10 dB, configurable.

� Constellation display data would be extracted after other issues were found, such as FEC, T3, T4,
RxMER issues. For now, just plot and calculate stats of mean, variance, and third moment.

 Actions
� A CM must be triggered for an action to apply.
� We apply a weight to each trigger type (management information base (MIB), and trigger, so that

a given measure could have more than one trigger).
� Score: Create a score for each measure based on the following rules.

o 1 point for each error or boot issue
o 1 point for each percent uncorrectable
o 1 point for each trigger (RxMER, ConDisp), each time
o 1 point for each trigger in ChEst

� Each day, multiply the score by the weight (score*weight), and sum the results for each CM each
day. Use an exponentially weighted moving average (EWMA) scheme to get the CMs their final
scores over time. The EWMA approach is a worker that can be exchanged with other approaches.

� Each CM triggered will have its frequency of data collection doubled, configurable for each
measurement. Only after having a 0 score*weight for three full days, configurable, will a CM be
removed from the action list. The frequency of data collection will be configurable by trigger
type, and may cross measures. For example, triggering FEC could result in increasing data
collection on FEC by five times the rate, and ConDisp each time FEC is collected, or RxMER at
twice the rate.

� All CMs on the action list are prioritized by their score*weight, summed daily over the duration
they are on the list (each day’s score*weight summed over the contiguous days each CM is on the
list, for each CM), or using the EWMA approach as we will for this example application.

� The list is reported for the CMTS, and the CMTS is scored accordingly by summing the measures
for the CMs on the list.

 Modules
The example application that comes with ProOps has several modules, following the structure of ProOps
explained previously.

� Control & schedule: A polling scheduler to schedule the data requests in a manner to help the
CMTS not get overloaded.

� A data store of results collected, statistics, and scores for each CM, over time. Age off the raw
data.

� Translator workers: A translator for each data type pulled.
� Linear calculators: Rapid versions of other calculators or anomaly detectors or other entities

which are always applied to data pulled, by data type, before holding in a data store.
� Calculator workers: A calculator or more for each data type pulled.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 13

� Anomaly detector: An anomaly detector for the spectrum and RxMER data. This is just a simple
statistical calculator for the first release. A true anomaly detector will be made available later.

� Trigger analyzer: An evaluator to decide on the triggering of a CM, and its weight.
� Severity calculator Worker: A calculator that calculates the severity of the opportunities.
� Cluster Worker: A clustering algorithm that handles work assignments. This is defined for a later

release.
� Ranker worker: A calculator and ranker for clusters and CMs together to calculate the measure of

severity and rank the opportunities.
� Threshold analyzer sorter worker: A threshold analyzer to indicate dispatchable work, based on

rules configured.
� A configuration file to allow changing all the various default values of the application.
� A mechanism (GUI later, via a management interface or the dashboard application) for accessing

the list of CMs (and clusters) to act on, and a way to compare their severity.
� Work queue: The queue of work to be performed, organized in a FIFO manner.

The example application is untested in live plant, so the initial configuration described may be far off
from a useful combination of settings. The settings will allow verification of function, and be instructive
for configuration and developing more functionality, as we now explain.

Configuring an Application
Applications are defined by how the configuration connects the workers. Thus you can define a new
application from an existing one by changing the configuration, or adding new workers to the worker
environment and configuring their use, or a combination of these actions. Adding a new worker is outside
the scope of this technical report, but we will explain how to configure an application using existing
workers as it further explains how to make use of ProOps for PNM uses.

ProOps has several base workers that must be configured for an application to work, as opposed to
optional workers that can be configured or not depending on need.

Each PNM measurement can be configured on multiple dimensions, aside from the obvious parameters
such as network scope for the deployment and other factors controlled by the context of the deployment,
or settings for specific PNM measurements like sampling period for FEC statistics. Some of the settings
specific to ProOps that should be evaluated for suitability of default settings include the following.

• Time between data requests to a network element for a given data type.
• Time to wait for a time out on a data request.
• Triggering based on range, standard deviation, linear or curve fitting regression parameters,

maximum, minimum, mean, median, mode, third or fourth moments, or other user defined
statistics including machine learning or artificial intelligence analysis outcomes.

• Weight given to a performance measure as the result of a trigger, such as the range of a measure
times a constant factor, or the square of the sum of the uncorrectable errors in the last hour.

• Which worker or driver to use for a given request, and where to send the output of a worker.
• Various queue management settings to control workers assigned to work.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 14

Figure 4 – Configuration management server web GUI index page (task queue

configurations).

See Figure 4. On the index page of the configuration server, the task queue information can be
configured. The task queue information is essential for all internal communications. When workers start,
they request task queue configuration along with other configurations from the configuration server
through RESTful APIs.

Figure 5 – Configuration management server – defined workers.

Defined workers are listed at the configuration server's index page, shown in Figure 5. When a new
worker starts up, the configuration server uses the worker identifier to determine which configuration the
worker uses and replies the RESTful API call with the worker’s configuration. The worker identifier is a
unique key or name that each worker owns. The worker configuration can be removed by clicking the
“REMOVE” button.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 15

Figure 6 – Job scheduling.

The job scheduling page, shown in Figure 6, displays all defined job schedules. When a new scheduling is
started, the configuration server sends a message to the task queue which the job scheduling worker is
subscribed to. The job scheduling worker will then add the job to its scheduling queue and send task
messages to the task queue periodically based on the job interval.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 16

Figure 7 – Configuring job scheduling.

Here in Figure 7 is an example of what can be added to the job scheduling configuration. Other than job
interval configuration, we can also add configurations such as data service address and data store API to
let the worker know where to retrieve data and where to store results. For example, by configuring the
“cm_rxmer_stats” configuration field, the worker will retrieve data from
http://10.70.35.120:10001/cmRxmerStats with a backlog duration of 86400 seconds (a day), and find all
CMs that have an RxMER range (max - min) greater than 2 dB, or standard deviation greater than 0
(which is set artificially small just for demonstration purposes), or an m value (slope in ordinary linear
regression) that is smaller than -0.0001 or greater than 0.0001 (this is also set to a very small range as an
example). Figure 8 shows an example where we set a greater than 0 threshold for T3 and T4 device event
log errors.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 17

Figure 8 – Configuring for T3 and T4 device event log errors.

Figure 9 – Configuring the RxMER statistics worker.

The job scheduling of the RxMER statistics worker (see Figure 9) is another example of how to configure
a worker. The RxMER statistics worker only requires brief configurations that include job interval, data
service API, data service address, duration, and cm_mac list. The job interval defines how frequently the

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 18

job is scheduled. The data service API and data service address defines where the RxMER statistics
worker retreives RxMER data. Duration defines the data retrieving window from the moment the data is
retrieved. The cm_mac list helps filter interesting cable modem MAC addresses. When the list is empty,
all CM data will be retrieved; otherwise, only CM RxMER data from cable modems in the cm_mac list
will be retrieved. The output from the RxMER statistics worker includes "range", "std", “max”, “min”,
“mean”, "ordinary_linear_regression_m", and “ordinary_linear_regression_c”.

Figure 10 – Configuring a data collection worker.

Shown in Figure 10, the data collection worker is a special worker that interacts with the CCF. In this
example, based on the configuration, the data collection worker is configured to run every 600 seconds. It
points to a CCF instance with an IP address of 10.95.254.82:8888, and it collects cmPNMDsRxMer data
from CMTS 10.32.40.68. The collected data are automatically decoded and stored using the API defined
in “db_server_address_and_api”. The cmts_ip field can be a list, and can contain multiple CMTS IP
addresses.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 19

Figure 11 – Channel estimation statistics worker.

Figure 11 shows the CM downstream channel estimation worker, which has a configuration that is similar
to CM RxMER statistics worker's configuration. The output includes calculation results on the tilt of the
channel estimation and inferences on potential echo distances.

Figure 12 – Top-level system monitoring.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 20

Figure 13 – Detailed worker system monitoring.

Figures 12 and 13 show the system monitoring capabilities that come with ProOps. The configuration
server has a page that displays worker running statistics and host resources. In Figure 12, workers are
running in separate docker containers and these containers show up as different hosts. The system
monitoring page shown in Figure 13 also has a table that displays more detailed worker statistics. The
statistics are calculated on a per-worker process basis, and include how many tasks are received, started,
succeeded, failed, and sent. As an example, some data collection tasks failed here because of lab
equipment changes and wiring changes during collection.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 21

Figure 14 – System monitoring graph.

Here in Figure 14 is an example visualization of how the job scheduling worker is handling tasks every
few seconds. The graph shows average numbers for each counter over time. This output provides a quick
and easy way to see whether system resources are sufficient, or ProOps is properly configured to perform
well, and as intended for the application configured.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 22

Figure 15 – System monitoring graph of data collection.

See Figure 15. Here is an example visualization of how the data collection worker is handling tasks every
few seconds. The graph shows average numbers of each counter over time. This is useful for making sure
the data collection resources are not over taxed, or the network is not over taxed as well.

Envisioned Use Cases
We created ProOps to support several use cases for both operators and vendors. Because of this, we had
to create it to support several broad advantages.

• Scalability – The architecture of ProOps extends CCF in a modular, layered way. As such, we
have full options of ways to package the software, and scale it to any use case, from a desktop
deployment to a data center to a cloud architecture.

• Low adoption friction – Existing deployments of CCF can easily be extended to host ProOps.
Once ProOps is installed, applications are simple updates to ProOps as additional, optional
software modules that link into it. Each additional module installed within ProOps behaves like
an update.

• Flexibility and configurability – Because ProOps allows anyone to add workers to the
environment and configure rules for their interaction, each deployment of ProOps can be
configured independently and in a broad range of ways. That flexibility provides full control to
the user, which means it can be configured poorly, but because it is flexible it can be easily
corrected and adjusted to fit changing needs too.

• Actionable output – The use of layers of workers as explained previously will allow ProOps to be
configured so that the output can be acted on with confidence. If conditions change and the repair

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 23

work that it suggests is no longer as desired, then adjustments to the configuration can correct that
easily.

• Interworkability – Use of CCF allows one data source to support many applications. Likewise,
ProOps is a platform that can support many applications in the same platform, allowing them to
share information throughout the process of turning data into action. New applications built in
ProOps can run with other existing applications in the same platform deployment. Hardware and
virtual machine (VM) resources are the main consideration only.

• Modular – ProOps is modular, so you can replace elements like the worker queue, databases, and
worker modules with your own creations or to fit our own corporate information technologies
(IT) policies.

• Speed – CableLabs has and will continue to improve the speed of execution of ProOps, but what
is important to note is that an application can be created in ProOps rapidly, so it brings speed of
execution and deployment together. As we develop more basic workers for the environment,
much more will be possible with just a simple reconfiguration of the platform to utilize existing
workers in different ways.

Several operator use cases can be supported by ProOps.

• Experiment with PNM – You can connect ProOps to a small test network and test its capabilities
against your expectations, and tune it for your own needs. Then depending on the outcome of
your experiement, you can take the solution and deploy it in your network in many different
ways, whichever suits your situation best.

• Build and test a new PNM idea or solution – As ProOps is a flexible platform, you can create
your own PNM method and test it in an example or live network as you see fit, and even tune the
platform to your new solution before full deployment.

• Development environment – Because of its flexibility and open architecture, you can develop
prototype solutions inside of ProOps, essentially making it your team’s development environment
for operations solutions.

• Network sampling – ProOps was created to schedule work, so you can schedule network
sampling for any operations need, including creating requirements for PNM, or to build a
business case for a conceived PNM solution.

• Grow your own PNM program – Because you can use ProOps for the entire chain of PNM
solutions, you can experiment, build, and deploy what you come up with, and support it yourself
if you wish. Each development in ProOps works with the previous, so you can grow the entire
solution and keep it updated as network needs change, keeping your solution up to date, and
tailored for specifc problems, architectures, or needs in an area.

• Gather requirements for vendor supported solutions – Because you can use it as an experiment
platform or to develop a business case for a PNM effort, it can be used to support a vendor-
supported PNM solution too.

Vendors also can use ProOps to their advantage.

• Rapid prototype new potential solutions – Vendors can use ProOps to develop their new PNM
products or services, and

• A framework to support products and services – Vendors can use ProOps as a vehicle to deploy
their solutions, to ease adoption and reduce the operations impact of the deployment, and to work
in harmony with home-grown or other vendor solutions in an integrated manner.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 24

• Free sample solutions – Vendors can deploy their proprietary solutions as example offerings with
limited capabilites so operators can test their solution before purchasing the full enterprise
supported version.

• Network sampling for developing operator specific solutions – Vendors can deploy a network
sampling version of ProOps in an operator’s network to help them determine the benefits of
implementing a specifc PNM or operations solution, to help get over the business case
uncertainties that may hinder purchase decisions.

• Rapid, flexible data collection for consultation – Vendors who work as consultants to operators
can use ProOps to collect network data to look for a specific problem, or to support a specific
network issue they are trying to resolve.

ProOps was made to turn data into action, so we expect network operations and engineering personnel
will discover new ways to make use of it that we have not yet defined.

Conclusion
ProOps is free to use by CableLabs vendor and operator members. Contact the authors of this paper to
obtain a copy of the software, and to get help configuring it for your needs. We encourage everyone who
can access ProOps to use it in any way they envision, from reviewing the architecture to taking those
advantages in their own developments on up to full use and deployment of the code base.

ProOps is a platform constructed for turning data and information into action. It is built around well
defined, general steps that facilitate making decisions automatically, but while keeping control fully in the
hand of the users. Rather than relying on assumed experts at hand to review network data to determine
what needs to be done, ProOps provides an environment to automate that work. This means limited expert
resources can be shared through ProOps, thus extending the effectiveness of expertise. For example,
CableLabs expects to work with the PNM community to build into ProOps much of what will be
documented in the forthcoming DOCSIS® 3.1 PNM Best Practices document.

ProOps is well suited for PNM, but it can be used for turning any data into action, really. With CCF being
fully flexible to gather most any network or system data source through creation of a driver, ProOps
likewise can collect that data, analyze it, add context, translate results into potential work, then select the
work that is most important to do. Network operations efficiency and improving service reliability are the
intended goals of ProOps, but only our imaginations will limit what it can do.

We hope, and fully support, operators and vendors contributing code to the C3 repository for sharing
solutions, guiding the industry to solve problems, and sharing ideas. CableLabs intends to build workers
with new capabilities and share them in ProOps as workers with which members can build soluitons, and
for CableLabs to build other proof-of-concept appications. In the months ahead, the power of ProOps will
increase due to the contributions from the entire community. We hope capable operators and interested
vendors will work with us to develop workers and applications that solve important PNM needs so that
both operators and vendors may take advantage from the PNM capabilities that CableLabs provides.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 25

Abbreviations
API application programming interface
C3 common code collection
CableLabs Cable Television Laboratories
CCF common collection framework
CM cable modem
CMTS cable modem termination system
CMVA cable modem validation application
dB decibel
DOCSIS Data-Over-Cable Service Interface Specifications
EWMA exponentially weighted moving average
FEC forward error correction
FIFO first in first out
GIS geographic information system
GUI graphical user interface
IP Internet protocol
IPR intellectual property rights
ISBE International Society of Broadband Experts
IT information technologies (information technology)
MAC media access control
MIB management information base
NDA nondisclosure agreement
OODA observe, orient, decide, and act
PNM proactive network maintenance
ProOps Proactive Operations
RxMER receive modulation error ratio
SCTE Society of Cable Telecommunications Engineers
TFTP trivial file transfer protocol
VM virtual machine

Bibliography & References
[1] https://danford.net/boyd/

[2] Boyd’s OODA Loop and the Infantry Company Commander, A. Bazin, Infantry Magazine, 2005.

[3] CableLabs Proactive Network Maintenance Combined Common Collection Framework
Architecture Technical Report, CL-TR-XCCF-PNM-V01-180814, August 14, 2018, Cable Television
Laboratories, Inc.

[4] https://code.cablelabs.com/proactive-operations-platform

[5] https://www.cablelabs.com/cable-network-reliability-proops-platform-for-pnm-and-more

https://danford.net/boyd/

	Table of Contents
	Introduction
	The Proactive Operations Platform
	1. Control & Schedule Worker
	2. Work Queues
	3. Workers and Workflow Description
	4. Config Files
	5. Data Stores
	6. Scheduling Considerations
	7. Additional Notes about ProOps

	PNM Example Application for ProOps
	1. Base data polling (Pollers)
	2. Triggers (Analyzers)
	3. Actions
	4. Modules

	Configuring an Application
	Envisioned Use Cases
	Conclusion
	Abbreviations
	Bibliography & References

