

 © 2019 SCTE•ISBE and NCTA. All rights reserved.

Dynamically Addressing the Gap of Software

Application Protection without Hardware Security

A Technical Paper prepared for SCTE•ISBE by

Rafie Shamsaasef
Director of Software Engineering

CommScope
6450 Sequence Dr.

San Diego, CA 92121
(858) 404-2205

rafie.shamsaasef@commscope.com

Aaron Anderson
Senior Security Architect

CommScope
117 St. Georges Bay Rd., Parnell

Auckland, New Zealand

+64 935 803 75
aaron.anderson@commscope.com

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Table of Contents .. 2

Introduction ... 4

Content ... 4
1. Security Basics .. 4

1.1. Holistic Approach to Application Security ... 4
1.2. Software vs Hardware Security .. 5

2. White-Box Cryptography .. 6
2.1. What is White-Box? ... 6
2.2. Core Criteria for Application of White-Box Crypto ... 7
2.3. White-Box Security .. 8
2.4. Code Lifting Attacks ... 9
2.5. White-Box Chaining ... 9
2.6. Moving Toward Strong White-Box Cryptography .. 10

3. Software Obfuscation ... 11
3.1. What is Obfuscation?... 11
3.2. Control Flow Obfuscation... 11
3.3. Data-Flow Obfuscation .. 13
3.4. Strong Obfuscation Models .. 14

4. Other Software Protection Techniques ... 15
4.1. Anti-Debug Protection.. 15
4.2. Code Signing ... 16
4.3. Dynamic Binary Image Verification .. 16
4.4. Diversification Techniques ... 17

4.4.1. White-Box Diversity .. 18
4.4.2. Diversity from Obfuscation ... 18
4.4.3. Diversity as Side-Channel Protection.. 18

4.5. Periodical Audit ... 18
5. Application Threats and Security Analysis .. 18

5.1. Cloud Application Threats and Related Top 10 OWASP Threats 19
5.2. Systematic Approach to Security Analyses Process ... 19
5.3. Incremental Protection Value Analysis ... 19
5.4. Performance Versus Security .. 20
5.5. Security Analysis Flow ... 21

6. Protection Guideline and Best Practices ... 21
6.1. Practical Guideline to Protection .. 21
6.2. Security Everywhere! ... 22
6.3. Deep Preventive Measures .. 22
6.4. Best Practices for Application Protection .. 23

7. Application Protection Cases .. 23
7.1. Cloud Video Distribution .. 23
7.2. Digital Rights Management .. 24
7.3. SSL/TLS Services ... 24
7.4. Public Key Infrastructure .. 24
7.5. Internet of Things... 24

Conclusion .. 24

Abbreviations... 25

References .. 26

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 3

List of Figures

Title Page Number
Figure 1 - Hardware vs Software Security Spectrum .. 5
Figure 2 - Table-Based White-Box Transformations ... 7
Figure 3 - White-Box Compiler ... 8
Figure 4 - Security Properties of Black-Box Versus White-Box Security .. 9
Figure 5 - External Encodings .. 10
Figure 6 - FHWI Transformations ... 11
Figure 7 - Control-Flow-Flattening Example ... 12
Figure 8 - 3-CNF-SAT Reduction of a Virtual Machine Interpreter .. 13
Figure 9 - Branch Encoded Function Computing an AND Gate .. 13
Figure 10 - Confusion & Diffusion .. 14
Figure 11 – Research into efficient iO .. 15
Figure 12 - Protection Process ... 15
Figure 13 - Anti-Debug Detection Code.. 16
Figure 14 – Implementation of Dynamic Integrity Verification.. 17
Figure 15 – Diversity in a Table-Based White-Box Implementation ... 18
Figure 16 - Security Analysis Flow ... 21
Figure 17 - Top-Down and Bottom-Up Security Approach .. 22

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 4

Introduction
Hardware security may not always be available or feasible for applications running on platforms ranging
from Original Equipment Manufacturer (OEM) devices to public cloud servers. To resolve this dilemma,
a comprehensive software security solution is required that is easily applied and readily utilized by
developers. This solution would address the security gap created by a growing demand for quickly
deployable and securely protected applications. The authors will discuss newly developed advanced
security technologies to provide practical protection against a wide range of attacks. These technologies
deliver another layer of security to protect sensitive data and credentials.

With the exponential growth of video distribution to millions of subscribers, the processing and secure
delivery of video is now more than ever essential to programmers, developers, and operators.

Utilizing a combination of innovative solutions such as white-box cryptography, software obfuscation and
code signing, this flexible solution balances protection and performance while allowing customers to
design, code and build to suit their needs. This is especially true in an end-to-end media content
distribution system where attacks are often aimed at defeating conditional access or finding ways of
exploiting services that are easier than circumventing cryptographic protection.

The design secures cryptographic algorithm implementations against intrusions such as secret-key, code-
lifting and side-channel attacks and allows the implementation of standard ciphers such as RSA, AES and
ECC so that no intermediate key or data is exposed during cryptographic operations. The solution
recognizes the threats of reverse engineering, debugger attachment and tampering attacks, and creates
tools to further create a layer of security.

The authors provide insight into this comprehensive security solution and underlying technologies that
protect software applications.

Content
1. Security Basics

1.1. Holistic Approach to Application Security

A holistic approach to security seeks a comprehensive, systematic, and interconnected view of safeguards
and protections to the entire application software. For security to be considered holistic, many
requirements must be met to make separate areas of security compatible and interoperable. The
integration of different levels and types of security enables a more comprehensive understanding of
vulnerabilities and more comprehensive protection against a variety of threats [1]. This can only be done
by breaking down various software components to independently analyze and then look at the interactions
among these modules to identify potential threats.

The holistic view starts from the top-most interfaces of the application interactions and bubbles down to
the lowest atomic security operations. Protections and safeguards applied to software modules in different
layers can differ in coverage range and severity of their security. Not all software modules are entitled for
highest level of protection. That’s where the comprehensive attack surface analyses play an important role
in deciding what is the “secure enough” protection for each module.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 5

There is no silver bullet in solving application protection problems. Cryptography or special security
features do not magically solve all security problems rather the security is emergent property of entire
system and should be viewed just like quality. Therefore, security aspects should be integral part of the
design, right from the start as highlighted by Erik Poll, Digital Security group of Radboud University.

As you design your application, you need to be aware of potential vulnerabilities of each software module
and layer composing your application. Today’s software is built on the top of mixture of operating
systems, platforms, libraries, programming languages, 3rd party unitalities, tools, IDEs and compilers that
make it hard to trace security holes. The holistic approach to application security requires designers and
programmers to examine and understand this complexity knowing that there is always a trade-off decision
to be made as security is never going to be 100%. Nevertheless, it is possible to achieve certain level of
satisfactory protection by deploying a combination of techniques as discussed in more dept in this paper.

1.2. Software vs Hardware Security

There is always a trade-off between software and hardware security. This is more apparent in today’s
dynamic software markets. The ecosystem contains various devices and platforms where not all software
vendors have access to hardware resources, and it may not be feasible or cost effective to use hardware
security. Even if the decision is made to use hardware security, then the questions arise such as, “How
much of it? Where do you draw the line? Should you use hardware root of trust? Should you use just
hardware acceleration for crypto operations or implement trusted application (TA)?” With many other
questions and there is no one solution fit-all answer.

A comprehensive analysis is required to identify the benefits and the trade-off of choosing software vs
hardware security. The answers depend on the sensitivity of the data and operations on those secret data
within the application. Whether to opt for software-based or hardware-based solutions should be one of
the early decisions designer and developers are faced with, and it’s not an easy choice. Although both
technologies combat unauthorized access to data, they do have different features and must be evaluated
carefully before implementation. “Software is easier because it is more flexible, and hardware is faster
when that is needed” [2].

Hardware security always relies on the strength and capabilities of the targeted platform. This comes with
strings attached for implementation and usage of platform specific instructions and interfaces that are not
typically portable to other hardware. There are security processors with dedicated memory regions to
handle sensitive operations for data and to hide them from the main processors and memory area where
other applications execute. This trusted execution environment (TEE) provides a great deal of security
and protection for your application, however it comes with certain restrictions. For instance, the code will
not be portable to other hardware unless the same chipset category by the same vendor is used. The
trusted application (TA) which is running in TEE is not easy to develop and debug. Therefore, it takes
special skills and expertise than regular software engineer to do the job. Careful analyses and evolutions
must be done before embarking on the hardware security path since the swift change of direction could be
costly. There is wide range of alternative for hardware-based and software-based implementation of
security as shown here.

HSM … TEENo protection Hardware root of trustSoftware-based Crypto...
Strong Security
and Protection

Weak Security
and Protection White-box Crypto & Obfuscation

Figure 1 - Hardware vs Software Security Spectrum

Software is viewed by many experts as a source of security problems and the weakest link of the security
chain. However, the proper implementation of it could provide enough protection for certain applications.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 6

When is this feasible? When software solutions make use of shared memory space, are running on top of
an operating system, and are more fluid in terms of ease of modification [3]. Although the software
solution to security doesn’t possess the same caliber strength of hardware security, it can provide enough
assurances to offer a certainly sustainable and viable alternative.

There are also mandates by government, industry associations or a company to be adherent to certain
robustness rules. Even though the choices are very limited under those circumstances, the concept of the
holistic approach to the security can still be applicable

With the advent of white-box cryptography and software obfuscation, the risk of exposing keys and
sensitive data during cryptographic operations are minimized and mitigated by the strength of these
technologies. The intend of this paper is to explore what makes software security a viable alternative to
hardware security for application development.

2. White-Box Cryptography

2.1. What is White-Box?

The goal of white-box cryptography is to protect cryptographic keys against attackers who typically have
full control and visibility of software running on untrusted devices. Compared with pure hardware
alternatives, white-box protection can be cost-effectively installed on any device and can be readily
updated [4].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 7

Figure 2 - Table-Based White-Box Transformations

In Figure 2, table-based white-box transformations compose random bijections with an application's
functions. These compositions are emitted as lookup tables so as to conceal the underlying secrets and
other state values.

2.2. Core Criteria for Application of White-Box Crypto

The intuitive security notions of table-based white-box implementations have been formalized into
concrete security notions with the introduction of a white-box compiler that turns symmetric encryption
schemes into randomized white-box programs. This has enabled the capture of additional formal security
properties, such as one-wayness, incompressibility, and traceability for white-box programs [5] [6].

White-box compilers are also used to broaden the scope of white-box protection to include compatible
non-cryptographic application code (such as codecs) in the white-box scheme [7].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 8

Figure 3 - White-Box Compiler

In Figure 3, a white-box compiler is used to protect sensitive cryptographic and non-cryptographic
components in an application.

It must be noted that a white-box compiler is not a general-purpose compiler, nor is it an obfuscation
method in the usual sense, thus the candidate algorithms must have mathematical properties that are
conducive to white-box encoding.

2.3. White-Box Security

The initial constructions and later variations of Chow, et al.’s white-box implementations have all been
broken theoretically [8] [9] [10] [11]. The WhibOx competition, launched by ECRYPT CSA as the
capture the flag challenge of CHES 2017, ended with all 94 submitted white-box implementations broken
by practical attacks. Only 13 implementations survived for more than one day. These theoretical and
practical results demonstrate that attackers prevail in the present-day cat-and-mouse game of white-box
security [12].

Despite these results, it must be noted that conventional black-box implementations of even the
theoretically strongest possible algorithms fall to essentially zero security on hostile platforms, as their
secret keys are directly observable by an attacker [13].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 9

Figure 4 - Security Properties of Black-Box Versus White-Box Security

2.4. Code Lifting Attacks

Besides known cryptanalytic weaknesses, defining white-box security as the impossibility to extract the
secret key also has some drawbacks. Namely, it leaves the door open to code lifting attacks, where an
attacker simply extracts the white-box implementation as a whole and achieves the same functionality as
if he or she had extracted the secret key [14].

White-box node-locking techniques can be employed to restrict the operation of a white-box to a device
by encoding every white-box operation to that device’s signature. When used in conjunction with external
encodings, which push the boundaries of the white-box into surrounding applications, this method is
shown to be effective in mitigating code-lifting attacks [15].

Further research is focusing on new security notions, such as space hardness, which give a quantifiable
measures of security against key extraction, table decomposition, and code-lifting attacks [16] [17].

2.5. White-Box Chaining

The use of external input and output encodings in white-box implementations facilitates the notion of
white-box chaining, where the output from one white-box implementation can be used as input into
another without an intermediate cleartext step. This allows architectural and implementation flexibility, of
white-box components that may be housed within different applications, on different physical devices, or
in cloud-based environments [15] [18] [19].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 10

Figure 5 - External Encodings

Figure 5 illustrates external encodings used to chain implementations in a DRM setting [17]. Such
encodings also allow white-box implementations to be securely bound to applications and hardware
security devices [15] [18].

2.6. Moving Toward Strong White-Box Cryptography

Strong white-box models seek to better emulate trusted hardware execution environments in software by
finding efficient virtual black box or indistinguishability obfuscation constructions, thus circumventing
the cryptanalytic weaknesses of present-day white-box implementations. Models with slightly weaker
security properties permit adversaries with access to white-box implementations to encrypt (at least via
code lifting) yet remain unable to decrypt [14].

Notable progress has been made with a fully homomorphic white-box (FHWI) construction that offers
efficient strong white-box implementations of specific applications without utilizing the lookup-table
structure of Chow et. al. These implementations are shown to achieve semantic security [5].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 11

Figure 6 - FHWI Transformations

Figure 6 illustrates FHWI transformations of functions into strong white-box functions in a homomorphic
white-box domain with semantic security (where it is infeasible for an adversary to extract any
information about the secrets and values under computation, even with full visibility and control of the
execution environment.)

3. Software Obfuscation

3.1. What is Obfuscation?

Software obfuscation aims to make programs “unintelligible”, while preserving their functionality, in
order to prevent reverse-engineering of their intellectual property and to help mitigate tampering attacks.
This has been an active area of development for decades, with a wide range of solutions currently on
offer. In many cases, these obfuscation systems are proprietary or lack a rigorous theoretical
underpinning, which makes their security properties difficult or impossible to validate.

The theoretical study of program obfuscation began with the introduction of a formal definition of virtual-
black-box obfuscation by Barak, et al. [20] in 2001, which captures the requirement that such an
obfuscator can securely hide information about a program. Barak, et al. went on to show that it is
impossible to achieve general-purpose virtual black-box obfuscation.

3.2. Control Flow Obfuscation

Control-flow obfuscation is a theoretically tractable approach to obfuscation that transforms the structure
of a program’s control-flow graph in such a way that it cannot be easily reconstructed by static analysis;
thus hindering the comprehension of the program by an adversary. The most prevalent form of control-

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 12

flow obfuscation is control-flow flattening, where a program is reduced to a garbled collection of basic
blocks with an execution sequence based on a state variable that is dynamically computed at runtime.
This has been shown to be a PSPACE-complete problem [21].

Before After

Figure 7 - Control-Flow-Flattening Example

Further theoretical advances in this area utilize a virtual machine interpreter to add an abstraction layer
between the labels used to identify basic blocks by control-flow flattening and the underlying memory
addresses of those blocks. This has been shown to be a NP-complete problem [22].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 13

Figure 8 - 3-CNF-SAT Reduction of a Virtual Machine Interpreter

3.3. Data-Flow Obfuscation

The goal of data-flow obfuscation is to achieve maximal unintelligibility of the dataflow of an obfuscated
program. Advances in this area utilize algebraic structures that facilitate structure-preserving
randomization of the data-oriented operations of a program. In this model, Boolean and arithmetic
operations are encoded as randomized sequences of matrix operations without altering functionality [23].

Figure 9 - Branch Encoded Function Computing an AND Gate

Figure 9 Illustrates a branch encoded function computing an AND gate. Such randomized encodings are
used to create diversity and maximize unintelligibility. By randomly encoding and merging data-flow
operations, this technique produces a “confusion” effect. When used iteratively together with control-flow
obfuscation, which can be likened to a “diffusion” effect, produces synergistic obfuscation results that are
highly complex (entropic), in a similar manner to confusion and diffusion operations in a substitution-
permutation network in classical cryptography.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 14

Figure 10 - Confusion & Diffusion

Confusion is introduced by uniquely substituting inputs. Diffusion is then introduced with a permutation
that combines the results of each substitution. These steps are repeated to achieve maximal complexity in
the output.

3.4. Strong Obfuscation Models

In order to avoid their impossibility result, Barak, et al. defined a variant obfuscation model called
indistinguishability obfuscation (iO). Finding a practical implementation of iO as well as finding ways to
circumvent the general impossibility result are central topics in cryptography today [24].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 15

Figure 11 – Research into efficient iO

Due to its importance, achieving efficient iO is a central focus of present-day cryptography research [24].

4. Other Software Protection Techniques
There are a range of synergistic techniques that compliment present day white-box cryptography and
obfuscation models to harden these approaches against common attacks. These methods may be
unnecessary under stronger white-box and obfuscation constructions that are presently under
development.

Obfuscation
(Control flow and Data

Flow)

Code Signing and Dynamic
Execution Verification

Anti-Debug Detection

Encoding Diversification

Protection Compiler Tool

Application Source Code
(Requiring protection)

Application Binary

Periodical Security
Audit

White-box Crypto
Primitives

Figure 12 - Protection Process

4.1. Anti-Debug Protection

Software that employs anti-debugging techniques can determine if it’s being debugged by identifying
artifacts of the debugging process [25]. Detection and response code is injected into an application to

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 16

counter debugging attempts. Control and data-flow obfuscation can then be applied to further increase the
stealthiness and diversity of the detection code.

Figure 13 - Anti-Debug Detection Code

Figure 13 provides a visual example of randomly selected anti-debug detection code (right) being injected
into random points of a program (left).

4.2. Code Signing

Code signing methods in commercial use are targeted at preventing static tampering attacks, which
involve unauthorized modifications to a program's binary code prior to execution [26] [27].

4.3. Dynamic Binary Image Verification

Static code signing methods do not detect modifications made to executable code at runtime, such as with
buffer overrun attacks, which are some of the most prevalent tampering attacks in today’s landscape [28].
Advances have been made in dynamic integrity protection with the goal of operating in a stealthy manner,
minimizing false positives, not overly impacting performance and maintaining full compatibility with
static code signing across a wide number of platforms [29].

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 17

Figure 14 – Implementation of Dynamic Integrity Verification

Figure 14 is an illustration of a stealthy implementation of dynamic integrity verification with
randomized check functions (left), randomized check points (middle), and opaque jump table to conceal
their relationship (right).

4.4. Diversification Techniques

Software diversity refers to generating unique software implementations that deliver the same
functionality. This approach introduces uncertainty against a wide range of attacks. This uncertainty can
be expressed probabilistically in a manner similar to cryptography, where the success rate of any given
attack can be expressed as a function of the entropy of the implementation. Researchers have proposed
multiple approaches to software diversity that vary with respect to threat models, security, performance,
and practicality [30].

Software diversity is not just a simple layer on top of existing security, it is fundamental to every part of
the security model [30]. Examples of compilation diversification this can be seen in Figure 13 and Figure
14, where randomly generated detection functions are injected at random points in the code to ensure

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 18

maximal uncertainty of the type and location of those code blocks, hence maximizing the diversity of
their implementation.

4.4.1. White-Box Diversity

White-box implementations (produced by a white-box compiler) are essentially a network of randomized
lookup-tables [19]. Hence, such implementations are maximally diverse.

Figure 15 – Diversity in a Table-Based White-Box Implementation

Table-based white-box implementations are a randomized network of randomized table look-ups [17].

4.4.2. Diversity from Obfuscation

Control and data-flow obfuscation further increases diversity and as such can be applied iteratively and in
conjunction with other techniques, such as anti-debug and dynamic integrity protection methods.

• Control-flow obfuscation spreads out (flattens) a program’s control pathways in a random
manner, thus introducing uncertainty of the location of code elements.

• Data-flow obfuscation randomizes and merges arithmetic and Boolean instructions, thus
introducing uncertainty of function.

The security of these notions can be formalized in terms of the entropy of a software implementation [30].

4.4.3. Diversity as Side-Channel Protection

One of the key requirements to build a side-channel attack is the ability to accurately replicate the victim
environment. However, software diversity breaks exactly this assumption. Attackers no longer have easy
access to an exact copy of the target program [30].

4.5. Periodical Audit

Another key element of a robust security model is the ability to forensically examine usage, exceptions,
and critical failures across the entire spectrum of protection. Again, these metrics must be embedded in
each security module to generate data that can be acted on appropriately.

5. Application Threats and Security Analysis

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 19

5.1. Cloud Application Threats and Related Top 10 OWASP Threats

The Open Web Application Security Project (OWASP) has been around for various types of software
applications for years. Recently, the Cloud Security project was added to help people secure their
products and services running in the cloud. This project provides a set of easy to use threat and control
Behavior Driven Development (BDD) stories that pool together the expertise and experience of the
development, operations and security communities.

With growing cloud computing elastic platforms that are feature-rich and highly scalable, companies are
now able to deliver products and services with a velocity and agility that has never been seen before. This
could sometimes result in circumventing security thus the rise new attack vectors [31]. Considering
OWASP Cloud Security recommendations and best practices are great starting points for security
architects to analyze their applications and come up with attack surface.

However, to make this more effective, the process must be iterative with tangible feedbacks. As a new
security feature is designed and implemented, it's possible that the existing attack surface is expanded and
must be analyzed again. Then a new set of penetration test should be considered and executed to have
collect feedback. These test results should then be fed back to the designer/developer to analyze the
impact and the risk of new features. This iterative process should be part of ongoing practice of
application development as we explore more later in this paper. It allows examining the impact of each
added security feature until a level of satisfaction is achieved.

5.2. Systematic Approach to Security Analyses Process

There are three aspects to security analyses: Threat, Assets, and Vulnerability. Threat refers to various
ways to potentially break and exploit an application. Assets refer to secret data, metadata, and sensitive
procedures used by application to perform its job. Assets can come in the form of static data or dynamic
run-time data temporarily stored in the memory. Vulnerability is an existence of a weakness, design, or
implementation error that can lead to an unexpected and undesirable event compromising the security of a
system. Vulnerability is essentially a hole in the application that causes it to provide a gateway to break it.
The security risk is the intersection of these three aspects where a threat is apparent on an asset thru
vulnerability of the application in the module where the asset is handled.

The impact and cost of not engaging with security analyses systematically are huge. To name a few:

• Technical and business impacts
• Credential data lost; metadata lost
• Personal data exposed; app data exposed; enterprise data exposed, etc.
• Measurable and indeterminate damages that comes with system repair cost; outage costs

Understanding these impacts helps application designers/developers better analyze what kind of
protection is needed in every area of application. There is no perfect answer as applying security and
protection comes with its own set of costs and complexity such as performance impact, overhead of
Enc/Dec & network authentication, and complex troubleshooting especially for TEE environment.

5.3. Incremental Protection Value Analysis

The incremental protection value analysis is an analytical method in the systematic approach to security.
Its purpose is to identify the acceptance level of protection techniques as applied to certain data and
procedures within the software application. There is no technical limit to the level of security that can be

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 20

applied to assets or modules. The analysis includes wide range of techniques from TEE hardware-based
security to all software-based implementation as discussed before. The incremental protection value
analysis attempts to assign a numeric value to a combination of protection technique and targeted
data/procedure. It is a method of measuring a protection's strength at any given point statistically or
dynamically in run-time. It compares the intended amount of protection effect with what has been
deployed with the application. It is achieved by security testing and proactively applying the known and
common attacks to your application and measure its resilience. This allows application
designer/developer to evaluate level of protection while having enough guards against associated attacks.
It is the striking balance between protection and threat.

Here are steps to perform gained value analysis:

1. Determine the strength of each protection technique within your domain.
2. Sort and rank these techniques based on known risks and attacks.
3. Associate a security strength value to each protection technique. This is a ranking value from the

lowest level (no-security) to the highest level (in your application domain).
4. Identify assets and procedures needing protection and associate a sensitivity/secrecy value to

them. The higher the number, the more secrecy the data or more sensitive your procedures.
5. Start assigning an acceptable range of protection strength to your data/procedures with a

comfortable low-level strength number.
6. Perform security test and proactive attacking.
7. Increment the protection strength level if security test failed.
8. Repeat 5-7 until you get acceptable result.

White the protection value provides an analytical representation of the security level; it is only to give the
designer/developer confidence to come up with “good enough protection.” The most default and
subjective steps in this analysis is security testing and proactive attacking. While this could potentially be
an open-ended practice, there should be a protection value that is deemed good enough by
designer/developer.

5.4. Performance Versus Security

Typical cryptographic operations are time and resource constrained and they must be measured, adjusted,
and optimized. There is always an additional overhead associated with software implementations of
cryptographic functions as oppose to hardware variant. The concept of “good enough protection” has
another angle that is to create a balance between application performance and security. This is particularly
apparent in applications with time sensitive functions in real time. For instance, over-the-top (OTT) video
delivery applications must process, decrypt, decode, and render, video data in real time while maintaining
the smooth playback experience. Typically, the entire video-handling module of this application must be
secured to not expose valuable video and audio data during delivery. At the same time, the module must

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 21

perform fast enough to provide a non-interrupted play experience. That requires a delicate balance
between security and performance.

Designing and implementing a “tunable” mechanism for both performance and security within the
application can achieve this. Here are some considerations to be aware of in designing tunable security
functions:

• The performance of the crypto algorithm
• The overhead of encrypt and decrypt operations in real time
• The overhead of software obfuscation
• The memory intense computation of white-box cryptography operations

5.5. Security Analysis Flow

Security analysis is an ongoing and iterative process that must be performed parallel to the normal
software development cycle. Every time a new feature is introduced, developed and tested, its protection
needs to be evaluated. Policies and practices are evaluated during the design phase from a security point
of view. Then static analysis is performed by each developer per each development cycle to identify any
leaking security holes. The process continues into the application execution phase where dynamic
analysis and penetration testing are conducted in the runtime. The security analysis flow phases and
details are shown below.

Policy &
Practice
Review

Secure coding
Repository access policies
Business criticality

assessment
Development practices
Application scan

frequency
Blacklisting and flaw
severity policies

Remediation policies
IT policies

Design

Static
Analysis

Examine of code binary
Software composition
review

Code audit and reviews
Code instrumentation
Threat analysis and

Attack Surface
Reverse engineering
Run static analysis tool
Prior ity/Criticality
analyses
Audit reports

Develope

Dynamic
Analysis

Manual
Penetration

Black- box testing
Runtime predictable
attacks
Identifying vulnerabilities
Binary instrumentation
Run dynamic analysis tool
Prior ity/Criticality
analyses

Audit reports

Exploit against target app
Execute tests to uncover
vulnerabilities:

• Circumvent
authentication and

authorizat ion
• Escalate user privileges
• Hijack accounts
• Ex pose violate access
• Cause unauthorized

access of data
Analyze data revealed
Prior ity/Criticality
analyses

Audit reports

Execute

Figure 16 - Security Analysis Flow

The static and dynamic analyses are an essential part of this process to help developers quickly identify
and remediate application security flows every time a new feature is introduced [32].

6. Protection Guideline and Best Practices

6.1. Practical Guideline to Protection

A typical software application consists of high-level user interfaces interacting to commands from a user
or with other applications to low-level system interfaces making use of platform specific features. While

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 22

these interactions could be implemented in various modules in different layers, there is always data
exchanges and handshaking to be done among them.

An effective way to ensure comprehensive application protection is to examine and apply protection in all
layers and in both bottom-up and top-down directions. While the principal security consideration remains
the same, the attack surfaces might be different in each layer. In bottom-up, a designer/developer starts
with exploring vulnerabilities of specific deployment platform and works their way up to the possible
security holes in the application interfaces. Application development platform tools including TEE
providers are typically in charge of ensuring low-level module security. Thus, assuring any application
written on those platforms comes with certain level of protection out-of-the-box. Whereas in the top-
down approach, the designer/developer starts with user interfaces and works all the way down to platform
interactions.

Application Interface

Platform Interface

Application
Security

Platform Security

Figure 17 - Top-Down and Bottom-Up Security Approach

All levels in between are examined for vulnerabilities. Therefore, both approaches shall be included in the
protection guideline.

6.2. Security Everywhere!

Application protection is a never ending proposition. This means there will be always a hidden
vulnerability somewhere in the software application to be discovered given time and effort. Many good
security designs do not deliver good security, not because the defensive theory is unsound, but because
the designers cannot achieve integration into real-work systems [33]. This is also true for any inner
modules of application as they need to be integrated internally.

6.3. Deep Preventive Measures

While building a multi-layered security and defense mechanism within the application is a key aspect of
application protection, it is equally important to “fail intelligently” when an attack occurs. If the
application fails for whatever reason, it should not expose any sensitive data, or give any detail to hint the
attackers about where it failed. This is hard to achieve yet doable to a certain extent knowing that attacks
are inevitable. Applications should be built with pre-defined, but not predictable failures in the face of an
attack. For instance, once the anti-debug detection is triggered, there should be a randomized and
unpredictable application failure without any trace. In some cases, it may be acceptable to crash the
application when such an attack has occurred. Designers/developers should also consider implementing

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 23

deep preventive measures where an application doesn’t continue execution if certain events (attacks) are
detected.

6.4. Best Practices for Application Protection

There are many organizations, forums, consortiums, government agencies, and independent individuals
providing best security practices for various types of applications [34] [31] [35] [36].

Exploring those best practices are outside the scope of this paper. However, it is important to pay special
attentions to the following items, while considering these best practices:

• Sensitive data and metadata at rest (cached or stored)
• Sensitive data and metadata in transit (to/from application)
• Application logs, crash logs, debug symbols, and tokens with no traceable channels
• Critical and secretive code
• Single point of failure and simple logic to make important decisions
• Copy/paste capabilities
• Third-party libraries with known vulnerabilities
• Exposure of geolocation data and routines
• Memory scrambling capabilities of the platform

7. Application Protection Cases
A strong white-box crypto combined with obfuscation and other protection techniques discussed in this
paper opens a great potential with a lot of flexibilities to designer/developer in protecting their
applications. Here we highlight some of these cases.

7.1. Cloud Video Distribution

As more companies are transitioning to cloud-based video delivery system, they are relying on the
security of the public cloud provider ecosystem such as AWS and Google Cloud. While there is no
question that public cloud providers have done their due diligence to make sure their core cloud offerings
are secured, analyzing their security capabilities are beyond the scope of this paper. Most of them offer a
form of Cloud Hardware Security Module (CloudHSM) that brings hardware security strength to cloud
application for a fee.

These services can be very costly for video delivery systems in the cloud since most of these services are
usage-based which may not be feasible with the typical large volume of video data transactions. These
cloud-based services process cryptographic operations and provide secure storage for cryptographic keys.

Whether to use CloudHSM or have all software-based security in the cloud, the protection of video
delivery from streaming applications remains the core responsibility of the application owner. In an end-
to-end video distribution system, attacks are often aimed at defeating conditional access or finding ways
of exploiting services that are easier than circumventing cryptographic protection. A strong white-box

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 24

crypto combined with obfuscation and other protection techniques should provide an alternative
protection to using costly hardware-based solution for cloud video delivery applications.

7.2. Digital Rights Management

Digital Rights Management (DRM) applications are another candidate for all software-based protection.
While hardware-based security might be still needed when hardware root of trust is used, all other crypto
operations can be done in the white-box. Authentication, authorization, right verification, key exchanges,
and more can utilize software obfuscation with the additional protections discussed in this paper.

7.3. SSL/TLS Services

OpenSSL is a widely used proven technology to implement Secure Socket Layer (SSL) and Transport
Layer Security (TLS) for application. The security promise of these protocols is to protect information
while in transit over the network. There is no guarantee or provision within these protocols to protect
information that resides on either end of these secure pipelines, including the secrecy of the very keys
upon which these protocols depend. To fill in the gap, white-box crypto can provide a viable and secure
alternative by seamlessly replacing underlying cryptographic operations in OpenSSL while maintaining
compatibility with the existing API. This will enable secure handling of keys and other sensitive
cryptographic assets without the need to significantly alter existing applications that utilize OpenSSL.

7.4. Public Key Infrastructure

Public Key Infrastructure (PKI) applications can also utilize software-based protection ranging from
servicer identification certificate delivery to generating application specific keys. To add further security,
protected keys can be locked to a host machine, container, or application such that even if an external
party gains access to them (say through an insecure application running inside the same container), the
encoded keys are not usable outside of that container.

7.5. Internet of Things

Internet of Things (IoT) devices typically don’t have sophisticated hardware capable to support hardware-
based security or TEE. This makes it a perfect candidate to use all software-based protection with some
light-weight white-box and obfuscation. This truly enables IoT providers to deploy their application in
scale that was never possible with systems depending on hardware-security or with no security designed
into the software.

Conclusion
In this paper, we discussed various software protection technologies that can fill in the gap in securing
applications without the use of hardware security. Recent technological advancements in white-box
cryptography and software obfuscation makes it feasible to deploy software-based protected applications
that are flexible and easier to maintain. The holistic approach to security allows developers to view
application protection from various angles. This enables companies to deploy iterative security analysis
processes in their software development practices, utilizing feedback received from attack surface
analysis and penetration test results. There are all kinds of applications in various domains with different

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 25

use cases that can benefit from these technologies either by creating an entirely new protection scheme or
enhancing existing security mechanisms.

Abbreviations
API Application programming interface
bps Bits per second
AES Advanced Encryption Standard
CloudHSM Cloud Hardware Security Module
DRM Digital rights management
ECC Elliptic-curve cryptography
IDE Integrated development environment
IoT Internet of things
ISBE International Society of Broadband Experts
OEM Original equipment manufacturer
OWASP Open Web Application Security Project
PKI Public key infrastructure
RSA Rivest–Shamir–Adleman
SCTE Society of Cable Telecommunications Engineers
SSL Secure sockets layer
TA Trusted application
TEE Trusted execution environment
TLS Transport layer security

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 26

References

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 27

[1] TechTarget, What is holistic security? - Definition from WhatIs.com.

[2] B. Schneier, "Tales from the Crypt: Hardware vs Software," 2015.

[3] H. Bar-El, "Security implications of hardware vs. software cryptographic modules," pp. 1-3, 2002.

[4] S. Chow, P. Eisen, H. Johnson and P. C. Van Oorschot, "A white-box DES implementation for
DRM applications," pp. 1-15, 2003.

[5] L. A. Anderson and S. Medvinski, "Candidate fully homomorphic white-box construction," 2016.

[6] C. Delerablée, T. Lepoint, P. Paillier and M. Rivain, "White-box security notions for symmetric
encryption schemes," vol. 8282 LNCS, pp. 247-264, 2014.

[7] S. D. Galbraith and L. A. Anderson, "White-box cryptography," pp. 1-12, 2013.

[8] O. Billet, H. Gilbert, C. Ech-Chatbi and Springer, "Cryptanalysis of a white box AES
implementation," vol. 3357, pp. 227-240, 2005.

[9] Y. De Mulder, B. Wyseur and B. Preneel, "Cryptanalysis of a perturbated white-box AES
implementation," 2010.

[10] T. Lepoint and M. Rivain, "Another Nail in the Coffin of White-Box AES Implementations," 2013.

[11] J. W. Bos, C. Hubain, W. Michiels and P. Teuwen, "Differential Computation Analysis : Hiding
your White-Box Designs is Not Enough," pp. 1-22, 2015.

[12] L. Goubin, P. Paillier, M. Rivain and J. Wang, "How to Reveal the Secrets of an Obscure White-
Box Implementation," no. 643161, pp. 1-22, 2018.

[13] S. Chow, P. Eisen, H. Johnson and P. C. Van Oorschot, "White-Box Cryptography and an AES
Implementation," pp. 250-270, 2003.

[14] P. Fouque, P. Karpman, P. Kirchner, B. Minaud, B. M. Efficient and P. White-, "Efficient and
Provable White-Box Primitives," 2017.

[15] L. A. Anderson, "White-box node-locking," pp. 1-20, 2015.

[16] A. Biryukov, C. Bouillaguet and D. Khovratovich, "Cryptographic schemes based on the ASASA
structure: Black-box, white-box, and public-key," 2014.

[17] A. Bogdanov and T. Isobe, "White-Box Cryptography Revisited: Space-Hard Ciphers," pp. 1058-
1069, 2015.

[18] B. Wyseur, "White-Box Cryptography," no. May, pp. 1-9, 2008.

[19] L. A. Anderson, White Box-Development Guide, 2015.

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 28

[20] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang, "On the
(im)possibility of obfuscating programs," vol. 59, no. 2, pp. 1-48, apr 2001.

[21] S. Chow, Y. Gu, H. Johnson and V. A. Zakharov, "An Approach to the Obfuscation of Control-
Flow of Sequential Computer Programs," pp. 144-155, 2001.

[22] L. A. Anderson, "A survey of control-flow obfuscation methods," no. October, 2015.

[23] L. A. Anderson, Candidate randomized branch-encoding primitive, 2014.

[24] F. Kitagawa, R. Nishimaki and K. Tanaka, "Simple and Generic Constructions of Succinct
Functional Encryption," vol. 10769 LNCS, pp. 187-217, 2018.

[25] M. N. Garnon, S. Taylor and A. K. Ghosh, "Software protection through anti-debugging," vol. 5,
no. 3, pp. 82-84, 2007.

[26] Apple Inc, iOS Developer Library, 2016.

[27] Microsoft, Microsoft Developer Network, 2016.

[28] T. Schwarz and S. J. COEN, Santa Clara University, 2004.

[29] L. A. Anderson, "Dynamic Executable Verification (DEV)," 2016.

[30] P. Larsen, A. Homescu, S. Brunthaler and M. Franz, "SoK: Automated software diversity," pp. 276-
291, 2014.

[31] OWASP, OWASP Cloud Security Project.

[32] SCTE, SCTE IoT Security Best Practices, 2017.

[33] Akamai, Web application firewall - A champions guide, 2018.

[34] NowSecure, The Mobile App Security Company.

[35] Black Hat, Black Hat USA 2015 | Briefings.

[36] EC-Council, iClass Certified Ethical Hacker - InfoSec Training.

[37] Y. De Mulder, P. Roelse and B. Preneel, "Revisiting the BGE Attack on a White-Box AES
Implementation," 2013.

[38] OWASP, OWASP Foundation.

	Table of Contents
	Introduction
	Content
	1. Security Basics
	1.1. Holistic Approach to Application Security
	1.2. Software vs Hardware Security

	2. White-Box Cryptography
	2.1. What is White-Box?
	2.2. Core Criteria for Application of White-Box Crypto
	2.3. White-Box Security
	2.4. Code Lifting Attacks
	2.5. White-Box Chaining
	2.6. Moving Toward Strong White-Box Cryptography

	3. Software Obfuscation
	3.1. What is Obfuscation?
	3.2. Control Flow Obfuscation
	3.3. Data-Flow Obfuscation
	3.4. Strong Obfuscation Models

	4. Other Software Protection Techniques
	4.1. Anti-Debug Protection
	4.2. Code Signing
	4.3. Dynamic Binary Image Verification
	4.4. Diversification Techniques
	4.4.1. White-Box Diversity
	4.4.2. Diversity from Obfuscation
	4.4.3. Diversity as Side-Channel Protection

	4.5. Periodical Audit

	5. Application Threats and Security Analysis
	5.1. Cloud Application Threats and Related Top 10 OWASP Threats
	5.2. Systematic Approach to Security Analyses Process
	5.3. Incremental Protection Value Analysis
	5.4. Performance Versus Security
	5.5. Security Analysis Flow

	6. Protection Guideline and Best Practices
	6.1. Practical Guideline to Protection
	6.2. Security Everywhere!
	6.3. Deep Preventive Measures
	6.4. Best Practices for Application Protection

	7. Application Protection Cases
	7.1. Cloud Video Distribution
	7.2. Digital Rights Management
	7.3. SSL/TLS Services
	7.4. Public Key Infrastructure
	7.5. Internet of Things

	Conclusion
	Abbreviations
	References

