

 © 2018 SCTE•ISBE and NCTA. All rights reserved.

Orchestration: What Is Really Behind This Overloaded

And Overused Term?

An Overview of What Makes An Automation And Orchestration System

A Technical Paper prepared for SCTE•ISBE by

Alon Bernstein
Distinguished Engineer

Cisco Systems

Table of Contents
Title Page Number
Table of Contents .. 2
Introduction.. 3
Automation vs. Orchestration .. 3
Where Do I Start ? .. 3
Customer facing and Provider facing .. 5
Management Layering .. 5
Domains .. 6
Workflows .. 7
Declarative vs. Imperative ... 8
Never repeat the same error ... 9
Bill of Materials .. 9
Introduce failures ... 9
How many automation use cases ? .. 9
So how did the industry survive without automation and orchestration ? ... 10
An Opportunity .. 10
Conclusion... 11
Abbreviations .. 11
Bibliography & References.. 11

List of Figures
Title Page Number
Figure 1 ONAP closed loop automation .. 4
Figure 2 Devops .. 5
Figure 3 TMN layering ... 6
Figure 4 Cable Modem scan workflow .. 7

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 3

Introduction
Automation ! Orchestration ! These two magical words solve everything… with a click of a
button OPEX shrinks to nothing. But not so fast…the software that drives automation and
orchestration behind the scene is complex and highly customized and it cannot eliminate the
inherent complexity of a service provider network, the data center and the outside plant. It can
only help manage this complexity. It can’t eliminate existing processes, but it can turn them from
manually operated ones to a software operated processes.

Furthermore, the transition to the cloud native world, which is even more distributed and large
scale (hence complex) then existing systems, makes automation and orchestration become more
then OPEX reduction tools. It’s impossible to operationalize these highly distributed systems
without automation and orchestration.

This paper will attempt to separate fact from fiction when it comes to automation and
orchestration. It will outline the steps required to go from a swivel chair process to an automated
one and along the way explain the key concepts and layering required for automation.

Automation vs. Orchestration
The terms “automation” and “orchestration” tend to be bundled together, to the point that they
seem interchangeable. The distinction this paper offers is as follows:

- Automation is the overall framework for replacing manual processes with software.
- Orchestration is the specific task of coordinating activities across several domains (we

discuss the term “domain” later in this paper).

Where Do I Start?
In the following sections we’ll account for the processes that need to be automated. That would
help focus the discussion on the scope of automation.
Let’s pick a very simple example and follow it through in order to help map high-level
abstractions onto concrete actions. Say we want to ping all the cable modems in a service group
to validate that they respond within a well-defined time range. Most likely there are already
vertical applications that can do it, this paper would explore how you would build such an
application with an orchestration/automation mindset.
A good place to start from is ONAP (Open Network Automation Platform, see ref 1). Even if
you don’t plan to use ONAP it’s still a good reference model for our discussion.
ONAP itself is a large framework, and this paper will not discuss it. The only part we explore in
this paper is the ONAP automated life-cycle described in Figure 1.

Figure 1 - ONAP closed loop automation

Let’s go over the various phases here and in one line describe the key actions and requirements
that have to be answered. One confusing thing about Figure 1 is that the service itself (ping) has
an automated lifecycle of its own. For example, the ping service requires memory and there
needs to be a policy what to do if memory allocation for the service fails. However, the focus of
the study here is the user-facing service to be implemented:

1. Design service: define the scale, goal, key modules.
2. Define policy: what to do if a ping fail ? think of the actual pass/fail criteria for the ping,

e.g. an average ping time greater then 20ms is a fail.
3. Define analytics: a collection of min/max/average of the ping times to modems could

qualify as “analytics data” for our simple example
4. Distribute design template and policies to various actors: we can choose the network

control center as the actor for are use case. More complex use cases may have multiple
actors, each one with its own set of credentials, authorizations and capabilities.

5. Monitoring: that’s when we actually activate the service and start monitoring the ping
times

6. Based on the results of the ping take corrective action. This can trigger a whole set of
other services, e.g. changing the modulation profile for a cable modem could help ping
issue but it’s a whole separate service.

7. Log the changes
8. Based on the analytics and observations make a long-term proposition on how to improve

service.
Note that there is no orchestration or automation mentioned in each of the steps. The whole cycle
is the automation of the service. The intelligence part of the automation is mostly under the
analytics and recommended change parts but can be spread out to any component.

It’s useful to compare this service life-cycle to the classic devops (development and operations)
cycle diagram (see Figure 2):

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 5

Figure 2 - Devops

As you can see the service life cycle can overlap the service life cycle, where the left-hand side
of the figure (the “dev”) correspond to the initial stages of the service life cycle and the right
hand side of the service (the “ops”) maps into the later stages of the service lifecycle .

Customer facing and Provider facing
Some of the orchestration and automation services are internal to the service provider and some
are for consumers. For example, the process of installing an RPD (Remote Phy Device) is an
operator facing service while providing an L2VPN service to a business customer is naturally a
customer facing service. In principal the same tools can be used to automate either the provider
facing or customer facing services, however there are several key differences:

1. Provider facing services are focused on what is known as “day zero” and “day one”
operations where day zero is the initial install of the equipment (in the virtualization case
the instantiation of the infrastructure and based containers). Day one is typically the base
configuration needed to get the system up. The provider facing services are all CAPX and
OPEX because they are concerned with bringing up the service provider “platform”.

2. Customer facing are those that generate revenue for the service provider. These are the
Day two type of operation. Note that there are operations that are not configured directly
on network devices but rather are signaled e.g. voice calls.

Management Layering
A model that has been trusted and deployed for over 20 years is the TMN (ref [4]):

Figure 3 - TMN layering

Although this is an old model (the words “ATM” and “ISDN” sprinkled as examples throughput
the recommendation hint at its age) the key concepts survived the test of time:

1. Network elements – the actual network devices. The big change since the 90’s is that we
have a new generation of virtual/cloud-native network elements, but functionally they are
still “network elements”.

2. Element management – the scope of managing a single element, for example, software
update or configuration change for a specific device. In the age of SDN the concept of
“controller” has been introduced and a good part of the device specific management is
done by a controller. Note that even if a network element is cloud-native, and even if we
use JSON for configuration, it still needs to be managed and this fits into the TMN model
nicely.

3. Network management – this layer manages connectivity across a whole network
comprising of various devices. This is the layer where a lot of orchestration and
automation are required

4. Service management – the elements, element management and network management are
all “provider facing” the actual services that the operator sells, for example, high-speed
data for cable customers, are at this level. Note that this level extends beyond the network
because it includes items such as credit card processing to make sure the customer paid
for the service.

5. Business management: the layers on top of the services can include information that is
required to run the business, for example, tracking customer satisfaction.

Domains
A complex network can be built out of several domains. For example, a cable network is
comprised of the HFC plant, The DOCSIS protocols, access network, core network, back-office
etc. To create services, one has to work across all these domains.

Business
management

Service
Management

Network
management

Element management

Network Elements

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 7

What makes the domains complex is that each one of them has its own set of tools and set of
experts. The skills and tools used to manage the HFC are very different than those used to
manage a data center. As a result, there is little to no sharing of expertise, and a swivel chair
process where one organization (aka “domain”) passes tickets to another to perform an action.
The ticket typically sits in a queue and the result is that service activation can take days if not
weeks.

It’s the orchestration part of automation that takes care of operating end-to-end solutions across
domain and does the magic of building consistency across a wire array of tools and expertise that
each domain has. This is where workflow automation comes into place.

Workflows
A workflow is similar to a flow chart. It lists a set of actions and their dependencies. A standard
called BPNM2.0 (Business Process Model and Notation, see ref [3]) was defined to capture
workflows in a uniform way. A simple workflow for the example on cable modem scanning can
look as the following:

Figure 4 - Cable Modem scan workflow

Even with this simple workflow a key point can be highlighted: The workflow itself is not
intelligent. It is essentially a state machine that calls APIs (Application Programming Interface)
and takes actions based on the results of these API calls. The actual performance test could be a
simple ping or some more complex operation. The workflow just calls the module that performs
it. In other words, the workflow defines what needs to be done, not how to do it.

Another way in which workflows are useful is clarifying the use of APIs. In many cases
publishing an API list is not sufficient, and a workflow example clarifies how to use the APIs
correctly, e.g in what order they should be called.

There are several tools that can take a pictorial representation of a workflow and trigger actual
API calls and scripts with it, so that the BPNM2.0 is not only a modelling tool, it can be an
actual run-time service.

One question that comes up is the difference between writing a script vs. using a workflow
engine. At the end of the day both can get the job done and it’s about using the right tool for the
right job. Having said that, if the answer to the questions below is positive then a workflow may
be a preferred approach:

1. Do you need to communicate the process to non-software-engineers ? If yes then the
workflow is your friend because it does not require coding skills. In a devops kind of
environment it’s a way to bring developers and operation experts closer together. Note
that in a pure devops world the operators should be coders as well, but having said that in
cable we have physical devices and outside plant components that are not made out of
software….

2. Do you need to work across several domains ? If so the workflow provides a neutral
environment that is not tied to a specific domain and focuses on API calling only.

3. Do you need an operation at the “what needs to be done” as opposed to “how to do it”.
The workflow excels at the former.

How does workflows relate to orchestration ? It is the view of this paper that the workflows are a
way to implement orchestration, so they are one and the same. Note that there is no magic here.
Orchestrion is accomplished only looking at existing operational practices, describing them in
workflows and starting the process of replacing each one of the boxes that has a manual
operation with a software based one.

Declarative vs. Imperative

There are two ways to achieve a network management goal:

1. Declarative: Detail the end-result, or end-state, and have the system automatically do
what is needed to achieve the end goal/state. This method is referred to as “declarative”
as the user declares the desired goal/state. Some very successful software solutions are
declarative in nature. For example, in Kubernetes a user defines the scaling requirements
(e.g how many replicas of a service are needed) and Kubernetes takes care of the actual
scaling and placement of the service onto the CPUs in the data center in order to achieve
the declared scale figure.

2. Imperative: Detail step by step how to reach a certain goal/state. This is more aligned
with the work flow approach and is called “imperative”.

The declarative model seems more attractive – what could be better than simply declaring what
you want and let the system magically figure it all out ? There are two key observations about
this in practice. The first one is that any service definition is in essence “declarative” because its
states what needs to be done, not how to do it. For example, “I want a 20mbps upstream and 20

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 9

mbps downstream high-speed data service” is as good as declaration as any, nothing really new
here. The second observation is that somehow, somewhere, someone needs to write the software
to turn the declaration into reality. In other words, a script or program or workflow has to be
written anyway, it’s only a question of having a layer of “declarative” abstraction above it
(which is indeed a useful thing to have), but nothing happens by magic.

Never repeat the same error
One of the key benefits of automation is repeatability and consistency. With manual processes
there is always the risk that errors are the result of an operator mistake. Even in cases where
failures occur intermittently a consistent a reparable process make the debug process and root
cause analysis easier.

Automation is not static. Once an error occurs in production, and even once the error is fixed by
means of software or configuration change, it’s possible to write a script that validates the error
does not happen again. In that sense the automation resembles a set of unit-tests in a software
development process and fits into the devops model.

As the list of verification scripts gets longer it becomes a risk-reward question of how many of
them needs to be run, and a choice one can made when submitting a change to a “bakeoff” setup
vs. in production deployment as to how many validation scripts need to be executed.

Bill of Materials
With automation any change can be treated in a similar way, whether it’s a software change or a
configuration change, because any type of change carries a risk and can cause unexpected
behavior. A “Bill Of Materials” (BOM) for a change can include the software modules that are
changed and/or the configuration change, along with various validation scripts.

Introduce failures
Service provider networks are built for high-availability, but when are these high- availability
systems tested in production ? The answer is that they should not be tested only when an
unplanned failure occurs. Errors can be injected on propose. This concept has been popularized
by Netflix in what’s called “chaos monkeys” (see ref[5]), and can be considered part of the
service automation loop.

How many automation use cases?
At this point we get to the hype around orchestration and automation. We can apply the
automation lifecycle to both customer facing and provider facing services, and in each one of the
layers of the 5 layers of the TMN model and across several domains (let’s assume 5 domains for
a cable network). That’s 2x5x5 = 50 different areas where orchestration automation can apply
and each can have the 9 stages of life cycle management for a total of 50x9=450 cases , and of
course each one of them can have 10s if not more of use cases. It becomes clear that there is no

“finger snapping” that will make it happen, and if implementation resources are limited it’s a
question of figuring out which processes are the ones that benefit automation the most.
What automation represents more than reduction in human resources is a shift to devops. The
brains to manage the network are still needed, but they invest their brainpower in creating scripts
and workflows rather than repeating the same action again and again.
The number of automation workflows and scripts that have to be written also enforce the devops
vision that everyone, dev or ops, need to be able to code, there is just too much coding work to
be done !

So how did the industry survive without
automation and orchestration?

Very simple. There was automation and orchestration all along, but with 3 caveats:

1. It was not called “automation/orchestration” it was called network management.
2. It was applied only when absolutely necessary. E.g. from the get go it was clear that

deploying cable modems will not scale without automation and as early as the DOCSIS
1.0 spec the groundwork for automating the cable modem registration was put in place.

3. It was done in verticals: let’s say an operator needed to keep track of some condition in
the cable plant. In most cases a vertical application with its own set of collectors, data
analysis tools, GUI, etc. was built with little sharing of other applications. The cable
modem registration mentioned above is another example of a one-off mission specific
vertical. Today we might have treated the cable modem registration as part of the IOT
framework and use a whole different automation framework which would have been
more consistent with other “things” that have to be managed.

What the new automation and orchestration advocates relative to the old way of doing network
management is:

1. Build the orchestration and automation as applications on top of a common platform (e.g.
ONAP).

2. Use open models such as YANG.
3. Use open source tools and code as a “standardization” framework as opposed to standard

bodies paperwork.
4. Automate and orchestrate everything. Anything that has to be done more than once needs

to be automated. Anything that requires coordination across multiple entities requires
orchestration.

An Opportunity
The next wave of change in the SP networking space is cloud-native based networking devices.
In the cloud native world functions are broken into micro-services and there can be tens,
hundreds and thousands of those micro-services. At this scale automation and orchestration is no
longer a nice-to-have-OPEX-reduction play. It’s a must because it would be impossible to
manage this level of complexity and distribution by hand. This presents the opportunity to start

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 11

with automation at the cloud native area and as tools and expertise are built, start branching out
to other domains.

Conclusion
Orchestration and automation are not new. What is new is the use of open source tools, open
model and workflows to support automation and the absolute necessity of having automation in
the cloud world. Hopefully this paper helped in giving an overview of the key components and
architectural concepts needed to create an automated network.

And last but not least, in the spirit of devops, every developer is an ops person and every ops
person can write scripts and workflows. This is the key to automation.

Happy coding !!!

Abbreviations

API Application Programming Interface
BOM Bill Of Materials
BPNM Business Process Model and Notation
Capex Capital expense
DevOps Development and Operations
ONAP Open Network Architecture Platform
OPEX Operating Expense
RPD Remote Phy Device
TMN Telecommunications Management Network
YANG “Yet Aounter Next Generation” data Modelling langange

Bibliography & References
1. https://www.onap.org
2. ONAP closed loop Automation: https://onap.readthedocs.io/en/amsterdam/guides/onap-

developer/architecture/onap-architecture.html
3. http://www.bpmn.org
4. TMN reference model : https://www.itu.int/rec/T-REC-M.3010-200002-I/en
5. Choas Monkeys : https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey

https://onap.readthedocs.io/en/amsterdam/guides/onap-developer/architecture/onap-architecture.html
https://onap.readthedocs.io/en/amsterdam/guides/onap-developer/architecture/onap-architecture.html
http://www.bpmn.org/
https://www.itu.int/rec/T-REC-M.3010-200002-I/en

	Table of Contents
	Introduction
	Automation vs. Orchestration
	Where Do I Start?
	Customer facing and Provider facing
	Management Layering
	Domains
	Workflows
	Declarative vs. Imperative
	Never repeat the same error
	Bill of Materials
	Introduce failures
	How many automation use cases?
	So how did the industry survive without automation and orchestration?
	An Opportunity
	Conclusion
	Abbreviations
	Bibliography & References

