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Introduction 
Current models for adding new services and features to the home are highly reliant on upgrading gateway 
devices with a monolithic firmware image. Typically, lots of effort is required from the Cable Operator, 
the gateway Original Equipment Manufacturer (OEM), and possibly a 3rd party Software supplier to add 
these new features. This not only involves the specification of how everything should fit together, but the 
planning, development, and testing of the new feature, as well as the entire monolithic firmware 
deliverable. As one can imagine the time and effort involved can be considerable. Once the monolithic 
image is created and deployed, the whole cycle restarts with the next feature or service the Cable Operator 
would like to deploy.  

This model has worked. However, when compared to mobile phones or laptops, adding new software 
features typically does not require an OS upgrade.  Why can’t gateways follow this model? or use 
something a lot more agile that has fewer moving parts to enable faster feature and service delivery to 
subscribers? 

 
Figure 1 - Factors Driving New Software Services 

This paper will concentrate on exploring what architectures and platform options exist today to deal with 
service delivery beyond the monolithic image system and examine the pros and cons of these including 
how virtualization techniques both in the gateway and in the cloud can be used. Details relating to RAM, 
flash, and CPU resources will also be covered. The paper will also address aspects of cloud-based 
applications based on application traffic tunneling and compare these as potential alternatives to thicker 
gateway hosted services. Its organized as follows and covers the following sections: 

• New software delivery options that are beginning to appear in the industry 
• What they mean for operators, OEMs and 3rd party software/service vendors  
• How they might be applied to existing and future gateway platforms  
• Impact on RAM/flash/CPU resources  
• How to manage or orchestrate these services 
• The tradeoff between thick gateway services vs virtualized cloud services  
• How gateway traffic filtering and tunneling enables these services 
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Content 
1. Gateway Platforms 
Gateway platforms today have not changed much compared to initial gateways in relation to how 
software is developed and deployed, however the demand for new software and services has increased, 
particularly the integration of 3rd party software and services into existing gateways.  

1.1. Gateway Stack 

The standard approach for a gateway platform is to target a set of routing/networking features typically 
tied to a release of Linux, and maybe replace some of these with additional or upgraded components 
depending on the operator requirements for a new release, and then mix in a bunch of management 
controls and logging options to be able to manage and troubleshoot the platform in the field. The various 
changes are developed and unit tested, then are all mixed together to produce a monolithic image. This 
image is then submitted to the OEM test teams for system testing before the final release candidate is 
made available to the cable operator. The cable operator then takes this new release and applies their own 
acceptance testing to this image before finally releasing to the field. Finally, the operator can begin to 
offer the new feature set to their subscriber base. Proprietary, RDK-B, and openWrt gateway platforms all 
follow this general model.  

 
Figure 2 - Traditional Software Development Model 

This big bang approach is repeated over and over as new features are requested, or improvements/bug 
fixes need to be incorporated. In some instances, depending on the type of change involved, more focused 
testing can be performed, getting the final monolithic upgrade ready for deployment. This lengthy 
development process include approach is typical within the industry, and has remained in place as a 
compromise to managing the risk of launching a completely new release out to thousands or millions of 
deployed gateways. 

1.2. RDK 

In most cases this development process is as streamlined as its going to get. Some new platforms like 
RDK enable more control around the build environment, and focus on continuous development and 
integration of new features, working towards constant integration and deployment of these into the field. 
This model depends on a lot of automated testing, significant logging support, and the ability to move 
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from development directly into customer deployment on a regular cadence, perhaps once a month or even 
once a week. Given the exposure of regular updates of software in the field and knowing exactly what has 
changed from minor release to minor release, this model enables more focused testing and resolution of 
issues on specific features compared to the big bang omnibus release of features previously described.  

 
Figure 3 - Agile Development Model 

In most cases where RDK has been deployed with a high release cadence, the operator involved has been 
tightly coupled with the actual development process, sharing bug tracking and build systems with OEMs 
they have partnered with, and requiring their own development teams to be able to guide the overall 
release planning/development of features as well as deal with issues arising from the field (performing 
triage, collection of logs, etc.). There are definite benefits from this high cadence approach in terms of 
quick turnaround of new features and bug fixes, but the model does require the cable operator to get down 
and dirty with the development process, as well as owning the release, system test and deployment 
processes.  

All of this costs money by moving the operator into more of an OEM/development role. In most operator 
cases, developing software themselves is not how they make money from their business. The RDK 
codebase/architecture can still be used in the traditional development model, where an operator works 
with an OEM to release a set of new features and updates at a much lower cadence - maybe once every 
6/9/12 months - while building on the stability of known RDK releases from the RDK community.  

Both these approaches require either the OEM to do significant development or have the operator get tied 
into the development process, possibly at an uncomfortable level.  

1.3. Adding 3rd Party Software 

In the case of adding 3rd party software, generally there is a need to involve the software provider into the 
development process, one way or another. Such software maybe supplied in source code format or in 
binary/library format. For the binary/library format, the 3rd party typically requires access to the various 
code compiler elements to be able to cross compile their source code into a library that can be linked in to 
the monolithic firmware image.  

This approach normally requires the OEM to develop target platform layer interfaces that the 3rd party 
library requires. If source code can be provided, this gets built directly by the OEM themselves, with the 
OEM still needing to develop the target platform layer, as well as any other management control/logging 
functions to fit into the existing platform. (The main reason source code is not normally shared is in order 
to protect any associated Intellectual Property Rights (IPR) from being exposed to OEMs/other parties) 
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Once the 3rd party software is integrated into a monolithic firmware image, it is subject to testing which 
typically involves the 3rd party vendor, the OEM and finally the operator acceptance testing. Again, a 
somewhat complicated setup. 

1.4. Adding Operator User Interfaces 

In the case of adding subscriber user interfaces, be they webpage based or mobile app based, the typical 
approach is for the operator to provide use-cases and some sample screen shots as part of a set of 
requirements to the OEM to implement. The user interface will typically have extra options included over 
time depending on what new software features maybe added. Such requirements are typically treated no 
differently than feature requirements, so being added to this lengthy process that results in a monolithic 
firmware image being produced. Unfortunately, user interfaces are very subjective due to the 
interpretation of the look and feel characteristics versus the actual implementation. Another issue with 
user interfaces is that an operator may have two OEM suppliers of gateways, or indeed have multiple 
language or countries where the number of OEMs increases but still needs an identical look and feel to 
apply to all gateways. Given the number of OEMs, expecting to get these independent software 
developers produce identical look and feel is a challenge.  

1.5. Long Term Maintentnace 

Overall, adding software features and services to existing gateways is typically complicated and quite 
involved, and in most cases has to be repeated for every different gateway an operator uses. Once such 
features and services are deployed, the time to fix issues or update to newer releases of the feature/service 
is determined more by the overall development and testing cycles rather than the availability of the 
fix/release, particularly with 6-12 month release cadences in use by a lot of operators. Such an approach 
can be extremely frustrating and significantly hampers feature velocity. If an operator choses to get 
involved in the development cycle of RDK-B, then it’s possible to accelerate this, but one must remember 
that the gateway also has to preserve the robustness of all previous software features as well as any new 
features being developed/added, which is another cost to the development process. 

Architecture for consideration 
MSOs have a number of different devices that they use for broadband access, ranging from the most 
recent advanced gateways to older legacy products. Traditionally these devices sole purpose was to 
provide the networking platform for delivering broadband access to subscribers. In order to stay relevant 
and offer more than just a dumb internet pipe, MSO’s have been evaluating how to enable new services 
for subscribers in a cost-effective way that can be run on existing devices in the field or augmented via 
hybrid cloud options. Given the mix of devices in the field, the target architectures need to cover services 
delivered solely on existing router devices or distributed in multiple places. A big challenge in achieving 
this is the range of devices in use, all with different capabilities as well as the type of expected service to 
offer. 
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Figure 4 - Key HW Elements of Gateway 

The following system architecture is proposed for MSO’s to consider. This uses a mixture of container 
based orchestrated software services on in-home devices, as well as offering a hybrid option for services 
provided partially in the home and mostly in the cloud (through tunneling and the use of iptables or ovs 
on the in-home platform). The architecture also shows some tighter integration of services within the 
platform itself, for when some software needs higher performance access to networking or other lower 
layer services. The architecture can apply to most any WAN access, with D3.0, D3.1 and PON all shown. 

 
Figure 5 - Proposed home gateway, applicable to multiple access types 

2. Variables 
A lot of variables shape this architecture including: the device type; available RAM; available 
storage/flash (and read/write ability of same); the type of containers to be used; the number of services 
that may need to reside on the platform; whether these services are provided by the MSO directly, 
contracted partners, or third-party developers. 



  

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 9 

The types of new services are unlimited, with a huge array of options available to be added to the gateway 
platform 

 
Figure 6 - Sample of Potential Services Considered 

Other factors include: the supported services for the devices themselves; the types of low-level or high-
level APIs available; the infrastructure for hosting services on the device; the types of services being 
considered (tightly integrated networking applications, or apps that only need IP connectivity); as well as 
what type of access to hardware or local software stack is needed and what the managed API interfaces to 
use are, etc.  

 
Figure 7 - Proposed Router/Services Platform close-up 

Once the overall view of a containerized approach for local applications within devices is agreed, other 
decisions must be made regarding the types of container infrastructure to use, the type of orchestration 
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involved, the ability to manage and monitor not only the individual device infrastructure but also the 
entire network of devices running containers, the overall performance of the system including initial 
deployment, upgrade and mass reconfiguration across the footprint of devices. There is also a need to 
consider the mixed management of normal day to day operation and maintenance of the deployed 
broadband system and these integrated services on the same infrastructure. 

3. Device type, RAM and flash considerations 
The deployed standalone devices have a variety of RAM and flash capabilities. Many platforms are quite 
limited, only including 512MB of RAM and 128MB of flash, while newer platforms are considering 
512MB RAM and 512MB flash, or even 1GB RAM and 1GB flash. Cost is the main driver regarding 
how much storage to add to a device. A lot of purchasing decisions are made on the basis of the “hear and 
now”, as opposed to the total cost of ownership of the device and what feature upgradeability might be 
lost if too little memory is specified. For many years both RAM and flash costs were a large part of a 
gateway design, and something that could be manipulated with in the design, i.e. I need Wi-Fi, but maybe 
I could get away with 128MB instead of 256MB of RAM, particularly given price per MB. As a result, if 
an operator needed price reduction on a new design, RAM and flash were up for the chop. This made 
sense given 100,000s of device deployed, saving maybe $2-4 per unit is a big CAPEX save.  

 
Figure 8 - Example GW Memory Trends 

Depending on the routing software stack itself, most of this storage may already be consumed. Some 
firmware stacks using OpenWrt can actually be made to operate within 4MB flash and 32MB RAM, but 
in reality, need more like 128MB flash and 256MB RAM to fully support operator features.  

3.1. Software deployement model 

The typical software deployment model for broadband devices is to generate compressed squashFS 
firmware images (containing the full routing stack and any other software functions) that are distributed 
and stored in device flash, and during bootup of the device are decompressed from flash into RAM. In 
most cases the decompressed image itself is a soft copy of the platform Linux root filesystem (rootfs) 
which is presented in RAM to the OS. The OS will then launch applications from the rootfs. 
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Figure 9 - Flash and RAM Organisation 

Another decision made with broadband devices is to use a “dual image” option for firmware image 
storage, where two complete compressed images are stored in the flash storage, effectively limiting the 
maximum image size to under 50% of the available flash memory. This is done to have a backup image, 
in case an image has been corrupted in flash (due to various possible reasons). 

 
Figure 10 - Flash memory Organisation 

Thankfully RAM and flash pricing has corrected over the last 2 years, meaning prices have come down 
(different reasons for RAM and flash). However, operator purchasing decisions regarding RAM and flash 
have had consequences on what feature upgrades may apply to existing deployed device, and in some 
cases, there just is no space left to factor in any local extensions or alternatives, and alternatives, such as 
hybrid or virtual cloud services must be considered. 

Another aspect of broadband devices is that due to having a single monolithic firmware image containing 
all the software for the system to operate with, any minor changes requiring a complete replacement of 
this monolithic image. Even though this appears quite inefficient, there are a lot of operational benefits in 
knowing that a population of devices are running version #N or version #N-1 of firmware.  

Most broadband devices limit flash storage to be READONLY, with only the bootloader or firmware 
upgrade process being able to write anything to flash. This is a major issue when considering the 
download and storage of software components separate to the main firmware image. In some platforms, 
read/write of flash is already supported, but other platforms may need bootloader/code refactoring to 
accommodate this mode of operation.  

New software services packaged in containers (and similar) tend to be overlaid on top of the existing 
firmware image in some instances taking advantage of features/libraries within the platform image. Other 
software however may need to be integrated directly with the existing platform image, possibly replacing 
or adding functionality.  

This idea of live patching of the platform itself brings considerable complexity and risk from the point of 
view of both modifying the actual system properly and ensuring that a patch does not cause any issue to 
the running system. Also, the management of a mixed population of devices that may have different 
levels of “patching” applied may present significant operational overhead. 

3.2. Compression 

Given the nature of compression, the firmware image is likely to be much larger in RAM when 
decompressed. The compressed firmware image is typically CRC/MD5/signature checked before any 
attempts to decompress/execute code to make sure the image has not suffered any corruption while 
resident in flash (or due to misprogramming) and that it is a proper cryptographically signed image. The 
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firmware image includes the Linux kernel, drivers, and complete root filesystem. This system of 
compressing firmware images is the general approach used on all embedded platforms that use NAND 
flash memory, as it is not possible to execute directly from NAND, compared to NOR flash.  

3.3. Compression, Flash and Containers  

However, in a platform that may need to offer “container” based services, it may be better to consider 
separating how container images are stored and accessed in flash compared to the platform firmware 
image. Like most images, container images are compressed and, once downloaded, are accessed via 
squashFS. Isolating the container images to a separate flash partition/location will allow the container 
execution environment access the images directly from flash rather than requiring the complete container 
root filesystem to be copied to RAM. RAM is still required to load and run the various program files that 
comprise the container.  

In nearly all these cases there is a need to support OverlayFS (a key Linux feature, in mainline since 3.18) 
to ensure any configuration elements or read-write locations are handled separately to the container read-
only space in flash. This approach can reduce the overall amount of expensive RAM required (for storage 
purposes) on a platform at the cost of adding additional flash, and allows for flexibility in adding extra 
flash using either onboard eMMC or via plug-in USB/xSD devices.  

Router Stack options 
4. Linux based stacks 
In general, any router stack based on Linux is appropriate to use when considering the addition of new 
software and services on to a gateway platform. RDK-B/-M, OpenWrt, and proprietary stacks are all 
candidates for this. In most cases an abstraction or high-level API interface is really important to be able 
to offer a target layer for 3rd party software to work on top of. 

 
Figure 11 - HW/OS/Application Layering 

4.1. RDK 

RDK-B/-M itself has an internal CCSP bus (based on DBus) that acts as the backbone of the system, 
connecting the core RDK-B subsystems together with protocol adapters and software components. New 
software can be added into this system and have complete first class access to the inner workings of the 
platform. Support for low level interfaces, such as Wi-Fi HAL, or Cable Modem HAL, or 
Ethernet/Switch HAL (utopia) is also included, as is support for managing configuration 
settings/NVRAM. External protocol adapters for TR-069, SNMP and the Comcast developed WebPA 
interface allow management access to the system.  
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Figure 12 - Key RDK-B Software Layers and Components 

4.2. OpenWrt 

OpenWrt also has an internal bus, uBus, that acts as its backbone for enabling communication and control 
between all the internal elements that are used for routing and management. It uses “uci” for its 
configuration management, and offers a lot of equivalent services that RDK-B/-M offers that are typically 
expected in a gateway stack. prplWrt packages together some new carrier class components into openWrt. 

 
Figure 13 - prplWrt Organisation 

4.3. Proprietary 

Proprietary or OEM stacks, such as ARRIS Touchstone or ARRIS 9.x, all offer the same type of 
functionality as RDK-B/M and OpenWrt. Each stack breaks down the control functions required for each 
of the underlying subsystems to implement the various software and protocol requirements for a gateway.  

5. SDKs, HW integration and HALs 
In the main, all of these stacks are ported to run on different SOCs through the use of supplied SDKs that 
provide the base Linux kernel support. The SDKs mostly use Linux defined interfaces, particularly low 
level interfaces, when possible. When integrating extra hardware with a SOC, new drivers are provided 
by the 3rd party hardware supplier. In an effort to simplify the adoption of different hardware in to the 
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router stack, say in the case of Wi-Fi, RDK-B has mandated the use of a Hardware Abstraction Layer 
(HAL) with a view of managing and controlling each Wi-Fi system in much the same way. This requires 
the hardware supplier to adapt their drivers to support the HAL. In the case of OpenWrt, the approach 
taken is to leverage existing Linux layers for Wi-Fi, such as cfg80211 or hostapd/wpa_supplicant, and 
require the hardware suppliers deliver this interface, with most of them doing so. 

Other subsystems in the SOC, such as the low-level packet acceleration and switching functions are 
harder to get standard drivers for, as each hardware supplier does things differently matching their HW 
architecture. However, with advances such as Open vSwitch (where switching is performed in software), 
Switch Abstraction Interface (SAI) and “switchdev” it is possible to tie in these low-level hardware 
features in an abstract and performant way into the chosen router stack (as long as the SOC provider 
supports these features!).  

6. Higher and Lower Layer SW interfaces 
Given the advances in the hardware integration efforts, it could be assumed that the higher layer software 
interfaces are just as advanced. Unfortunately, this is not the case, although a lot of work is ongoing in 
this space. In most gateway cases, there was no real need to expose “standard” software interfaces, as no 
one apart from the OEM vendor was developing software for the platform. The accepted interface into a 
gateway was typically the network management layer, namely SNMP or TR-069, or alternatively a local 
HTML/web interface.  

The various stacks mentioned all have internal buses for connecting their various HALs and 
adapters/components together. One straightforward way of exposing software interfaces to 3rd party 
software is to simply provide access to the internal bus. In a number of instances (say high performance 
network interfacing software), this is exactly how 3rd party software is integrated, using the internal bus as 
well as tight integration with low level driver interfaces. Such integrations can be challenging (requiring 
legal agreements for source code sharing, engineering access/etc.) and because two or more codebases 
become so tightly coupled, the only option of releasing bug fixes or enhancements is to release a 
completely new firmware load (going against the need for speedy releases). Such tight integration may 
also require more software development resources to achieve the final deliverables.  

Using this model for delivering the majority of new software and services cannot scale. Such a model 
would also threaten the security and robustness of the stack itself, something to be avoided. What is 
needed are a set of defined interfaces that can be supplied to 3rd party/Independent Software Vendors 
(ISV) to allow them work somewhat independently of the detailed underpinnings of the firmware stack, 
and they will still likely need the platform tool chain to enable them build software. The following 
sections outline the different APIs that are available with PRPL, OVS/OVSDB, NFLua and an internal 
CommScope API. These interfaces are not only critical for so-called “native” software integration where 
software is built into the monolithic firmware image but also critical for container based options. 
OpenSync is also described and offers an OVSDB interface that allows a hybrid model of native code 
developed for the gateway that also interfaces with a remote/cloud system that may be running additional 
cloud applications.  
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Figure 14 - Future Router Stack Architecture 

6.1. prpl Higher Layer and Lower Layer API (HL/LL-API) 

CommScope knows that some MSOs have been very successful with OpenWrt and would like to continue 
to use this stack into the future. The flexibility of OpenWrt provides for a complete stack covering most 
features needed for some MSOs. The prpl Foundation are also working on a carrier-grade definition for 
OpenWrt called prplWrt, as well as other work trying to standardize on higher level (HL) APIs and low-
level (LL) APIs (e.g. cfg80211), and pushing Wi-Fi silicon vendors to standardize on the use of Linux 
Wi-Fi control layers to avoid proprietary drivers.  

The prpl High Level API has been considered from the ground up as a platform abstraction layer to 
enable the delivery of new services to be easily integrated to GWdevices. The HL-API consists of a 
definition of 30+ primary features typically used in a GW as well as a model on how this can be 
integrated into multiple industry stacks, including OpenWrt and RDK-B. CommScope is currently 
reviewing the use of the HL-API on RDK-B, and what it will take to work over D-Bus*. The HL-API is 
not limited to higher layer services being added to the device, it also supports the idea of new underlying 
system components being added to a platform that can increase system functionality (and having this 
available to other software layers). The HL-API and prplAdapter also support features critical to enable 
3rd party software to be added to platforms, particularly in the areas of access control and “user 
management”. These areas are fundamental to enabling and restricting what elements of the gateway 
platform can be interacted with or controlled by software services. 
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Figure 15 - prpl High and Low Level APIs 

A key part of prplWrt and the higher-level APIs is to provide a so-called “prplAdapter” component that 
provides access as well as access-control to the inner operation of the routing/platform stack. This 
interface approach is meant to help the development of services required by operators, as well as exposing 
certain APIs to 3rd party application developers. Even though prpl has focused on OpenWrt, the major 
effort on the higher- and lower-level APIs is considered stack agnostic, and the expectation is that these 
interfaces will be available on RDK-B and other router stacks. CommScope is currently involved in an 
exercise to identify the work effort for mapping prpl High-level API to RDK-B, while prpl is also pushing 
the use of certain APIs into the RDK-B community for Wi-Fi management.  

One example of software using both the prpl HL-API and low-level API is the prplMesh implementation, 
where a software platform exposes control of the EasyMesh controller using the HL-API while also using 
the prpl LL-API (namely cfg80211) for the EasyMesh agent, interacting with the low-level control and 
management functions of the Wi-Fi chipset. The portable prplMesh implementation for EasyMesh will 
run on any platform that supports the LL and HL prpl APIs, as well as exposing the necessary interfaces 
to allow 3rd party Wi-Fi optimization systems interact with the prplMesh EasyMesh controller function. 

The set of APIs provide a significant abstraction layer to support development of both applications on the 
system, as well as exposing stack information (including status and monitoring information) to remote 
management platforms. 

6.2. Open vSwitch/OVSB 

New “OpenSync” software has been developed that relies upon OVS and OVSDB to expose internal 
operation of a gateway to a remote cloud controller. The software currently supports Wi-Fi management 
and has extensions for local tunneling. Current implementations use a MQTT service for actively 
monitoring the status of the home Wi-Fi environment back to the proprietary cloud. Open vSwitch is also 
a key part of this architecture, where the majority of its configuration and monitoring system had been 
developed. OVSDB is used in conjunction with Open vSwitch to provide a distributed database solution 
managed from the backoffice that controls pretty much all of the functionality of the OpenSync home 
deployment. The model is quite distinct from the existing/ traditional network management model used 
by operators be it TR-069/098/-181 or SNMP. 
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Figure 16 - OVSDB/OVS Based Architecture 

The OpenSync solution is currently limited to Wi-Fi (on supported platforms) and some visibility into L2 
switching. Some additional features such as basic device identification, basic speed test, and QoS control 
exist along with tunneling support of home network traffic between proprietary Plume Wi-Fi PODs back 
to the home gateway. The use of OVS for complete switch management is being considered on multiple 
platforms. Retrofitting it on older SoC platforms may have some challenges due to existing SoC supplied 
slow-path/fast-path handling and having to deal with very specific WAN access handling. However, 
where it has been ported, there is an option of dealing with everything relating to packet handling directly 
in software in the Linux kernel.  

The use of Open vSwitch/OVSDB in the OpenSync has the potential to bring an SDN control plane to the 
operator subscriber network, and could in theory be coupled with hybrid cloud applications where traffic 
is selected in the home, and delivered using GRE tunnels to cloud applications that provide various 
software and networking functions, similar to how a WAG works today, but dealing with much more than 
just Wi-Fi hotspot related traffic.  

6.3. Lua Based Architecture 

A Netfilter/Lua based architecture has also gained some traction in the industry, with its primary software 
layers combining netfilter and lua extensions within the kernel to simplify the interception and handing 
over of packet to user space within a Linux platform. The architecture enables a scalable approach for 
higher layer applications for interacting with packet flows passing through the gateway.  



  

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 18 

 
Figure 17 - NFLua Packet interception and Agent Architecture 

The solution is a potential alternative to OVS. The NFLua kernel component integrates with the existing 
Linux netfilter and iptables for packet inspection. The model enables userspace agents to interact directly 
with NFLua packets that are intercepted, with the ability to operate on these packets locally (using various 
protocol plugins for different protocols) or to act as an agent to a cloud entity that can process these 
packets remotely, possibly using more complex or capable functionality not possible in the gateway 
footprint. 

6.4. CommScope Container API 

The CommScope container interface is based on providing a controlled API for ISVs to use that enables 
access to elements of the internal router bus. The APIs expose objects that software can use, while an 
access control system marshals which software can access what objects. The API interface relies on a 
form of object based loosely on TR-181 data definitions as well as extensions for interacting with low-
level layers within the stack. The interface has already been used for several container applications. 

6.5. Life Cycle Management(LCM) / Service Delivery Platform (SDP) 

In addition to the need for the aforementioned interfaces both data plane and control plane for 
implementing software, there is also a need for software interfaces or a subsystem to manage these new 
software components that can operate on gateway platforms. This is somewhat equivalent to what Docker 
provides to manage interactions on a platform as well as interacting with a remote Docker repository 
hosting available applications, but one key difference is the target platform, in this case embedded 
gateway platforms.  

Typically, Docker is used on extremely capable hardware platforms with plenty of RAM and Flash as 
well as large CPU resources, something quite different to embedded platforms like broadband gateways. 
As such, companies have been investigating more lightweight options to achieve equivalent function for 
gateways. Broadband Forum developed the TR-157 approach many years ago, including a key element 
known as Software Module Management (SMM). The SMM system provides the basis for a new Life 
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Cycle Management (LMC) and Service Delivery Platform (SDP) that Vodafone has created over the last 
number of years.  

 
Figure 18 - prpl Service Delivery Platform/Life Cycle Management 

This system deals with the full lifecycle management of software components, from arranging the 
download, to the provisioning and running/monitoring, and eventual removal of the software within a 
gateway platform. LXC is used for application containers. The solution operates with existing ACS’s 
relying on TR-069 (or in the future USP), requiring some additional capability in the ACS to help with 
orchestration of what SW components are position on what gateways, etc. The system provides a 
complete solution and is planned to be open sourced into the prpl Foundation, providing an option that 
can be ported to any router platform for managing software components in a consistent way. Other 
companies have also been working on similar approaches and the hope within the community is that we 
can bring multiple parties together to create a common solution. 

Container Usage - LXC or Docker/Balena 
The main reason to look at containerized applications is to try and provide abstraction from the main 
monolithic firmware image. As mentioned, the release cadence of the main firmware images maybe too 
slow compared to new software feature needs. Having the ability to develop and test software that can 
then be deployed on top of an existing image can resolve this cadence issue. It also allows for such 
software to be tested against a fixed target release in the field, ensuring more confidence in the new 
feature when they are deployed in the field. Having independence from the monolithic image also means 
it’s possible to upgrade such software quickly in the field in the event of issues arising, without having to 
perform a complete system test of the main monolithic firmware image again.  
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7. Container Choice 
The choice of container system for gateway platforms needs to consider the overall Service Provide and 
Supplier model being used (at arms-length or tightly integrated), the available RAM/flash, and the long-
term maintenance requirements. LXC, Docker, and Balena offer a nicely packaged system to manage 
applications, and in some cases also handle the application repository aspects as well. One other option 
that avoids application containers relies on the original Linux primitives that can limit resource used by 
applications/processes running in a system using chroot() and cgroups/namespaces. This alternative 
approach works as well as containers, and some operators are considering this more lightweight approach 
for managing applications in order to reduce the overhead associated with the other options.  

 
Figure 19 - Native Apps vs Container Apps 

The choice of container option will likely have an impact on the build system for the devices being used. 
In terms of LXC containers and cgroups/namespace approach, it is possible to get much smaller container 
images as a result of reusing the available dynamic libraries within the primary firmware image root 
filesystem. A challenge with this approach however is the tight coupling required as a result of having to 
build the LXC container applications as part of the overall firmware image process. When working with 
internal SW teams, this is not a major issue, but there may be the usual “sharing problems” if 3rd party 
software companies need access to this build system.  

Challenges such as the overall version of firmware image and versions of libraries contained in the root 
filesystem may change due to upgrades, fixes, new features, etc. and any LXC container application may 
be incompatible with the changes results in the need to have very careful feature and change planning in 
order to avoid a permanent state of development.  

In addition to resource management and resource limits for new software and services, a key requirement 
to consider is how to interface with the main routing platform. In some cases, the integration requirements 
for new software can be limited to an IP and TCP/UDP port mapping, whereas other integrations need to 
directly interact with the local platform. Clearly defined interfaces (like all those described earlier) are a 
must to ensure coordinated access to the platform is maintained. Such interfaces enable 3rd party software 
providers understand how to interact with the platform, while the same interfaces provide a defined bridge 
that the platform software can marshal in terms of access control rights (what application can interact with 
what subsystem), and abstraction (allowing underlying systems to be modified while maintaining 
consistent northbound interface). 
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In terms of Docker or Balena containers, as they create their own root filesystems the resultant container 
sizes can be much larger compared to LXC. However, 3rd party developers need far less access to the 
internal build system or the firmware internal libraries, relying mostly on the target toolchain to build 
their applications. The approach enables independence between such containers and the system platform, 
but at the cost of RAM and flash resources. 

In most cases the target platform for containerisation will require at least Linux 3.18, and preferably the 
latest kernel available 

The choice of container comes down to the following options 
• LXC Container 
• Docker Container 
• Balena Container 

7.1. LXC Container 

LXC Containers provide the closest coupling and reuse of existing resources in a GW platform, and as 
such are definitely being considered on platforms that need some flexibility to deal with very constrained 
environments. They are the pre-cursor to nearly all other container systems, being a packaging up of the 
previously developed kernel tools developed to “contain” processes. They tend to be light weight in terms 
of RAM and flash, and fit into an existing platform without much overhead in terms of “container 
execution environments”. However, these benefits come at a cost of tight integration and reliance on a 
flexible firmware build system. LXC also does not have a native “orchestration” option that can be used 
directly, resulting in the need to create a suitable environment (the previously mentioned LCM/SDP 
addresses this need). 

Multiple industry efforts are underway to add LXC containers to embedded GW platforms, with options 
being discussed with most of the Tier-1 operators.  

7.2. Docker Container 

Docker is an open platform for developing, shipping, and running applications. Docker enables the 
separation of applications from a local platform to enable speedy software delivery. Docker execution 
environment provides isolation and security allowing multiple containers to simultaneously on a platform. 
Compared to virtual machines, Docker containers are much lighter, but these containers and the execution 
environment can be a lot heavier in resource usage compared to LXC.  
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Figure 20 - Docker Ecosystem 

A major benefit of Docker is how it creates containers, where every file/library/application required is 
packaged into a single container image enabling it to be distributed in a highly portable fashion. As a 
result a Docker container can be deployed on a gateway, local laptop, physical, or virtual machine in a 
datacenter or in a cloud provider environment. The portability of the Docker container means that many 
more software providers can develop their applications to run on Docker, enabling a very rich and vibrant 
market space. A Docker container is a runnable instance of an application image. Like LXC it can be 
started and stopped using a Docker API or a CLI. Docker relies on Linux services (either natively in a 
Linux kernel, or through “Linuxkit”) and uses namespaces in the same way as LXC does to provide the 
required workspace isolation for the container to operate within. Namespaces offer process, networking, 
inter-process communication, mount/filesystem, and some kernel isolation.  

In addition to these fundamental features, Docker introduces a whole host of extra functionality to be able 
to manage and interact with containers, enabling eco-systems to be built to fully manage and orchestrate 
the operation of large numbers of Docker images/containers over vast “fleets” of compute resources.  

7.3. Balena Container  

Balena containers are very similar to Docker, having been developed as a cut-down version of Docker. 
The following features have been removed from Docker Container support to create the lightweight 
Balena container platform, resulting in a 3.5x reduction in size:  

• Docker Swarm 
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• Cloud logging drivers 
• Plugin support 
• Overlay networking drivers 
• Non-boltdb discovery backends (consul, zookeeper, etcd, etc.) 

Balena concentrates on using RAM and storage more conservatively and focuses on atomicity and 
durability of container pulling. These facets are ideal in the context of embedded systems, compared to 
the more traditional cloud systems that Docker is targeted at). 

Container Experience in Gateways 
8. Containers on Commscope Gateway Platform 
The Docker ecosystem is being used on some CommScope gateway devices, with a view of enabling 
common applications to be deployed across a range of mixed capability devices (concerning CPU, RAM 
and flash resources). The current management/orchestration of the Docker system on these platforms 
relies on the TR-157 (SMM) functionality previously mentioned as well as more explicit Docker controls. 
The SMM system has some roots in the Home Gateway Initiative NERG as well as previous efforts that 
tried to add OSGi to gateways. The TR-157 defines platform attributes as well as lifecycle management. 

The CommScope gateway platform relies on the open source Docker Engine to provide the framework 
for hosting containers. A Docker Client is added to the gateway to manage and control access to the 
Docker environment. Remote Docker clients are also supported to assist with the installation of containers 
as well as querying status/etc. 

SMM depends on Execution Environments (EE), Deployment Units (DU) and Execution Units (EU). The 
Docker Engine is equivalent to the EE, providing a platform for hosting applications that are effectively 
sandboxed to the rest of the gateway/host system. Docker Images are equivalent to the DU, providing a 
way of managing the specific files/etc. associated with the application being downloaded. The EU is the 
active running Docker Container executing within the Docker Engine/EE environment.  

Docker containers are either pre-downloaded or downloaded from the Docker Registry. Interactions with 
the Docker Registry, including authenticating access, are all logged to ensure diagnostic information can 
be reviewed in the event of issues. 

The current model is to use the CommScope Container API for Docker Container applications control 
objects on the gateway platform itself. Extensions such as providing access control to local Linux services 
and Dbus access are also provided.  From an operational perspective, as some platforms are flash limited, 
the Docker Engine itself is run time installed into RAM, as are the other Docker Container images. 

The running of the Docker Engine on the platform requires allocation of resources from the gateway for 
any Docker Applications being deployed. The current support in the gateway based Docker support is for 
installing, enabling, uninstalling, and disabling using either an External Docker Client or using the 
Docker Configuration file. The main features of the SMM are provided to report on status/etc. of the 
Docker Engine and running applications.  

Some of the Docker applications include McAfee security gateway as well as SamKnows. Other 
applications are considered as well as internally developed features.  
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9. Life Cycle Management (LCM) on OpenWrt platform 
A previously mentioned the LCM/SDP platform developed by Vodafone enables the management of 
downloadable software components in LXC containers. This was demonstrated through a POC that 
Vodafone developed and demonstrated at openWrt 2018. 

This POC chose to use the primary features of the TR-157 Software Module Management (SMM) 
specification for this, providing a generic interface for this interface, allowing it to be mapped into TR-
069 for ACS management or made available for other agents to use with other orchestrators. The LCM 
component provided external access to execute the available Life Cycle Management API methods, while 
also being responsible for fetching packages/containers, retrieval of information about packages from the 
local filesystem, as well as delivering the required applications to the Execution Environment to run.  

The POC demonstrated the use of multiple Execution Environments (EE) allowing for mixed service 
operation. A Base EE was used to allow upgrading of specific components into the main root filesystem, 
that did not require any separation, such as new native images. A key feature of the Base EE was to allow 
direct patching of the main OpenWrt system, enabling the installation of a new native package directly 
into the running system. The use of the Base EE also allowed for a bit more package information to be 
included to be able to authenticate the packages, etc. A so-called Native EE was added to enable root 
filesystem separation, meaning that a new Native package would not overwrite anything in the base root 
filesystem, enabling isolation from the running system. The final EE was the Container EE, where new 
3rd party applications needed isolation from the main system, and would be have limits placed upon all 
resource usage, as well as preserve system stability.  

 
Figure 21 - SDP/LCM and Orchestration Overview 

In all cases the LCM was responsible for managing the different EE, where it would perform actions on 
the EE, and deal with the returned status. Operations such as install, uninstall, start and stop were all 
supported.  

The following diagram shows the model used in the POC: 
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Figure 22 - SDP/LCM POC Configuration 

The ACS platform was used to issue commands to the CPE platform, where they were handed over to the 
LCM to perform all actions related to running services within the platform. The System EE listed above 
allowed for the ACS to request package updates (OpenWrt) to be applied to the running system, while the 
Supervisor EE was used to actually run the isolated applications. The Supervisor EE is responsible for 
handling the environment that applications run with 

The Supervisor EE supported features such as package verification and install/remove, service 
startup/shutdown, as well as isolation (including limiting namespace, RAM and CPU). The OpenWrt 
Summit 2018 demonstration showed some basic containers running, as well as a more complex setup that 
involved Samsung SmartThings integrated in a container, downloaded into the system and using a local 
Zigbee USB dongle to interact with an external Zigbee lightbulb. Other aspects such as CPU resource 
limitation were also demonstrated. All of the interactions in the demonstration were controlled using the 
SMM functionality on the connected ACS. 

The SDP/LCM system as currently defined delivers a complete solution for managing containers and 
even native applications on embedded gateways. It offers orchestration through the connected ACS 
(although ACS platforms probably require custom extensions to really hope to act as orchestration 
systems), and works on OpenWrt. Work is ongoing to get this functionality working on RDK and 
hopefully the overall SDP/LCM solution software will be opensourced at some stage.  

10. Nomad POC 
Nomad (from Hashicorp) is a highly scalable orchestration system that has been deployed to deal with 
launching 100,000s of container applications for various purposes. It manages clusters of machines and 
runs different types of applications on top of them, integrating with another Hashicorp product called 
Consul (a service discovery and configuration tool). Its primary function is to manage microservices 
efficiently over clusters. A Nomad POC was developed to demonstrate the management of Docker based 
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containers being orchestrated using the Nomad system (www.nomadproject.io). This POC relied on 
integrating Docker CE onto a platform, running a Nomad Agent container on the platform and using 
Nomad server to interact with the agent to orchestrate the setting up of “IOT” application container and 
some other basic containers.  

The work began on a platform with 512MB RAM and 4GB flash. The POC team already had extensive 
experience with Nomad Server and were using this to understand the client side and how this would scale. 
The Nomad Agent (that runs on a client device, such as a gateway) includes support for so-called “Task 
Drivers”, allowing it to manage multiple types of execution environments, including, Docker, Isolated 
Fork/Exec, Raw Fork/Exec, LXC, Java, QEMU, Rkt, Custom. For the purpose of the POC, Docker was 
the chosen environment.  

The POC demonstrated that the platform was well capable of delivering the required services. The size of 
available flash used was considerably more than on most embedded platforms today, where for example a 
gateway might only be designed with 128MB flash, which is only 3.2% of that available in the POC 
platform. The POC was capable of demonstrating the use of Nomad for orchestrating the local services, as 
well as showing that an IOT container application was able to function and access a local Zigbee interface 
on the gateway. 

Alternative Virtualization Options 
Containers are not the only virtualization option that exists. The following sections explore virtual 
machines as well as full/hybrid cloud applications. 

11. Virtual Machines 
Virtual Machines (VM) are another way of isolating software functionality to run on a platform. They 
require a complete running platform of software, including a complete OS. When a VM runs on a 
platform there are different ways it can be position. It can run on top of a so-called “baremetal” 
hypervisor (the software to manage VM access to the local HW platform, also known as a ‘type-1’ 
hypervisor). Systems such as VMware ESXI, or Microsoft Hyper-V server or open source KVM are all 
examples of a type-1 hypervisor. Alternatively, a VM can run on top of a ‘type-2’ hypervisor running in 
an OS on the HW platform. VMware Workstation, Oracle VM VirtualBox, and Parallels are all type-2 
hypervisors. VMs provide a complete environment, meaning that in most cases they require massive 
amounts of RAM and storage to operate, one example of a ubuntu 18.04 desktop VM requiring 25GB of 
storage and 2GB of RAM. As such, VMs really don’t suit when trying to add some basic software 
features on top of an existing embedded system.  

http://www.nomadproject.io/
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Figure 23 - Native, Containes and Virtual Machines 

VMs are not discussed any further in this paper.  

12. Full and Hybrid Cloud Virtualisation options 
The traditional model of Virtual CPE has talked about moving the entire routing platform software out of 
the home and into the cloud, and having all of the network traffic hairpin through this remote 
virtualization platform that replicated all of the home networking functions. The hope of vCPE was to 
reduce the cost of the gateway device and move the SW complexity to the cloud. The approach was to 
enable different SW instances in the cloud that would support centralized feature development and 
versions, with the ability to rapidly cutover gateway devices from one version of software to another to 
get new features, as well as to offer new software features and services to customers, regardless of the 
type of gateway hardware was in each home.  

This model has not really succeeded. The costs of offering the vCPE platform in the cloud while also 
offering gateway HW in the home never quite added up to something that was more economic than a 
dedicated gateway in the home. The truth is that vCPE hardware platforms, especially with Wi-Fi, are not 
too different in costs compared to equivalent home gateway platforms, in most cases the actual SOC is the 
same and offers the same MIPS processing power. The main difference would be RAM/flash costs, with a 
vCPE platform requiring less of both (but ironically, could be forced to buy more than required just to hit 
RAM/Flash price sweet spot). 

So, is vCPE dead? The answer is no, as some very good pieces of vCPE can be used. The idea of isolating 
certain traffic flows and certain Virtual Network Function (VNF) software to the cloud is an idea that has 
persisted and been demonstrated to work well. In this case a traffic tunnel connects the home gateway to 
the remote cloud VNF, where all the hard work is performed. One of the main examples of this is “Wi-Fi 
Public HotSpot” services. The traffic to be tunneled is simply that traffic that operates on one of the Wi-Fi 
SSID that the gateway offers. Every data packet is received from the SSID and tunneled using a 
‘softGRE’ tunnel to the cloud VNF. The cloud VNF terminates the tunnel, extracts the traffic and 
operates a Wireless Access Gateway (WAG) function, that deals with AAA and all the required traffic 
management (DHCP, etc.) and encapsulation/decapsulation, before dispatching the traffic off to the 
internet. This model is one of the first real examples of vCPE and has been widely adopted.  



  

 © 2019 SCTE•ISBE and NCTA. All rights reserved. 28 

 
Figure 24 - vCPE with Cloud Services 

However, it’s a very basic option, using a course traffic filter (the entire SSID) to isolate traffic. The main 
function the gateway must provide is the ability to isolate such traffic and pack it into a SoftGRE tunnel 
connected to the cloud VNF, so it’s definitely minimized SW complexity in the gateway. 

More advanced versions of vCPE have started to be developed, using more fine-grained data plane 
filtering options. In a lot of cases, traffic that is filtered must be transported out to a remote cloud VNF 
where the actual software processing occurs, typically through a SoftGRE or equivalent tunnel. 
Alternative options also exist where this traffic could be handed over to a local container or software 
component, mixing up the different models (where is makes sense). 

Data Plane 
Traditionally, Linux network tools, such as iptables have been used to manipulate traffic flows, providing 
low level filtering and redirection/etc. These tools are used by some of the key networking functions 
within the routing platform, but typically are not open to higher layer software components, as they have 
the potential (if used incorrectly) of wrecking the network packet forwarding of a system. No real 
programmatic API has been developed to expose this interface to 3rd parties. However, Software Defined 
Networking (SDN) does offer some new ways around this. 

The basic tools of SDN, such as openFlow and Open vSwitch, have offered the ability to isolate incoming 
traffic flows on a platform and modify or redirect such flows for additional software processing, including 
forcing a flow to be sent out an interface that happens to be a tunnel or another local interface, possibly 
connected to a container. New software approaches for gateways are starting to reuse this type of 
processing. 

The benefit of this model is that once the software agent is enabled on the gateway platform, then any 
interesting traffic flows can be dispatched via a tunnel interface to a remote cloud VNF, without requiring 
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new software to be added to the gateway (filtering instructions would simply be configured into the 
gateway depending on what traffic flows had to be isolated). 

Integrating the opensource OVSDB and Open vSwitch (OVS) into a gateway has enabled OpenSync to 
exert very fine-grained control over traffic passing through a platform, with the possibility of redirecting 
such traffic to a tunnel interface for carriage to a cloud VNF. The benefit of open source OVS is that it is 
possible for 3rd party software to also use the same infrastructure if required. 

A similar packet interception model that embedds a NFLua component linking to the Linux Kernel 
network packet handling has also been developed. This has been used to provide sophisticated AI driven 
cybersecurity and network intelligence features for network operators. The ability to deploy an agent and 
then dynamically reconfigure its basic rules provides a very powerful model that allows for independent 
upgrades/etc. without having to involve an operator at all. Such an agent module could also be repurposed 
to provide a packet filtering option, like OpenFlow, to redirect traffic to a remote cloud VNF. 

In these traffic interception/filtering/redirection cases, the traffic is either hair-pinned out to the cloud 
VNF and sent back to the gateway, is completely consumed by the remote service, or dispatched to a local 
agent present in the gateway that also performs processing or other software handling. Using these tools 
enables easier manipulation of the data plane than ever before and offers more organized control about 
how to isolated traffic and direct to software components (local or remote). More effort is being put in by 
SoC providers to ensure that hardware acceleration can also be applied to this traffic manipulation, 
ensuring that software can access the high speeds expected from gateways.  

Control Plane 
As mentioned a lot of container systems have their own proprietary backends for controlling how 
containers are deployed and operated on compute platforms (e.g. gateways in the case). These tools are 
more concerned with treating the containers as black boxes and satisfying the “label” of resource 
requirements that come with the container.  

In the case of the ARRIS Docker Container POC, additional supports were provided to allow the 
manipulation of the Docker system from a remote ACS by using TR-069 extensions mapped into the TR-
157 SMM system, allowing some more native (from an operator perspective) management to be 
employed. Kubernetes was not used to provide orchestration in this instance. 

The SDP/LCM system that Vodafone has created also uses a similar model to ARRIS, relying on TR-157 
EE, EU and DUs to enable a very flexible control system for managing sophisticated software delivery 
options and life cycle management. This system also relies on the use of TR-069 to assist with 
orchestration/etc. 

Nomad is another orchestration system capable of flexibly managing many different images (via nomad 
agent). It is capable of dealing with Balena, Docker and LXC container images, as well as many other 
image options. Like Kubernetes, Nomad can scale very well in a data center setting, coping with very 
high container deployment scenarios. However, Nomad and Kubernetes may not be able to scale to the 
required number of containers when deployed in an operator environment with thousands or millions of 
devices with multiple containers per device. 

Existing ACS platforms may be able to cope with the scale of unique devices, but need additional 
“orchestration” extensions to be added to them. ACS platforms already deal with firmware image 
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management/etc., and the TR-157 SMM option extensions provide a defined model for managing the EE, 
EU, and DU options in a gateway. 

Concurrency and Orchestration Scalability 
Orchestration must deal with a number of constraints within the embedded gateway ecosystem when used 
to manage the deployment of multiple applications in containers across the footprint.  For one, any 
orchestration system must be capable of dealing with the massive numbers of deployed devices. It must 
also be able to cope with the potential of many different applications and application types per gateway, 
as well as different gateway types (varying in SoC supplier, CPU, RAM, and flash at a minimum).This 
just cries out for sophisticated orchestration systems that can address the multi-dimensional complexity. 

What currently is not understood is the level of concurrency of applications running within gateways. 
What this means is whether the limited resources in a gateway are going to be under pressure if multiple 
applications are deployed, and if some clever orchestration technique will be required to constantly add 
and remove applications on demand or on a timed basis. 

What is also not understood today is if operators will only allow their own curated container based 
software and services to run on these gateway platforms, or will decide to open up and potentially 
monetize the platform, allowing 3rd party applications to run, similar to the Android Play Store or IOS 
App Store. Given the high level interfaces and various access controls available with these, it does appear 
as a possibility, and may allow for hybrid mobile applications and other software services (such as IOT 
systems) to be developed that rely on an “always on presence” in the home rather than having to pay for 
high latency cloud based servers.  

In terms of concurrency and high application counts, one of the easiest ways of addressing this is to 
basically ensure sufficient storage and memory is available in the platform. Such an approach means 
applications are rarely removed and replaced with other applications, thus avoiding a never ending game 
of Tetris that the orchestration system must play – constantly trying to fit apps into available space. This 
does at a slight cost of extra storage (the RAM can be freed up if an app is no longer active) but removes 
the need for a complex orchestrator.  

 
Figure 25 - Potential Sevice Load over 24hr Period 

If the orchestration complexity outlined can be removed (through extra storage/etc.), then it’s quite 
feasible to believe that the existing NMS/ACS systems that already manage vast numbers of broadband 
devices should be capable of supporting the required orchestration function. Existing TR-069 systems 
maybe usable, but the upgraded Universal Services Platform (USP/TR-369) protocol from the Broadband 
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Forum maybe be better suited, given the new features it brings to managing broadband devices, as well as 
its backward compatibility to existing data models like TR-181. USP modifies the transport protocol in 
use, providing a faster and more scalable link between the ACS and device populations. CommScope has 
recently opensourced a complete USP agent implementation that is available for integration with existing 
gateways to enable this new functionality. 

The days of all software being delivered as a monolithic firmware image are numbered. The availability 
of all the required elements to create new portable software is very encouraging. The new dataplane and 
control plane options enable application developers (including ISVs, open source developers and the 
MSO community) the option of creating new applications not considered before. Along with the system 
high level and low-level APIs, developers are able to bundle all their required libraries and executables 
within a container based system (be it LXC, Docker, Balena or others), and have these orchestrated on to 
gateway platforms. The addition of LCM/SDP as well as reuse of Docker/Kubernetes, Nomad, or TR-
069/USP based orchestration systems will enable cable operators more control over what to deploy and 
when/how to deploy.  

 
Figure 26 - Multitude of Options for Virtualised CPE 

Right now there are a multitude of Docker based container applications, while only a few 3rd party 
container applications have been totally focused on embedded gateways. Expect this to change very soon 
as hardware profiles change and the various software layers and interfaces are developed and adopted in 
the multiple routing platforms that exist in the embedded broadband gateway world.  
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Conclusion 
The constant change in the broadband gateway space is driving demand for newer software services at an 
unprecedented rate. As a result, the complex gateway platforms need to innovate faster at the software 
architecture level and hardware must keep in step to match the software needs. 

Native application and container applications need to take advantage of new APIs, HALs and Service 
Delivery Platforms that are emerging to ensure fast adoption on to gateway platforms. 

SDP/LCM and Docker are good options to consider for container deployments, with other platforms like 
Nomad also to be considered in this space. However, orchestration systems that can manage the scale of 
broadband gateway deployments and mixed deployed services have not been realized yet, resulting in the 
potential use of existing or future ACS (TR-069/USP based) to handle this workload. 

Getting these new software services into gateways is essential for MSOs to entice and retain subscribers 
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Abbreviations 
ACS Auto Configuration Server 
AP access point 
API Application Programming Interface 
AR augmented reality 
BSP board support package 
CDN Content Delivery Network 
CLI Command Line Interface 
CPE Customer Premise Equipment 
CPU Central Processing Unit 
DOCSIS Data Over Cable Service Interface Specification 
EE execution environment 
EPON Ethernet Passive Optical Network 
EU execution unit 
GPIO General Purpose IO 
GW gateway 
HAL Hardware Abstraction Layer 
ISBE International Society of Broadband Experts 
IoT Internet of Things 
LCM life cycle management 
LED light emitting diode 
LXC linux containers 
MQTT message queuing telemetry transport 
MSO Multiple System Operator 
MoCA Multimedia over Coax Alliance 
NFV Network Function Virtualization 
NFVO NFV Orchestration 
OEM Original Equipment Manufacturer 
OS Operating System 
OVS Open vSwitch 
OVSDB Open vSwitch Database 
PRPL prpl Foundation 
QoE Quality of Experience 
QoS Quality of Service 
RAM Random Access Memory 
SCTE Society of Cable Telecommunications Engineers 
SDK Software Development Kit 
SDN Software Defined Networking 
SDP Service Delivery Platform 
SOC System on Chip 
UBUS OpenWrt micro bus 
UCI Unified Configuration Interface 
USB universal serial bus 
USP user services platform 
VM virtual machine 
VR virtual reality 
WAG Wireless Application Gateway 
vCPE Virtual CPE 
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