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Introduction 
Hardware security may not always be available or feasible for applications running on platforms ranging 
from Original Equipment Manufacturer (OEM) devices to public cloud servers. To resolve this dilemma, 
a comprehensive software security solution is required that is easily applied and readily utilized by 
developers. This solution would address the security gap created by a growing demand for quickly 
deployable and securely protected applications. The authors will discuss newly developed advanced 
security technologies to provide practical protection against a wide range of attacks. These technologies 
deliver another layer of security to protect sensitive data and credentials.  

With the exponential growth of video distribution to millions of subscribers, the processing and secure 
delivery of video is now more than ever essential to programmers, developers, and operators.   

Utilizing a combination of innovative solutions such as white-box cryptography, software obfuscation and 
code signing, this flexible solution balances protection and performance while allowing customers to 
design, code and build to suit their needs. This is especially true in an end-to-end media content 
distribution system where attacks are often aimed at defeating conditional access or finding ways of 
exploiting services that are easier than circumventing cryptographic protection.  

The design secures cryptographic algorithm implementations against intrusions such as secret-key, code-
lifting and side-channel attacks and allows the implementation of standard ciphers such as RSA, AES and 
ECC so that no intermediate key or data is exposed during cryptographic operations. The solution 
recognizes the threats of reverse engineering, debugger attachment and tampering attacks, and creates 
tools to further create a layer of security. 

The authors provide insight into this comprehensive security solution and underlying technologies that 
protect software applications. 

Content 
1. Security Basics 

1.1. Holistic Approach to Application Security 

A holistic approach to security seeks a comprehensive, systematic, and interconnected view of safeguards 
and protections to the entire application software. For security to be considered holistic, many 
requirements must be met to make separate areas of security compatible and interoperable. The 
integration of different levels and types of security enables a more comprehensive understanding of 
vulnerabilities and more comprehensive protection against a variety of threats [1]. This can only be done 
by breaking down various software components to independently analyze and then look at the interactions 
among these modules to identify potential threats.  

The holistic view starts from the top-most interfaces of the application interactions and bubbles down to 
the lowest atomic security operations. Protections and safeguards applied to software modules in different 
layers can differ in coverage range and severity of their security. Not all software modules are entitled for 
highest level of protection. That’s where the comprehensive attack surface analyses play an important role 
in deciding what is the “secure enough” protection for each module.  
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There is no silver bullet in solving application protection problems. Cryptography or special security 
features do not magically solve all security problems rather the security is emergent property of entire 
system and should be viewed just like quality. Therefore, security aspects should be integral part of the 
design, right from the start as highlighted by Erik Poll, Digital Security group of Radboud University.  

As you design your application, you need to be aware of potential vulnerabilities of each software module 
and layer composing your application. Today’s software is built on the top of mixture of operating 
systems, platforms, libraries, programming languages, 3rd party unitalities, tools, IDEs and compilers that 
make it hard to trace security holes. The holistic approach to application security requires designers and 
programmers to examine and understand this complexity knowing that there is always a trade-off decision 
to be made as security is never going to be 100%. Nevertheless, it is possible to achieve certain level of 
satisfactory protection by deploying a combination of techniques as discussed in more dept in this paper. 

1.2. Software vs Hardware Security 

There is always a trade-off between software and hardware security. This is more apparent in today’s 
dynamic software markets. The ecosystem contains various devices and platforms where not all software 
vendors have access to hardware resources, and it may not be feasible or cost effective to use hardware 
security. Even if the decision is made to use hardware security, then the questions arise such as, “How 
much of it? Where do you draw the line? Should you use hardware root of trust? Should you use just 
hardware acceleration for crypto operations or implement trusted application (TA)?” With many other 
questions and there is no one solution fit-all answer.  

A comprehensive analysis is required to identify the benefits and the trade-off of choosing software vs 
hardware security. The answers depend on the sensitivity of the data and operations on those secret data 
within the application. Whether to opt for software-based or hardware-based solutions should be one of 
the early decisions designer and developers are faced with, and it’s not an easy choice. Although both 
technologies combat unauthorized access to data, they do have different features and must be evaluated 
carefully before implementation. “Software is easier because it is more flexible, and hardware is faster 
when that is needed” [2]. 

Hardware security always relies on the strength and capabilities of the targeted platform. This comes with 
strings attached for implementation and usage of platform specific instructions and interfaces that are not 
typically portable to other hardware. There are security processors with dedicated memory regions to 
handle sensitive operations for data and to hide them from the main processors and memory area where 
other applications execute. This trusted execution environment (TEE) provides a great deal of security 
and protection for your application, however it comes with certain restrictions. For instance, the code will 
not be portable to other hardware unless the same chipset category by the same vendor is used. The 
trusted application (TA) which is running in TEE is not easy to develop and debug. Therefore, it takes 
special skills and expertise than regular software engineer to do the job. Careful analyses and evolutions 
must be done before embarking on the hardware security path since the swift change of direction could be 
costly. There is wide range of alternative for hardware-based and software-based implementation of 
security as shown here. 

HSM  …   TEENo protection Hardware root of trustSoftware-based Crypto... ...... ...
Strong Security 
and Protection

Weak Security 
and Protection White-box Crypto & Obfuscation

 
Figure 1 - Hardware vs Software Security Spectrum 

Software is viewed by many experts as a source of security problems and the weakest link of the security 
chain. However, the proper implementation of it could provide enough protection for certain applications. 
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When is this feasible? When software solutions make use of shared memory space, are running on top of 
an operating system, and are more fluid in terms of ease of modification [3]. Although the software 
solution to security doesn’t possess the same caliber strength of hardware security, it can provide enough 
assurances to offer a certainly sustainable and viable alternative. 

There are also mandates by government, industry associations or a company to be adherent to certain 
robustness rules. Even though the choices are very limited under those circumstances, the concept of the 
holistic approach to the security can still be applicable 

With the advent of white-box cryptography and software obfuscation, the risk of exposing keys and 
sensitive data during cryptographic operations are minimized and mitigated by the strength of these 
technologies. The intend of this paper is to explore what makes software security a viable alternative to 
hardware security for application development. 

2. White-Box Cryptography 

2.1. What is White-Box?  

The goal of white-box cryptography is to protect cryptographic keys against attackers who typically have 
full control and visibility of software running on untrusted devices. Compared with pure hardware 
alternatives, white-box protection can be cost-effectively installed on any device and can be readily 
updated [4]. 
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Figure 2 - Table-Based White-Box Transformations  

In Figure 2, table-based white-box transformations compose random bijections with an application's 
functions. These compositions are emitted as lookup tables so as to conceal the underlying secrets and 
other state values. 

2.2. Core Criteria for Application of White-Box Crypto 

The intuitive security notions of table-based white-box implementations have been formalized into 
concrete security notions with the introduction of a white-box compiler that turns symmetric encryption 
schemes into randomized white-box programs. This has enabled the capture of additional formal security 
properties, such as one-wayness, incompressibility, and traceability for white-box programs [5] [6].  

White-box compilers are also used to broaden the scope of white-box protection to include compatible 
non-cryptographic application code (such as codecs) in the white-box scheme [7].  
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Figure 3 - White-Box Compiler 

In Figure 3, a white-box compiler is used to protect sensitive cryptographic and non-cryptographic 
components in an application. 

It must be noted that a white-box compiler is not a general-purpose compiler, nor is it an obfuscation 
method in the usual sense, thus the candidate algorithms must have mathematical properties that are 
conducive to white-box encoding. 

2.3. White-Box Security 

The initial constructions and later variations of Chow, et al.’s white-box implementations have all been 
broken theoretically [8] [9] [10] [11]. The WhibOx competition, launched by ECRYPT CSA as the 
capture the flag challenge of CHES 2017, ended with all 94 submitted white-box implementations broken 
by practical attacks. Only 13 implementations survived for more than one day. These theoretical and 
practical results demonstrate that attackers prevail in the present-day cat-and-mouse game of white-box 
security [12].  

Despite these results, it must be noted that conventional black-box implementations of even the 
theoretically strongest possible algorithms fall to essentially zero security on hostile platforms, as their 
secret keys are directly observable by an attacker [13]. 
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Figure 4 - Security Properties of Black-Box Versus White-Box Security 

 

2.4. Code Lifting Attacks 

Besides known cryptanalytic weaknesses, defining white-box security as the impossibility to extract the 
secret key also has some drawbacks. Namely, it leaves the door open to code lifting attacks, where an 
attacker simply extracts the white-box implementation as a whole and achieves the same functionality as 
if he or she had extracted the secret key [14]. 

White-box node-locking techniques can be employed to restrict the operation of a white-box to a device 
by encoding every white-box operation to that device’s signature. When used in conjunction with external 
encodings, which push the boundaries of the white-box into surrounding applications, this method is 
shown to be effective in mitigating code-lifting attacks [15].  

Further research is focusing on new security notions, such as space hardness, which give a quantifiable 
measures of security against key extraction, table decomposition, and code-lifting attacks [16] [17].  

2.5. White-Box Chaining 

The use of external input and output encodings in white-box implementations facilitates the notion of 
white-box chaining, where the output from one white-box implementation can be used as input into 
another without an intermediate cleartext step. This allows architectural and implementation flexibility, of 
white-box components that may be housed within different applications, on different physical devices, or 
in cloud-based environments [15] [18] [19]. 
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Figure 5 - External Encodings 

Figure 5 illustrates external encodings used to chain implementations in a DRM setting [17]. Such 
encodings also allow white-box implementations to be securely bound to applications and hardware 
security devices [15] [18]. 

2.6. Moving Toward Strong White-Box Cryptography 

Strong white-box models seek to better emulate trusted hardware execution environments in software by 
finding efficient virtual black box or indistinguishability obfuscation constructions, thus circumventing 
the cryptanalytic weaknesses of present-day white-box implementations. Models with slightly weaker 
security properties permit adversaries with access to white-box implementations to encrypt (at least via 
code lifting) yet remain unable to decrypt [14].  

Notable progress has been made with a fully homomorphic white-box (FHWI) construction that offers 
efficient strong white-box implementations of specific applications without utilizing the lookup-table 
structure of Chow et. al. These implementations are shown to achieve semantic security [5]. 
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Figure 6 - FHWI Transformations  

Figure 6 illustrates FHWI transformations of functions into strong white-box functions in a homomorphic 
white-box domain with semantic security (where it is infeasible for an adversary to extract any 
information about the secrets and values under computation, even with full visibility and control of the 
execution environment.) 

3. Software Obfuscation 

3.1. What is Obfuscation? 

Software obfuscation aims to make programs “unintelligible”, while preserving their functionality, in 
order to prevent reverse-engineering of their intellectual property and to help mitigate tampering attacks. 
This has been an active area of development for decades, with a wide range of solutions currently on 
offer. In many cases, these obfuscation systems are proprietary or lack a rigorous theoretical 
underpinning, which makes their security properties difficult or impossible to validate. 

The theoretical study of program obfuscation began with the introduction of a formal definition of virtual-
black-box obfuscation by Barak, et al. [20] in 2001, which captures the requirement that such an 
obfuscator can securely hide information about a program. Barak, et al. went on to show that it is 
impossible to achieve general-purpose virtual black-box obfuscation. 

3.2. Control Flow Obfuscation 

Control-flow obfuscation is a theoretically tractable approach to obfuscation that transforms the structure 
of a program’s control-flow graph in such a way that it cannot be easily reconstructed by static analysis; 
thus hindering the comprehension of the program by an adversary. The most prevalent form of control-
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flow obfuscation is control-flow flattening, where a program is reduced to a garbled collection of basic 
blocks with an execution sequence based on a state variable that is dynamically computed at runtime. 
This has been shown to be a PSPACE-complete problem [21]. 

 
 

Before After 

Figure 7 - Control-Flow-Flattening Example 

Further theoretical advances in this area utilize a virtual machine interpreter to add an abstraction layer 
between the labels used to identify basic blocks by control-flow flattening and the underlying memory 
addresses of those blocks. This has been shown to be a NP-complete problem [22]. 
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Figure 8 - 3-CNF-SAT Reduction of a Virtual Machine Interpreter 

3.3. Data-Flow Obfuscation 

The goal of data-flow obfuscation is to achieve maximal unintelligibility of the dataflow of an obfuscated 
program. Advances in this area utilize algebraic structures that facilitate structure-preserving 
randomization of the data-oriented operations of a program. In this model, Boolean and arithmetic 
operations are encoded as randomized sequences of matrix operations without altering functionality [23].  

 
Figure 9 - Branch Encoded Function Computing an AND Gate 

Figure 9 Illustrates a branch encoded function computing an AND gate. Such randomized encodings are 
used to create diversity and maximize unintelligibility. By randomly encoding and merging data-flow 
operations, this technique produces a “confusion” effect. When used iteratively together with control-flow 
obfuscation, which can be likened to a “diffusion” effect, produces synergistic obfuscation results that are 
highly complex (entropic), in a similar manner to confusion and diffusion operations in a substitution-
permutation network in classical cryptography. 
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Figure 10 - Confusion & Diffusion 

Confusion is introduced by uniquely substituting inputs. Diffusion is then introduced with a permutation 
that combines the results of each substitution. These steps are repeated to achieve maximal complexity in 
the output. 

3.4. Strong Obfuscation Models  

In order to avoid their impossibility result, Barak, et al. defined a variant obfuscation model called 
indistinguishability obfuscation (iO). Finding a practical implementation of iO as well as finding ways to 
circumvent the general impossibility result are central topics in cryptography today [24]. 
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Figure 11 – Research into efficient iO 

Due to its importance, achieving efficient iO is a central focus of present-day cryptography research [24].  

4. Other Software Protection Techniques 
There are a range of synergistic techniques that compliment present day white-box cryptography and 
obfuscation models to harden these approaches against common attacks. These methods may be 
unnecessary under stronger white-box and obfuscation constructions that are presently under 
development. 

Obfuscation
(Control flow and Data 

Flow)

Code Signing and Dynamic 
Execution Verification 

Anti-Debug Detection

Encoding Diversification

Protection Compiler Tool

Application Source Code
(Requiring protection)

Application Binary

Periodical Security 
Audit

White-box Crypto 
Primitives

 
Figure 12 - Protection Process 

4.1. Anti-Debug Protection 

Software that employs anti-debugging techniques can determine if it’s being debugged by identifying 
artifacts of the debugging process [25]. Detection and response code is injected into an application to 
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counter debugging attempts. Control and data-flow obfuscation can then be applied to further increase the 
stealthiness and diversity of the detection code. 

 
Figure 13 - Anti-Debug Detection Code 

Figure 13 provides a visual example of randomly selected anti-debug detection code (right) being injected 
into random points of a program (left). 

4.2. Code Signing 

Code signing methods in commercial use are targeted at preventing static tampering attacks, which 
involve unauthorized modifications to a program's binary code prior to execution [26] [27]. 

4.3. Dynamic Binary Image Verification 

Static code signing methods do not detect modifications made to executable code at runtime, such as with 
buffer overrun attacks, which are some of the most prevalent tampering attacks in today’s landscape [28]. 
Advances have been made in dynamic integrity protection with the goal of operating in a stealthy manner, 
minimizing false positives, not overly impacting performance and maintaining full compatibility with 
static code signing across a wide number of platforms [29]. 
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Figure 14 – Implementation of Dynamic Integrity Verification 

Figure 14 is an illustration of a stealthy implementation  of dynamic integrity verification with 
randomized check functions (left), randomized check points (middle), and opaque jump table to conceal 
their relationship (right). 

4.4. Diversification Techniques 

Software diversity refers to generating unique software implementations that deliver the same 
functionality. This approach introduces uncertainty against a wide range of attacks. This uncertainty can 
be expressed probabilistically in a manner similar to cryptography, where the success rate of any given 
attack can be expressed as a function of the entropy of the implementation. Researchers have proposed 
multiple approaches to software diversity that vary with respect to threat models, security, performance, 
and practicality [30].  

Software diversity is not just a simple layer on top of existing security, it is fundamental to every part of 
the security model [30]. Examples of compilation diversification this can be seen in Figure 13 and Figure 
14, where randomly generated detection functions are injected at random points in the code to ensure 
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maximal uncertainty of the type and location of those code blocks, hence maximizing the diversity of 
their implementation.  

4.4.1. White-Box Diversity 

White-box implementations (produced by a white-box compiler) are essentially a network of randomized 
lookup-tables [19]. Hence, such implementations are maximally diverse. 

 
Figure 15 – Diversity in a Table-Based White-Box Implementation 

Table-based white-box implementations are a randomized network of randomized table look-ups [17]. 

4.4.2. Diversity from Obfuscation 

Control and data-flow obfuscation further increases diversity and as such can be applied iteratively and in 
conjunction with other techniques, such as anti-debug and dynamic integrity protection methods. 

• Control-flow obfuscation spreads out (flattens) a program’s control pathways in a random 
manner, thus introducing uncertainty of the location of code elements. 
 

• Data-flow obfuscation randomizes and merges arithmetic and Boolean instructions, thus 
introducing uncertainty of function. 

The security of these notions can be formalized in terms of the entropy of a software implementation [30]. 

4.4.3. Diversity as Side-Channel Protection 

One of the key requirements to build a side-channel attack is the ability to accurately replicate the victim 
environment. However, software diversity breaks exactly this assumption. Attackers no longer have easy 
access to an exact copy of the target program [30]. 

4.5. Periodical Audit 

Another key element of a robust security model is the ability to forensically examine usage, exceptions, 
and critical failures across the entire spectrum of protection. Again, these metrics must be embedded in 
each security module to generate data that can be acted on appropriately. 

5. Application Threats and Security Analysis 
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5.1. Cloud Application Threats and Related Top 10 OWASP Threats 

The Open Web Application Security Project (OWASP) has been around for various types of software 
applications for years. Recently, the Cloud Security project was added to help people secure their 
products and services running in the cloud. This project provides a set of easy to use threat and control 
Behavior Driven Development (BDD) stories that pool together the expertise and experience of the 
development, operations and security communities.  

With growing cloud computing elastic platforms that are feature-rich and highly scalable, companies are 
now able to deliver products and services with a velocity and agility that has never been seen before. This 
could sometimes result in circumventing security thus the rise new attack vectors [31]. Considering 
OWASP Cloud Security recommendations and best practices are great starting points for security 
architects to analyze their applications and come up with attack surface.  

However, to make this more effective, the process must be iterative with tangible feedbacks. As a new 
security feature is designed and implemented, it's possible that the existing attack surface is expanded and 
must be analyzed again. Then a new set of penetration test should be considered and executed to have 
collect feedback. These test results should then be fed back to the designer/developer to analyze the 
impact and the risk of new features. This iterative process should be part of ongoing practice of 
application development as we explore more later in this paper. It allows examining the impact of each 
added security feature until a level of satisfaction is achieved.  

5.2. Systematic Approach to Security Analyses Process 

There are three aspects to security analyses: Threat, Assets, and Vulnerability. Threat refers to various 
ways to potentially break and exploit an application. Assets refer to secret data, metadata, and sensitive 
procedures used by application to perform its job. Assets can come in the form of static data or dynamic 
run-time data temporarily stored in the memory. Vulnerability is an existence of a weakness, design, or 
implementation error that can lead to an unexpected and undesirable event compromising the security of a 
system. Vulnerability is essentially a hole in the application that causes it to provide a gateway to break it. 
The security risk is the intersection of these three aspects where a threat is apparent on an asset thru 
vulnerability of the application in the module where the asset is handled. 

The impact and cost of not engaging with security analyses systematically are huge. To name a few: 

• Technical and business impacts 
• Credential data lost; metadata lost 
• Personal data exposed; app data exposed; enterprise data exposed, etc. 
• Measurable and indeterminate damages that comes with system repair cost; outage costs 

Understanding these impacts helps application designers/developers better analyze what kind of 
protection is needed in every area of application. There is no perfect answer as applying security and 
protection comes with its own set of costs and complexity such as performance impact, overhead of 
Enc/Dec & network authentication, and complex troubleshooting especially for TEE environment.  

5.3. Incremental Protection Value Analysis  

The incremental protection value analysis is an analytical method in the systematic approach to security. 
Its purpose is to identify the acceptance level of protection techniques as applied to certain data and 
procedures within the software application. There is no technical limit to the level of security that can be 



  

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 20 

applied to assets or modules. The analysis includes wide range of techniques from TEE hardware-based 
security to all software-based implementation as discussed before. The incremental protection value 
analysis attempts to assign a numeric value to a combination of protection technique and targeted 
data/procedure. It is a method of measuring a protection's strength at any given point statistically or 
dynamically in run-time. It compares the intended amount of protection effect with what has been 
deployed with the application. It is achieved by security testing and proactively applying the known and 
common attacks to your application and measure its resilience. This allows application 
designer/developer to evaluate level of protection while having enough guards against associated attacks. 
It is the striking balance between protection and threat. 

Here are steps to perform gained value analysis: 

1. Determine the strength of each protection technique within your domain. 
2. Sort and rank these techniques based on known risks and attacks. 
3. Associate a security strength value to each protection technique. This is a ranking value from the 

lowest level (no-security) to the highest level (in your application domain). 
4. Identify assets and procedures needing protection and associate a sensitivity/secrecy value to 

them. The higher the number, the more secrecy the data or more sensitive your procedures. 
5. Start assigning an acceptable range of protection strength to your data/procedures with a 

comfortable low-level strength number. 
6. Perform security test and proactive attacking. 
7. Increment the protection strength level if security test failed. 
8. Repeat 5-7 until you get acceptable result. 

White the protection value provides an analytical representation of the security level; it is only to give the 
designer/developer confidence to come up with “good enough protection.” The most default and 
subjective steps in this analysis is security testing and proactive attacking. While this could potentially be 
an open-ended practice, there should be a protection value that is deemed good enough by 
designer/developer.  

5.4. Performance Versus Security 

Typical cryptographic operations are time and resource constrained and they must be measured, adjusted, 
and optimized. There is always an additional overhead associated with software implementations of 
cryptographic functions as oppose to hardware variant. The concept of “good enough protection” has 
another angle that is to create a balance between application performance and security. This is particularly 
apparent in applications with time sensitive functions in real time. For instance, over-the-top (OTT) video 
delivery applications must process, decrypt, decode, and render, video data in real time while maintaining 
the smooth playback experience. Typically, the entire video-handling module of this application must be 
secured to not expose valuable video and audio data during delivery. At the same time, the module must 
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perform fast enough to provide a non-interrupted play experience. That requires a delicate balance 
between security and performance.  

Designing and implementing a “tunable” mechanism for both performance and security within the 
application can achieve this. Here are some considerations to be aware of in designing tunable security 
functions: 

• The performance of the crypto algorithm 
• The overhead of encrypt and decrypt operations in real time 
• The overhead of software obfuscation 
• The memory intense computation of white-box cryptography operations 

5.5. Security Analysis Flow 

Security analysis is an ongoing and iterative process that must be performed parallel to the normal 
software development cycle. Every time a new feature is introduced, developed and tested, its protection 
needs to be evaluated. Policies and practices are evaluated during the design phase from a security point 
of view. Then static analysis is performed by each developer per each development cycle to identify any 
leaking security holes. The process continues into the application execution phase where dynamic 
analysis and penetration testing are conducted in the runtime. The security analysis flow phases and 
details are shown below. 
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Figure 16 - Security Analysis Flow 

The static and dynamic analyses are an essential part of this process to help developers quickly identify 
and remediate application security flows every time a new feature is introduced [32].  

6. Protection Guideline and Best Practices 

6.1. Practical Guideline to Protection 

A typical software application consists of high-level user interfaces interacting to commands from a user 
or with other applications to low-level system interfaces making use of platform specific features. While 
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these interactions could be implemented in various modules in different layers, there is always data 
exchanges and handshaking to be done among them.  

An effective way to ensure comprehensive application protection is to examine and apply protection in all 
layers and in both bottom-up and top-down directions. While the principal security consideration remains 
the same, the attack surfaces might be different in each layer. In bottom-up, a designer/developer starts 
with exploring vulnerabilities of specific deployment platform and works their way up to the possible 
security holes in the application interfaces. Application development platform tools including TEE 
providers are typically in charge of ensuring low-level module security. Thus, assuring any application 
written on those platforms comes with certain level of protection out-of-the-box. Whereas in the top-
down approach, the designer/developer starts with user interfaces and works all the way down to platform 
interactions.  

Application Interface

Platform Interface

Application 
Security

Platform Security

 
Figure 17 - Top-Down and Bottom-Up Security Approach 

All levels in between are examined for vulnerabilities. Therefore, both approaches shall be included in the 
protection guideline.   

6.2.  Security Everywhere! 

Application protection is a never ending proposition. This means there will be always a hidden 
vulnerability somewhere in the software application to be discovered given time and effort. Many good 
security designs do not deliver good security, not because the defensive theory is unsound, but because 
the designers cannot achieve integration into real-work systems [33]. This is also true for any inner 
modules of application as they need to be integrated internally. 

6.3. Deep Preventive Measures 

While building a multi-layered security and defense mechanism within the application is a key aspect of 
application protection, it is equally important to “fail intelligently” when an attack occurs. If the 
application fails for whatever reason, it should not expose any sensitive data, or give any detail to hint the 
attackers about where it failed. This is hard to achieve yet doable to a certain extent knowing that attacks 
are inevitable. Applications should be built with pre-defined, but not predictable failures in the face of an 
attack. For instance, once the anti-debug detection is triggered, there should be a randomized and 
unpredictable application failure without any trace. In some cases, it may be acceptable to crash the 
application when such an attack has occurred. Designers/developers should also consider implementing 
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deep preventive measures where an application doesn’t continue execution if certain events (attacks) are 
detected. 

6.4. Best Practices for Application Protection 

There are many organizations, forums, consortiums, government agencies, and independent individuals 
providing best security practices for various types of applications [34] [31] [35] [36]. 

Exploring those best practices are outside the scope of this paper. However, it is important to pay special 
attentions to the following items, while considering these best practices: 

• Sensitive data and metadata at rest (cached or stored) 
• Sensitive data and metadata in transit (to/from application) 
• Application logs, crash logs, debug symbols, and tokens with no traceable channels 
• Critical and secretive code 
• Single point of failure and simple logic to make important decisions 
• Copy/paste capabilities 
• Third-party libraries with known vulnerabilities   
• Exposure of geolocation data and routines  
• Memory scrambling capabilities of the platform 

7. Application Protection Cases 
A strong white-box crypto combined with obfuscation and other protection techniques discussed in this 
paper opens a great potential with a lot of flexibilities to designer/developer in protecting their 
applications. Here we highlight some of these cases. 

7.1. Cloud Video Distribution 

As more companies are transitioning to cloud-based video delivery system, they are relying on the 
security of the public cloud provider ecosystem such as AWS and Google Cloud. While there is no 
question that public cloud providers have done their due diligence to make sure their core cloud offerings 
are secured, analyzing their security capabilities are beyond the scope of this paper. Most of them offer a 
form of Cloud Hardware Security Module (CloudHSM) that brings hardware security strength to cloud 
application for a fee.  

These services can be very costly for video delivery systems in the cloud since most of these services are 
usage-based which may not be feasible with the typical large volume of video data transactions. These 
cloud-based services process cryptographic operations and provide secure storage for cryptographic keys.  

Whether to use CloudHSM or have all software-based security in the cloud, the protection of video 
delivery from streaming applications remains the core responsibility of the application owner. In an end-
to-end video distribution system, attacks are often aimed at defeating conditional access or finding ways 
of exploiting services that are easier than circumventing cryptographic protection. A strong white-box 
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crypto combined with obfuscation and other protection techniques should provide an alternative 
protection to using costly hardware-based solution for cloud video delivery applications.  

7.2. Digital Rights Management  

Digital Rights Management (DRM) applications are another candidate for all software-based protection. 
While hardware-based security might be still needed when hardware root of trust is used, all other crypto 
operations can be done in the white-box. Authentication, authorization, right verification, key exchanges, 
and more can utilize software obfuscation with the additional protections discussed in this paper.  

7.3. SSL/TLS Services 

OpenSSL is a widely used proven technology to implement Secure Socket Layer (SSL) and Transport 
Layer Security (TLS) for application. The security promise of these protocols is to protect information 
while in transit over the network. There is no guarantee or provision within these protocols to protect 
information that resides on either end of these secure pipelines, including the secrecy of the very keys 
upon which these protocols depend. To fill in the gap, white-box crypto can provide a viable and secure 
alternative by seamlessly replacing underlying cryptographic operations in OpenSSL while maintaining 
compatibility with the existing API. This will enable secure handling of keys and other sensitive 
cryptographic assets without the need to significantly alter existing applications that utilize OpenSSL. 

7.4. Public Key Infrastructure  

Public Key Infrastructure (PKI) applications can also utilize software-based protection ranging from 
servicer identification certificate delivery to generating application specific keys. To add further security, 
protected keys can be locked to a host machine, container, or application such that even if an external 
party gains access to them (say through an insecure application running inside the same container), the 
encoded keys are not usable outside of that container. 

7.5. Internet of Things 

Internet of Things (IoT) devices typically don’t have sophisticated hardware capable to support hardware-
based security or TEE. This makes it a perfect candidate to use all software-based protection with some 
light-weight white-box and obfuscation. This truly enables IoT providers to deploy their application in 
scale that was never possible with systems depending on hardware-security or with no security designed 
into the software.    

Conclusion 
In this paper, we discussed various software protection technologies that can fill in the gap in securing 
applications without the use of hardware security. Recent technological advancements in white-box 
cryptography and software obfuscation makes it feasible to deploy software-based protected applications 
that are flexible and easier to maintain. The holistic approach to security allows developers to view 
application protection from various angles. This enables companies to deploy iterative security analysis 
processes in their software development practices, utilizing feedback received from attack surface 
analysis and penetration test results. There are all kinds of applications in various domains with different 
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use cases that can benefit from these technologies either by creating an entirely new protection scheme or 
enhancing existing security mechanisms. 

Abbreviations 
API Application programming interface 
bps Bits per second 
AES Advanced Encryption Standard 
CloudHSM Cloud Hardware Security Module 
DRM Digital rights management 
ECC Elliptic-curve cryptography 
IDE Integrated development environment 
IoT Internet of things 
ISBE International Society of Broadband Experts 
OEM Original equipment manufacturer 
OWASP Open Web Application Security Project 
PKI Public key infrastructure 
RSA Rivest–Shamir–Adleman 
SCTE Society of Cable Telecommunications Engineers 
SSL Secure sockets layer 
TA Trusted application 
TEE Trusted execution environment 
TLS Transport layer security 
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