
  

 © 2018 SCTE•ISBE and NCTA. All rights reserved.  

 

Edge Compute and Software Life-Cycle Management 
 

Creating Consumer Value and Flexibility 

 

 
A Technical paper prepared for SCTE•ISBE by 

 
 

Patrick Goemaere 
Chief Architect Cloud Services Connected Home 

Technicolor 
942 Birmingham Rd 91504 Burbank US 

+1 (818) 442 7183 
Patrick.goemaere@technicolor.com 

 
 

Rajat Ghai 
VP Wireless & Open Networking 

Technicolor 
rajat.Ghai@technicolor.com 

 
 
 
 



  

Table of Contents 
Title Page Number 
Table of Contents .......................................................................................................................................... 2 

Introduction.................................................................................................................................................... 4 

Content .......................................................................................................................................................... 6 
1. Compute Technology Cycles .............................................................................................................. 6 

1.1. From the Cloud to the Edge ................................................................................................... 7 
1.2. Agility at the Edge, Learning in the Cloud .............................................................................. 7 
1.3. Edge Compute Financial Model ............................................................................................. 8 
1.4. The Edge : A New Frontier of Next Generation Services & Experiences .............................. 9 

1.4.1. MSO Edge Computing use cases: Residential ...................................................... 9 
1.4.2. MSO offered Edge Compute Enterprise – B2B use cases .................................. 10 

2. Edge Compute and decentralization ................................................................................................. 12 
2.1. IoT platforms ........................................................................................................................ 12 
2.2. Edge compute ...................................................................................................................... 14 

2.2.1. Latency ................................................................................................................. 14 
2.2.2. Bandwidth ............................................................................................................ 15 
2.2.3. Security ................................................................................................................ 15 
2.2.4. Agile developer friendly IoT Edge devices ........................................................... 16 
2.2.5. Autonomous operation on the Edge devices ....................................................... 17 
2.2.6. Privacy ................................................................................................................. 18 
2.2.7. From cloud to Fog and Edge endpoints ............................................................... 18 

2.3. Examples of IoT Edge Platforms.......................................................................................... 19 
2.3.1. Azure IoT Edge .................................................................................................... 20 
2.3.2. AWS Greengrass ................................................................................................. 21 
2.3.3. Resin OS .............................................................................................................. 22 

2.4. Life Cycle Management of Iot Services, Development And Deployment ............................ 22 
2.4.1. DevOps Practices to the Rescue ......................................................................... 23 
2.4.2. Securing IoT Devices the Agile Way ................................................................... 23 

3. Lightweigth Virtualization – Containers ............................................................................................. 24 
3.1. Container Technologies ....................................................................................................... 25 

3.1.1. Machine/System Containers (LXC/LXD) ............................................................. 27 
3.1.2. Process Containers .............................................................................................. 28 
3.1.3. Application/Desktop containers ............................................................................ 31 
3.1.4. Serverless containers .......................................................................................... 32 

3.2. Container standarization ...................................................................................................... 33 
4. MSO CPE landscape & CPE device characteristics ......................................................................... 34 
5. The New Embedded Stack ............................................................................................................... 35 

Conclusion................................................................................................................................................... 38 

Abbreviations .............................................................................................................................................. 39 

Bibliography & References.......................................................................................................................... 40 

 
List of Figures 

Title Page Number 
Figure 1 - The Sinusoid of Processing .......................................................................................................... 6 
Figure 2 - Analytics Functions And Characteristics ...................................................................................... 8 



  

 © 2018 SCTE•ISBE and NCTA. All rights reserved. 3 

Figure 3 - Financial Model Edge Compute ................................................................................................... 9 
Figure 4 - Technology Convergence ........................................................................................................... 13 
Figure 5 - E2E IoT Functional Architecture ................................................................................................. 13 
Figure 6 - Security vulnerabilities for IoT devices ....................................................................................... 16 
Figure 7 - Developer Communities ............................................................................................................. 17 
Figure 8 - IoT GW for autonomous operation ............................................................................................. 18 
Figure 9 - Edge/Fog computing................................................................................................................... 19 
Figure 10 - Azure IoT Edge ......................................................................................................................... 21 
Figure 11 - AWS Greengrass ...................................................................................................................... 21 
Figure 12 - Resin OS .................................................................................................................................. 22 
Figure 13 - Developer friendly workflows .................................................................................................... 24 
Figure 14 - Virtual Machines Versus Containers ........................................................................................ 25 
Figure 15 Container Building Blocks ........................................................................................................... 26 
Figure 16 - Container Categories ................................................................................................................ 26 
Figure 17 - LXC Containers ........................................................................................................................ 27 
Figure 18 - Docker Building Blocks ............................................................................................................. 29 
Figure 19 - Docker packaging and image format ........................................................................................ 29 
Figure 20 - Docker Containers and images ................................................................................................ 30 
Figure 21 - Docker ecosystem .................................................................................................................... 31 
Figure 22 - Edge compute use-case domains ............................................................................................ 35 
Figure 23 - Modern LCM layer for CPE ...................................................................................................... 38 
 

 
  



  

Introduction 
Over the years, we have witnessed a fundamental shift in how software gets developed and deployed in 
the cloud.  Born-in-the-cloud web companies have moved to a much more agile way of working where 
continuous deployment and integration became the norm, and where these companies are able to 
introduce new functionality and features on a daily basis, with fine grained control to limit the exposure 
of these feature first to a subset of their customer base using deployment strategies like canary releases or 
a derivate like blue/green and other variants. 

This transformation has helped these companies to create a competitive advantage so that they can rapidly 
check the viability of new functionality, collect user feedback and respond quickly to changing 
requirements. The introduction of full automation and DevOps methodology, has furthermore improved 
the complex social interaction that typically has plagued many complex product and service development 
in large scale organizations by breaking up traditional boundaries between product and business owners, 
R&D, IT and operations so that products can quickly move from business requirements to deployment 
and has allowed more flexibility in trying out new ideas in a fail fast way of working.    

The innovation around Internet of Things (IoT) has built further on the evolutions started in the Web and 
mobile domain on providing the foundational technology building blocks on how to communicate with 
embedded devices at web scale, and in order to keep solutions viable, has pushed the boundaries of these 
technologies further and further to the edge of the network. 

This evolution of decentralization has blurred the traditional demarcation between operational embedded 
technologies and IT technology.  On top of these newly cloud native implementations of ultra-web scale 
communication/messaging infrastructure services, a new generation of services like software life cycle 
management (LCM), configuration management and orchestration are being developed, that borrows the 
same concepts as their well-established cloud DevOps counterparts but addressing better the enormous 
scale of IoT deployments, and their very heterogeneous and fragmented nature. 

Our current way of working in the embedded software device space differs today fundamentally from this 
agile cloud methodology, due to the very nature of these devices themselves.  Because of their very 
constrained nature in terms of CPU power, memory and storage, hard real time requirements and cost 
structure, these solutions tend to be optimized for very specific functions leading to monolithic firmware 
development running in specialized execution environments, typically stripped-down Linux distributions. 
Embedded devices lack the uniform compatibility environment that has been addressed in the cloud by 
virtualization of compute - either virtual machines (VM’s) or containers, and networking.  Typically, 
these development cycles are complex, lengthy, and require lots of validation around industry specific 
certifications, interoperability and standardization. Furthermore, the reluctance of introducing operational 
impact on the installed base hinders the deployment frequency. 
 

This paper will focus on a subset of device types used today in the Cable industry as Customer Premise 
Equipment (CPE) equipment, more notably internet gateway’s and set-top boxes and their very specific 
nature, and tries to identify the current container technology landscape and their applicability for these 
types of embedded CPE devices. 

It proposes a dual track approach with respect to separating out critical firmware functions and more agile 
customer facing functionality, avoiding a big bang approach and creating an architectural evolution path 
for the current existing legacy deployments. 
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It will further elaborate on the evolution of Internet of Things technology of the last years and it’s 
evolution from a centralized approach, towards a decentralization of this architecture towards the Edge of 
the network and the profound effects it has on improving user experience and customer intimacy for the 
next generation of IoT services, and the disruption it causes on the entire value chain.



  

Content 
1. Compute Technology Cycles 
Computing architectures have always been optimized for most efficient workload placement economics 

 
Figure 1 - The Sinusoid of Processing 

First Wave 

At the dawn of computing, a centralized structure in the ‘mainframe’ age was most economical due to 
very expensive compute and transport cost structure. This was the pre-microprocessor era of mainframes 
and mini computers built using Solid State semiconductor Devices leveraging the invention of the 
Transistor in late 1940s.  

Second Wave 

Computing architecture changed in early 70s with the invention of the Microprocessor and the arrival of 
Personal Computers; Moore’s law kicked in and the cost efficiency economics moved to a distributed 
‘client-server’ model.  In this golden age of personal computing, which lasted for the two decades (1980s 
and 1990s), consumers and enterprises adopted local premise computing, primarily because the cost of 
computing was significantly lower than the cost of Internet transport. Internet speeds in those decades 
were slow and expensive. This is also considered the time associated with the dawn of public Internet. 
Internet Service Providers (ISP’s), notably Multiple System Operators (MSO’s), made large 
public/private investments which led to faster and more affordable Internet connectivity. 
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Third Wave 

At the turn of the 21st century, with the arrival of innovations and investments in affordable high-speed 
wireline and wireless Internet access, computing architectures evolved once again. With both computing 
and Internet access being now affordable, cloud computing was born. Cloud computing (though similar to 
a centralized design of Mainframe) was a centralized co-location of compute, memory and storage 
clusters offered as Infrastructure as a Service (IaaS) by public cloud providers like Amazon, IBM, 
Microsoft and Google, followed by a long tail of smaller providers. Cloud computing for enterprise 
workloads created immense cost efficiencies in enterprise IT. Cloud computing has given rise to a 
radical transformation of traditional enterprise technology over the last 10 years.  Due to the fully 
distributed and virtualized nature of cloud, a new generation of cloud native solutions have arrived, 
architected to cope with resilience in a world where failure is the norm and moved to horizontal 
scalability using commodity hardware instead of scaling vertical using expensive hardware. 

Fourth Wave 

Now, in 2018, computing is at the doorstep of another epoch. Computing has become ubiquitous and 
miniaturized to a point that it can be embedded in virtually every physical object. At the same time 
wireline and wireless Internet connectivity continues to follow economies of scale. This has led to a new 
universe of ‘smart things’ (things that can compute and can network).  This radical shift is referred to as 
the Internet of Things (IoT). The world has started utilizing IoT for the digital transformation of the 
businesses and society as a whole. Every known business process is being digitized, automobiles are 
becoming autonomous vehicles, Internet connected smart sensors are helping automate the world around 
us and the society as a whole, is becoming digital as a result. It is expected that by 2025, there will be up 
to 25 Billion Internet connected Smart Things, far exceeding the number of humans on this planet.  

As sensor technologies and networked services pervade every industry, the gravity of so much data 
generated by so many diverse endpoints renders centralized computing topologies inadequate.  

1.1. From the Cloud to the Edge 

In vital industrial sectors like agriculture, aerospace, mining, healthcare, or energy, reliable connectivity 
can be sparse; devices and equipment generate massive amounts of data chatter placing unnecessary 
demand on networks and battery life; failure can cost significant revenues, time, even lives. Because the 
cost of bandwidth is not falling as fast as the costs of compute and storage, the ability to aggregate and 
filter data locally on the device also serves an economic justification: edge compute decreases reliance on 
bandwidth. Furthermore, when critical real-time decision-making is required (think aircraft in-flight or 
self-driving cars), latency to the cloud is simply unacceptable. In consumer markets, current IoT 
implementations have fallen short of expectations—unmet needs for interoperability, inadequate 
monetization for providers and poor user experience (UX) for end users. Moreover, privacy concerns 
stifle consumer adoption and related, if highly variable, regulatory compliance requirements mean some 
data are simply better left local on the device.  

1.2. Agility at the Edge, Learning in the Cloud 

Instead of relying purely on cloud infrastructure to process data, local compute ‘at the edge’ enables 
greater speed, flexibility, security, privacy, economy, scale, and most importantly learning. To enable 
this, organizations need the tools to aggregate, define, and filter data in order to process lower-value data 
locally, while uploading high-value data back to the cloud for analytics, innovation, and more sustainable 
storage and data management. They need partners to enable intelligence in the body (edge), while taking 



  

greater advantage of intelligence of the brain (cloud). The following picture shows the balancing of 
different analytic functions amongst Edge, Fog, and Cloud. 

 
Figure 2 - Analytics Functions And Characteristics 

1.3. Edge Compute Financial Model 

Shown below is a case study (Financial model Edge compute, n.d.) done by a research firm (Floyer) for a 
wind farm site equipped with 100 sensors and two video streams. It compares the total cost of managing 
and processing on three different kinds of architectures:  

1. cloud-only processing with a dedicated network,  
2. A Mobile Network Operator (MNO) cellular network with hardware and cloud processing, and  
3. An edge-and-cloud processing with a dedicated network. 

In the first scenario, the three-year Total Cost of Ownership (TCO) of the solution including cost of 
transmitting the data, plus cloud costs and equipment costs, worked out at $254,552 /yr.  

In the second case the three-year TCO for a MNO hosted solution was less than 50% of the first scenario 
came to $113,884/yr. 

However, with a combined edge-computing and cloud approach the 3-year TCO dropped to 15% of the 
first scenario and 33% of the second scenario, to just $37,628/yr. 
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Figure 3 - Financial Model Edge Compute 

As shown in the case study, the economics work best when Edge computing is not used to replace 
centralized cloud-based infrastructure in its entirety, but rather to complement it by increasing the 
computing and storage resources available on the edge by adopting platforms that provide intermediate 
layers of computation, networking, and storage and offloading light weight computational workloads 
locally at the edge and executing computationally intensive workloads (e.g. machine learning workloads 
that require Graphics Processing Unit (GPU) etc.) in the centralized cloud. 

1.4. The Edge : A New Frontier of Next Generation Services & Experiences 

While the move to the edge was triggered by the practical realities of the physical world and the tactical 
needs for real-time data processing, the broader implication of this shift is its role as a force multiplier of 
new services and experiences. New use cases abound for both end user and enterprise adopters. 

1.4.1. MSO Edge Computing use cases: Residential 

Seamless Plug & Play: Activating new devices and connected services is finally easy, really easy. When 
gateways, for example, are voice-supported and equipped with automated detection of nearby devices, 
users’ onboarding experience is a matter of simply ‘powering-on’ and speaking. Behind the scenes, the 
edge-enabled gateway handles the rest, automatically provisioning devices, finding Wi-Fi, identifying and 
executing updates, and activating new services.  



  

Autonomous Systems Administration: Instead of forcing users to become IT systems admins, edge 
compute-enabled devices handle the cumbersome but critical burdens of performance and network 
monitoring, anomaly detection, identity authentication, permissions, and encryption, even facilitating 
better connectivity and quality of service by automating channel changes, roaming decisions, and Wi-Fi 
optimization.  

User-Centric Security & Privacy: Finally, a technology that allows users to have agency and peace of 
mind around their most sensitive data. When devices are equipped with access management, encryption, 
and security capabilities right out of the box, data is never exchanged between products without 
authenticating identity. Moreover, businesses and users can easily configure data filtering and 
transmission rules, so that highly sensitive data can remain private, local to the gateway, and not sent to 
the cloud. 

Single-Stop Service Hub: When a gateway is built with onboard compute capabilities powerful enough 
to coordinate, monitor, configure, and control multiple devices, new modes of self-service and support 
open up. Through voice-interaction, users can simply speak to control and configure their own network 
services, and solicit support requests through a convenient single-stop self-service portal.  

‘Getting Better All the Time’: The opportunity for innovation enabled through edge-level intelligence 
means products gain in value over time. For end users, this translates to a single hardware investment 
which continuously delivers new features and services, constantly learns and adapts to user speech 
patterns and preferences and evolves to support new use cases through open interoperability with any 
other device… on the body, in the home, or on the go. 

1.4.2. MSO offered Edge Compute Enterprise – B2B use cases 

Automatic Implementation: When in-field devices are outfitted for more robust local processing, 
enterprises enjoy a streamlined device installation process. Devices can automatically provision, certify, 
pair, and register themselves into Managed Service Provider (MSP) and Customer Relationship 
Management (CRM) systems.  

Automatic Service Activation: These same out-of-the-box configurations mean enterprise user 
registration, certification, and customer service activation are ‘baked in’ to the onboarding process. Such 
a gateway, for example, can automatically connect and troubleshoot to onboard nearby devices, and offer 
voice-enabled pairing for additional devices.  

Managed IoT Cloud Services: Edge-level compute opens up new ways service providers can add value 
to their partners and customers through managed services. Real-time monitoring of multi-device 
performance, application performance, network activity, security features (like vulnerability and intrusion 
detection), and device compliance, eases the burden for enterprises and allows them to focus on their core 
competencies. Service providers can also use such a gateway to manage new feature releases, API 
improvements, firmware, and other updates so innovations are securely folded into the broader device 
ecosystem. These capabilities render it economically feasible to create true end-to-end, personalized, and 
secure contextual experiences with end-users.  

Integrated Support Services: Enterprises’ product and support programs also benefit from edge devices’ 
ability to run preventative maintenance such as patch management, bug-fixing, anti-virus updates, and 
better manage incidents through remediation, customized help desks, and integrated workflows and 
analytics via Customer Relationship Management (CRM) integration. Management in areas like 
compliance and refurbishment also help with end-of-life support. 
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Unified Analytics: When devices are enabled to interact in real-time, enterprises can parse and batch data 
to prioritize agility, while still gathering insights across data sets to learn over time. Integration with 
Enterprise Resource Planning (ERP), CRM, Finance, and other systems doesn’t just enable enterprises to 
unify analysis and machine learning with a single dashboard, but also facilitates new use cases like 
predictive maintenance, automatic hardware replacements, and invisible improvements to performance 
efficiency.  

Baked-In-Innovation: In the construct of balanced intelligence, where edge devices handle agile 
processing and new features, and deeper learning and data mining occurs in the cloud, enterprises are 
poised to support improvement across every level of the product (and therefore customer) lifecycle. 
Onboarding is improved over time as machine learning helps deliver better, more proactive support and 
troubleshooting to offload call center interactions. Product and service performance gain in efficiency as 
analytics and machine learning reveal areas to optimize such as connectivity, data transmission, and 
compute resources. Most importantly, such a construct embeds innovation into service architecture, 
wherein open development environments enable new and diverse services to flourish



  

2. Edge Compute and decentralization 

2.1. IoT platforms 

Designing, implementing, securely operating, managing and maintaining IoT projects are complex. In 
fact, there are entire organizations whose sole mission is solving a specific problem within an IoT 
architecture. The problems that can be found within such architectures can range from connectivity to 
figuring out where apps live. 

Here are just some examples: 
• Solving the daunting challenge of how to connect various very fragmented sensor protocols to the 

Internet. 
• Handling intermittent connectivity, let alone trying to update an application over the air or patch a 

remote edge system 
• Predicting when something is going to break before it happens 
• Correlating telemetry with contextual data to generate better models 
• Storing different information in different databases (NoSQL, time series, in memory database) 
• Making sure your architecture is scalable, flexible, and can be deployed anywhere 
• How to abstract your developers from where their applications will be running in this chaotic, 

highly distributed world 

But these are only pieces to the bigger puzzle of designing an end-to-end IoT system where connected 
devices, business processes, DevOps practices, and people collaborate together across four different, 
complementary, but most-of-the-time disconnected, worlds:  

• Operational Technology (OT) 
• Information Technology (IT) 
• Analytics and Machine Learning (ML) 
• Traditional and modern application development 
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Figure 4 - Technology Convergence 

Connecting devices; ensuring communication protocols are translatable; verifying accuracy and security 
features are running across the entire network; capturing, managing, analyzing, and using data to create 
better business outcomes; integrating operational data with existing informational technology systems and 
applications; and gaining intelligence at the edge are all parts of the functionality of an IoT architecture as 
depicted below: 

 
Figure 5 - E2E IoT Functional Architecture 



  

Deploying IoT solutions in real production scenarios need more than a single provider to successfully 
accomplish the functionality in the above diagram.  

Successful implementations have used a combination of technology providers, network providers, 
security specialists, developers, and system integrators, all operating as a cooperative, open, modular, and 
flexible team.   

Many companies have addressed this complex End to End (E2E) architecture by launching IoT cloud 
platforms that typically focus on a centralized cloud IoT integration Hub. These platforms typically 
handle: 

1. Device registration, management, security, and monitoring 
2. Aggregation of data from multiple IoT devices 
3. Integration with Big data storage and analytics 
4. Sharing of data with other systems and applications 
5. Handling and responding to device events 

What is common among these IoT cloud platforms is that they offer the service on a low-cost, per-device 
subscription model, making it accessible even to hobbyists and the vendor community. 

2.2. Edge compute 

In the previous chapter on the technology cycles, we have described the evolution towards more 
decentralization as a mandatory step to make current IoT solutions more economically viable.  

The underlying reasons for moving more processing to the Edge are better understood and accepted 
today. 

The word edge in this context means literally its geographic distribution. Edge computing is computing 
that’s done at or near the source of the data, instead of relying on the cloud at one of a dozen data centers 
to do all the work. It doesn’t mean the cloud will disappear. It means the cloud is coming to you.  

The main drivers to make current IoT more economically viable in this context are:  
• Bandwidth preservation 
• Latency improvements  
• Security 
• Privacy 
• Autonomous operation 
• Agile developer friendly IoT edge devices 

2.2.1. Latency 

One of the drivers for edge computing is the speed of light. If Computer A needs to have a response from 
Computer B, half a globe away, before it can do anything, the user of Computer A perceives this delay as 
latency. The brief moments after you click a link before your web browser starts to actually show 
anything is in large part due to the speed of light. 

Moving compute closer to the origin of the data reduces the latency involved in the round trip to the 
cloud. Some of the evolving use-cases such as Augmented Reality (AR) and Internet of Things (IoT) 
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benefit from edge computing. End users of these applications enjoy immersive experiences delivered by 
the edge. 

The goal of edge computing is to minimize the latency by bringing the cloud compute capabilities to the 
edge.  

2.2.2. Bandwidth 

IoT incorporates devices, sensors and data sources to send data from the field to the cloud to help 
businesses make real-time decisions. Edge computing uses connected and non-internet connected devices 
to process data near where it is collected. So, instead of sending all of the data to the cloud, edge 
computing can process data and send a smaller selected set, accelerating the delivery of data. 

Edge requires less bandwidth by processing and analyzing data where it’s gathered. A McKinsey article 
about the potential of IoT mentions an oilrig that has 30,000 sensors, but only one percent of the data are 
examined.  Consider how much more efficiently a system could function if only the necessary data points 
were sent to the cloud, instead of all the information which needed analysis. In a network with millions of 
devices and data sources, this is an invaluable benefit. With the addition of edge computing, businesses 
can process data near the collection site and send selected data to the cloud when desired; reducing 
bandwidth and limiting security risks. 

For data intensive applications, cost improvements can easily be calculated as expressed in the Edge 
compute financial model calculated in previous chapter. 

2.2.3. Security 

Securing these new edge devices is vital and should not be forgotten. You will need to enforce data 
encryption, both in transit and at rest, and protect communication with master clouds. Only by 
establishing security by design and embedding security mechanisms in all the components/layers 
involved will your edge workload be on the right track.  IoT devices often collect sensitive information, 
and there's little agreement on how to protect this data. A study by HP found that 70 percent of IoT 
devices are vulnerable to attack. 

https://www.mckinsey.com/business-functions/operations/our-insights/manufacturings-next-act


  

 
Figure 6 - Security vulnerabilities for IoT devices 

2.2.4. Agile developer friendly IoT Edge devices 
The benefit of the mobile app economy is that independent developers can create apps with a modest 
investment. And the ease of distribution and monetization provided by app stores creates a strong 
incentive for innovators. The IoT economy also needs independent developers, but the barriers to entry 
are higher due to the fragmented world of embedded developers and the complex nature of the 
development cycle, with its low level programming languages like C/C++, which require a steep 
learning curve before becoming proficient. 

In these respect, the same kind of democratization which propelled the mobile and cloud world needs to 
happen on the embedded side as well, giving the developers a choice of selecting any modern 
programming language that makes them productive, and will open this traditional embedded world to a 
much larger community of developers. 
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Figure 7 - Developer Communities 

On top of this multi-programming language (polyglot) execution environment, the same frictionless 
experience needs to be given to the developer’s with respect to the cloud’s self-service model, friendly to 
use API’s and easy to consume Software as a Service (SaaS) solutions. 

2.2.5. Autonomous operation on the Edge devices 

Edge compute can also maintain service operation during a network failure. On-device, service-specific 
processing that is enabled by edge compute can act as a buffer during a network failure and then 
synchronize data and state with cloud-based processes when Internet connectivity is restored. Some 
sensor applications have additional redundancy requirements that may include using a battery backup to 
operate during a power outage. Edge compute, coupled with a battery backup, creates a robust platform 
for offline data processing. 

A cloud based IoT Hub or messaging service typically provides a very lightweight Agent that can 
be easily integrated in very constrained devices (20K – 50K SDRAM) and enables these devices to 
communicate with the IoT cloud platform directly. 

When more functionality and processing is required a miniaturized version of the IoT core platform is 
offered that can act as an execution environment for local computation. 

Vendors of this solution typically provide this as compatible solution with their cloud services so that 
from the sensor device point of view, there is no distinction between the local processing and the cloud 
processing. 

The Edge IoT Gateway (GW) equipped with this IoT local environment then acts as a kind of bridge or 
proxy between the sensors and the cloud infrastructure. 



  

 
Figure 8 - IoT GW for autonomous operation 

2.2.6. Privacy 

Privacy has become a major concern for consumers in IoT markets like US and Europe, and is only one of 
the concerns reduced by successfully leveraging edge compute. Regionally, European markets have 
instituted greater regulatory protections over privacy than the US. This is best exemplified by the 
implementation of the General Data Protection Regulation (GDPR) which took effect May 2018. The 
GDPR significantly changes how companies handle EU citizen data privacy. GDPR places requirements 
for managing EU citizen data, such as a 72-hour notice to citizens after first having become aware of a 
data breach. Other aspects of the regulation require data erasure, data portability, and reporting. In 
general, personal data about identity, habits, speech and video will become a growing concern. Edge 
compute can enable new service architectures where personal data is processed locally to minimize the 
exposure of personal data. 

Edge computing will undoubtedly provide the next level of efficiency for IoT solutions. For enterprises 
looking to build a powerful, scalable and secure IoT solution, it only makes sense to incorporate edge 
computing.   

2.2.7. From cloud to Fog and Edge endpoints 

There are actually two related concepts at play: edge computing and fog computing. Both models push 
data processing capabilities closer to where the data originates but differ in their emphasis. Crudely, fog 
computing locates the intelligence in the core operator’s network while edge computing puts it inside the 
devices themselves. 

Exactly how computing at the edge will finally be implemented will come out of a competition between 
various vendors, consortiums, and standards. The result will be a complex hybrid system that puts 
computing power and decision making at whatever location is optimal. 
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Figure 9 - Edge/Fog computing 

2.3. Examples of IoT Edge Platforms 

“Containers are a natural way to allow not only portability but also reusability so that you can assemble 
just the right application. Most modern Edge platforms are using containers under the hood, either by 
providing direct support for Docker containers, or by providing a serverless execution environment, 
compatible with their cloud offerings (AWS Lambda, Azure Functions) Edge apps or services are 
assembled from one or more containers and the containers perform inter-container communications using 
a local message broker in the Edge.” The compatibility of containers provides deployment flexibility and 
allows efficient upgrade scenarios due to the capability of doing incremental container updates. 

Typically, the Edge architecture contains similar functional blocks as their cloud counterparts but are 
miniaturized to be able to run on embedded devices.  

This section focuses on exploring three current solutions in the market, 2 commercial ones from Amazon 
(AWS Greengrass) and Microsoft (Azure IoT Edge), and one open source implementation called Resin 
OS, which offers a stripped-down version of the Docker engine leveraging the open source project 
Balena. 

These Edge platforms are currently mainly addressing the Industrial IoT space. The minimal hardware 
requirements typically start from a quad core central processing Unit (CPU) similar to a Raspberry Pi and 
memory requirements of around 1G Byte of SDRAM, and a couple of GBs for storage to be able to run a 
couple of containerized applications, and base images of a client Operating System (OS). 

Both AWS and Azure solutions are tightly integrated with their cloud IoT core functionality, so that they 
can be centrally controlled for security reasons and administrated with respect to the Life cycle 
management of their containers and runtime engines. They naturally extend their cloud IoT platform 
towards the Edge. 



  

Although the code is written in Lambda, Azure Functions or containers are technically capable of 
integrating with other cloud infrastructure or SaaS solutions. However, the risk of vendor lock-in is high 
due to the frictionless, tight integration of their own services.   

Besides a container and/or server-less runtime execution environment both AWS and Azure offer local 
implementations of IoT messaging (IoT Hub) components which daisy chain to their cloud counterpart as 
a kind of federated broker infrastructure. 

They also both provide a local copy of the device shadows/twins registry that can be optionally 
configured to synchronize their device/application state with the cloud IoT registry so that in case of 
connectivity problems cloud applications call still query the cloud registry, and the device can continue to 
operate on the local state of the device/application. 

Both solutions are relatively young. AWS released their first version at Reinvent 2016 and Microsoft one 
year later, but they are actively adding new components like machine learning frameworks, and storage 
solutions to their offerings. 

Amazon only offers a server-less compute environment, while Microsoft offers both a server and server-
less environment as a Docker compatible container framework. 

The advantage of the latter is that you can use existing software packed in Docker images, while the 
server-less environment needs newly designed software components in line with the server-less 
methodology. 

None of them provides multi tenancy support to allow different vendors to control their own container 
infrastructure. 

2.3.1. Azure IoT Edge 

The Azure IoT Edge consists of: 
• Docker compatible container runtime 
• Azure Functions 
• Message broker 
• Offline/synchronized device twins 
• Cloud management and deployment 
• Cloud development/test support 
• Azure stream analytics 
• Azure machine learning 
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Figure 10 - Azure IoT Edge 

2.3.2. AWS Greengrass 

The AWS Greengrass Core software consists of: 
• A message manager that routes messages between devices, Lambda functions, and AWS IoT. 
• A Lambda runtime that runs user-defined Lambda functions.  
• An implementation of the Device Shadow service that provides a local copy of shadows, which 

represent your devices. Shadows can be configured to sync with the cloud.  
• A deployment agent that is notified of new or updated AWS Greengrass group configuration. 

When new or updated configuration is detected, the deployment agent downloads the 
configuration data and restarts the AWS Greengrass core. 

• Analytics Engine 
• Discovery 
• Free RTOS Greengrass compatible version without container support for low footprint devices. 

 
Figure 11 - AWS Greengrass 



  

2.3.3. Resin OS 

Resin OS shares a lot with cloud operating systems that support containers. They share the focus on 
minimalism, getting out of the user’s way and letting their container do the heavy lifting, and using 
Docker, which is the standard way of running containers, and well understood by a large developer 
community. Resin OS applies the same principles to a different domain, that of embedded Linux devices, 
sometimes called “connected devices”, “Internet of Things” or “Industrial Internet”, depending on the use 
case.  

At the core, it relies on a more optimized version of the Docker runtime engine, called Balena, which is 
an open source project, and is based on the Docker’s Moby open source engine, but incorporates a 
number of optimizations to make the engine more usable for constraint embedded devices. 

Some of these changes include:  
• 3 –4 times smaller footprint by using one single binary and de-duplicating shared GoLang 

libraries. 
• Multiple CPU architectures support, for a heterogeneous set of different embedded platforms. 
• Bandwidth efficient delta updates with binary diffs, which result in dramatic size optimization for 

updating the container images. 
• More robust support for flash updates during devices failure cases, like reboots or power failures, 

and minimized disk writes by on-the-fly extraction from images on the registry. 
• Removing non-relevant features not applicable for IoT embedded devices like SWARM support, 

plugin support and removing cloud logging drivers.  

 
Figure 12 - Resin OS 

2.4. Life Cycle Management of Iot Services, Development And Deployment 

The Internet of Things means smart devices connecting every aspect of our lives, which creates a lot of 
challenges. And there’s more to IoT than hardware and connectivity. To run and connect all these 
machines, we need software, lots of software. And we must be able to develop and update it quickly while 
making sure it’s performing securely and efficiently. 
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So here’s the problem: how do you deploy code to millions of devices in people’s homes, offices, cars 
and beyond? How do you monitor these devices? What are the security implications? How do we design, 
develop and test all this stuff, and how do we configure all these devices? Fortunately, the tech industry 
has been addressing these challenges, albeit at a comparatively small scale, for over a decade. 

2.4.1. DevOps Practices to the Rescue 

The growth of DevOps is crucial here because it has led organizations to create the kind of automated 
systems that will be required for IoT software. Continuous delivery and continuous deployment at scale 
are only feasible through automation. Scripting or—better still—containerizing these processes with 
appropriate automated tests is the answer. 

Mixing agile practices into DevOps accelerates things even further. Incremental builds with frequent 
releases of small batches of code makes for faster and safer development. Close customer contact to 
solicit feedback and usage analysis coupled with continuous improvement helps agile organizations 
respond quickly to emerging requirements. 

2.4.2. Securing IoT Devices the Agile Way 

We have barely touched upon the most significant of the concerns that organizations have about IoT: 
security. With all those connected devices out there in the wild, the attack surface is almost inconceivably 
huge. More than ever, the common development error of treating security as an afterthought just won’t 
cut it. 

Luckily, DevOps and agile practitioners don’t think this way. Security is not silos—it’s part of the 
development cycle, in the same way that product, quality and performance are. With this most significant 
of concerns addressed, it should be clear that organizations that use modern development practices are 
well set up to cope with the challenges of IoT. 

The end result will be solutions that balance their functionality between the edge and cloud and creating a 
flexible approach to shift and lift these components back and forth when required. 

Fortunately, most existing cloud IoT platforms include services around device management and SW Life 
cycle management as part of their core offering, allowing these solutions to easily scale to millions of 
devices. These foundations can be used to build modern, frictionless workflows and integrate them into 
existing developer’s SaaS solutions, giving the developers the tools, they are used to and love 
like GitHub, a Container registry etc. After all, these ecosystems already play a crucial role in mobile and 
cloud development. 



  

 
Figure 13 - Developer friendly workflows 

Today, startups are already working on solutions that deliver this seamless, frictionless experience for 
developers working with IoT devices in the field. 

They use containers as a means to develop and deploy their functionality and provide a workflow and 
tools, which are familiar for developers, and which were born in the cloud. 

This brings IoT services development almost to the same level as their mobile counterparts, which have 
already established this mature practice for years with ecosystems that provide similar solutions and tools. 

Today these solutions still have modest scale in terms of the amounts of devices they can handle, but 
thanks to the advances made on the basic core IoT foundation building blocks this type of approach will 
shortly come to the realm of the operators’ large fleet deployments. 

3. Lightweigth Virtualization – Containers 
At the turn of the century when cloud computing became popular, public cloud infrastructure providers 
used Virtual Machines (a software abstraction of a physical computer/server) as a virtualization technique 
to create abstraction of the physical hardware, create large aggregated pools of logical resources 
consisting of CPUs, memory, disks, file storage, applications, networking, and offer those resources to 
users or customers in the form of agile, scalable, consolidated virtual machines. Virtual Machine, while 
providing complete isolation of resources from one user to another, did come at a price.  The price paid 
was in terms of overhead related to CPU virtualization, virtualizing the disk (block) and network I/O. For 
example, a typical state of art physical server could only host a few dozen VMs at most. 

While a VM-based virtualization is a mandatory requirement in some business models, many business 
models exist where a lightweight virtualization mechanism might suffice, as long as it provided adequate 
application isolation.  
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In the past few years Containers have emerged as such a key application isolation, packaging and delivery 
technology, combining lightweight application isolation with the flexibility of image-based deployment 
methods. Containers use core technologies such as Control Groups (Cgroups) for Resource Management, 
Namespaces for Process Isolation, thus enabling secure multi-tenancy for applications without the 
overhead experienced by Virtual Machines.  

 
Figure 14 - Virtual Machines Versus Containers 

Containers have since further evolved into various kinds that have varying degrees of abstraction based 
on application runtime requirements.   

For Edge Compute Nodes, Virtual Machines are generally not viable due to the limited compute 
capabilities in the Edge device, hence a lot of virtualization for Edge applications is focused on Container 
based technologies.  

3.1. Container Technologies 

Compared to hypervisors, container-based virtualization provides different abstraction levels regarding 
virtualization and isolation. Hypervisors virtualize hardware and device drivers, generating a higher 
overhead. In contrast, containers avoid such overhead by implementing process isolation at the operating 
system level. A single container instance combines the application with all its dependencies, and runs as 
an isolated process in user space on the host operating system (OS), while the OS kernel is shared among 
all the containers as shown in the figure below. The lack of needing hardware/driver virtualization, 
together with the shared kernel feature, provide the ability to achieve a higher virtualized instance density 
because the resulting disk images are smaller. 



  

 
Figure 15 Container Building Blocks 

In the past few years several types of containers have come to prominence, each type most optimized for 
a particular application class and business logic. Containers themselves are not a new technology. Solaris 
platform has offered the concept of Solaris Zones for many years, and many Linux administrators have 
experimented with FreeBSD jails as a lightweight alternative to virtual machines. In order to understand 
the current container landscape, this chapter attempts to categorize the most fundamental approaches and 
technologies used. 

At the core, Docker, LXC and other container technologies depend on the key Linux kernel features of 
Cgroups and Namespaces. Depending on use cases or requirements these container engines can make 
different trade-offs with respect to architectural choices and implementation. In order to understand these 
choices and validate the impact they have on performance, security, portability and footprint in the 
context of constrained device types, the categorization is depicted in the figure below: 

 
Figure 16 - Container Categories 
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3.1.1. Machine/System Containers (LXC/LXD) 

Linux Containers (LXC) main focus is system containers. That is, containers which offer an environment 
as close as possible to the one you'd get from a VM but without the overhead that comes with running a 
separate kernel and simulating all the hardware. This is achieved through a combination of kernel security 
features such as Namespaces, mandatory access control and control groups. Just like Solaris Zones and 
BSD Jails, it tries to provide a lightweight VM experience for system administrators. 

 
Figure 17 - LXC Containers 

LXC storage management is rather simple. It supports a variety of storage back ends like btrfs, lvm, 
overlayfs, and zfs. However, by default (if no storage backend is defined), LXC simply stores the root file 
system under /var/lib/lxc/[container-name]/rootfs. For databases and other data-heavy applications, you 
can load data on the Rootfs directly or mount separate external shared storage volumes for both the data 
and Rootfs. Creating an image out of an LXC container just requires tar’ing up the Rootfs directory. 

LXC is focused on IT Operators with the goal of providing a lightweight virtualization solution. This 
means, for a system administrator to transition from hypervisor-based virtualization to LXC is rather 
painless. Everything from building container templates, to deploying containers, to configuring the OS, 
networking, mounting storage, deploying applications, etc. all remain the same. In fact, LXC gives you 
direct SSH access. This means all the scripts and automation workflows written for VMs and physical 
servers, apply to LXC containers too. LXC also supports a template notion, which essentially is a shell 
script that installs required packages and creates required configuration files. 

One can create either privileged or unprivileged LXC containers. The default today is unprivileged which 
allows for configurable access to the Linux kernel system functions. 

LXD is an extension of LXC. While LXC is used under the hood, and provides a user space CLI 
interface, LXD is a system daemon that extends the LXC library with REST API’s to provide container 



  

management as a service and is written in GoLang. It simplifies the management of multiple LXC 
containers, takes advantage of host-level security measures (which in the case of LXC is more 
problematic) and simplifies resource sharing like networking and data storage. 

In contrast to Docker it is only available for Linux platforms, which is not a fundamental problem for our 
type of Linux based platforms, but limits the development experience a bit. 

3.1.2. Process Containers 

While the term process containers was initially coined by Google in 2006 and led to the creation of 
Cgroups, this type of containerization focuses on limiting, accounting and isolating resource usage for a 
limited collection of processes.  The new generation of container runtimes like Docker and Rocket (RKT) 
take this concept further by restricting their containers to only carry one service. A typical consequence of 
that is that even secure shell (ssh) access is not supported inside these containers, however this delivers a 
better separation of concerns. 

This is very different from the traditional system containers like the ones created by LXC where you can 
have multiple services running on the same OS. 

3.1.2.1. Docker 

Containers became truly mainstream with the Docker project. Like most great technical innovations, 
Docker stood on the shoulders of older giants but with a new focus that addressed a market need at 
exactly the right time. In Docker’s case it was a focus on developer experience and ease of (re)use that 
took containers from a fairly arcane infrastructure technology into something truly transformational.  

While Docker was originally designed on top of LXC, it created it own version of that with the 
introduction of Runc. Runc resembled the basic functionality as LXC, with the addition that it is 
standards compliant with an OCI format. Docker is a first-class citizen in the design of Runc. 

Figure 18 depicts the current building blocks of Docker. 
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Figure 18 - Docker Building Blocks 

The biggest innovation that Docker added compared to the previous mentioned system containers is that it 
added the container management images and made them stackable to achieve portability and flexibility 
with respect to reuse of these images for the developer. 

Each Docker image references a list of read-only layers that represent file system differences. Layers are 
stacked on top of each other to form a base for a container’s root file system. The Docker storage driver is 
responsible for stacking these layers and providing a single unified view. 

 
Figure 19 - Docker packaging and image format 



  

The major difference between a container and an image is the top writable layer. All writes to the container 
that add new or modify existing data are stored in this writable layer. When the container is deleted the 
writable layer is also deleted. The underlying image remains unchanged. Because each container has its 
own thin writable container layer, and all changes are stored in this container layer, this means that 
multiple containers can share access to the same underlying image and yet have their own data state. 

Layering helps Docker to reduce duplication and increases re-use. This is very helpful when one wants to 
create different containers for various components. One can start with a base image that is common for all 
the components and then just add layers that are specific to your component. Layering also helps when 
one wants to rollback changes as you can simply switch to the old layers, and there is almost no overhead 
involved in doing so. 

In order to achieve this a lightweight Union File System is used, that allows sharing files that are not 
changed, reducing the storage and memory footprint and enhancing the startup time. 

 
Figure 20 - Docker Containers and images 

Copy-on-write is a similar strategy of sharing and copying, in which the system processes that need access 
to the same data share the same instance of that data rather than having their own copy. At some point, if 
any one process wants to modify or write to the data, only then does the operating system make a copy of 
the data for that process to use. Docker makes use of copy-on-write technology with both images and 
containers. 

Currently the Docker engine is stripped out in different components, where the current Docker engine 
focuses on image management, container orchestration and the interaction with the Docker container 
repository, and Containerd is managing the complete container lifecycle of its host system: image transfer 
and storage, container execution and supervision, low-level storage and network attachments, etc, similar 
to what LXD does for LXC. 
 
Docker is more than an image format and a daemon, though. The complete Docker architecture comprises 
the following components: 
• Docker daemon: runs on a host and is the combination of Containerd and the Docker engine. 
• Client: connects to the daemon, and is the primary user interface 
• Images: read-only template used to create containers 
• Containers: runnable instance of a Docker image 
• Registry: private or public registry of Docker images 
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• Services: a scheduling service called Swarm which enables multi-host, multi-container deployment. 
Swarm was introduced in version 1.12 

 
Figure 21 - Docker ecosystem 

3.1.2.2. Microservices 

The application space where technologies like Docker and RKT are a perfect fit for, can be roughly 
categorized as – modern, Microservices-based, and traditional enterprise applications. 

MSOs can adopt a Microservices architecture which has gained popularity amongst new web-scale 
companies like Netflix, Google, Twitter, etc. Applications with a Microservice architecture consist of a 
set of narrowly focused, independently deployable services. This would give the MSOs the advantage of 
increased agility and resilience to roll out new value added services to their subscribers. Agility since 
individual services can be updated and redeployed in isolation. Given the distributed nature of 
Microservices, they can be deployed across different platforms and infrastructures, and the developers are 
forced to think about resilience from the ground up instead of as an afterthought. 

To support ephemeral and elasticity workloads a lot of focus and functionality has been added to make 
these solutions a perfect match for container orchestration frameworks like Kubernetes, DCOS, SWARM 
and the like, but as a side effect of some of their choices, their runtime footprint is heavy, and the impact 
on performance by adding a specific storage backend and copy-on-write functionality can be a bottleneck 
for IO intensive applications. 

3.1.3. Application/Desktop containers 

Machine containers like Docker or RKT are almost as versatile and adept to orchestrate a complex system 
of Microservices; however machine containers are not ideal for a significant number of Edge-Compute 
use cases like IoT where the physical H/W is an embedded platform with very limited compute, memory 
and storage like a Cable Modem/Gateway or a Wi-Fi Router. Such platforms typically have dual core 
ARM processors (Quad core at best) and have just enough resources to run lightweight processes in an 
isolated sandbox. 



  

An isolated sandbox is a mechanism to separate running programs with the aspect of keeping the 
operating system and other applications isolated and safe when running programs. The sandbox does so 
by isolating or virtualizing an environment where the program can be executed in, limiting the possible 
access to the underlying operating system and other applications. Monitoring in a sandbox can occur as 
well as trying to check whether or not the executing program is malicious.  

These techniques have been heavily used in the past by web browsers and other graphical applications, to 
allow running untrusted code in these environments, without compromising the security and robustness of 
the overall system. 

Over the recent years, we have seen these techniques being reused in the Linux Desktop Application 
space to overcome the fragmentation that exists with respect to the numerous flavors of Linux 
distributions out there. The idea here is to have a minimum base OS and run everything in distribution-
agnostic containers. 

Due to the nature of this use case, which does not require running hundred of containers, there is also less 
need to optimize for size and reuse of different image layers and using techniques as copy-on-write. It 
allows keeping the storage model simple, and avoiding the negative impact on performance that these 
union file systems tend to have. 

Most notable players in this field are AppImage, Ubuntu Snap and Flatpack. 

While originally developed for Desktop applications, Snap for example is really trying to broaden their 
applicability to other domains like IoT edge computing, and recently also added OpenWRT support. The 
disadvantage of the current Snap approach is that it is very vendor specific, and the current base image 
only supports a heavy 250MB Ubuntu distribution. 

On the flip side, these tools allow secure and controlled access to a shared system bus like Databus 
(DBUS) or eventually Microbus (UBUS) for OpenWRT, which allows interaction between different 
containers in an efficient way. 

3.1.4. Serverless containers 

Serverless computing is a cloud-computing execution model in which the cloud provider dynamically 
manages the allocation of machine resources. The name "serverless computing" is used because the server 
management and capacity planning decisions are completely hidden from the developer or operator. 

AWS Lambda introduced by Amazon in 2014,[5] was the first public cloud vendor with an abstract 
serverless computing offering, soon followed by Azure and Google, with their variant Cloud Function. 
Today, both Amazon and Azure also offer these runtimes for their Edge computing offering, notably 
AWS Greengrass and Azure IoT Edge. 

Although it is out of the scope of this paper to discuss the specific programming model for these new 
types of solutions, they are using the same kind of containerization and isolation techniques as their 
former counterparts. The way they achieve isolation is by using a programming language runtime that 
acts as a barrier between the host and untrusted code inside the containers. 

As such they provide a higher level of abstraction then just the operating system by making the language 
runtime accessible from within the containers, and leaving package management up to specific language 

https://en.wikipedia.org/wiki/Serverless_computing#cite_note-techcrunch-lambda-launch-5
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specific solutions or simple tar or zip approaches. The resulting implementation as such tends to be less 
complicated in terms of functionality and footprint. 

As of today these solutions offer runtimes for different languages like Python, Java, C# and Go. 

Serverless is sometimes mistakenly considered as more secure than traditional architectures. While this is 
true to some extent because OS vulnerabilities are taken care of by the underlying environment, the total 
attack surface is significantly larger. Serverless approach is not mutually exclusive of the other types of 
containerization techniques but can be used to complement each other. 

Today containers technologies are supporting the major range of Linux distributions, even Android, 
and serverless computing frameworks can run on top of Dockerized environments or application 
container frameworks like Snap. As an example Greengrass today is available both for Docker and for 
Snap, and Azure IoT is built on the foundation of Docker infrastructure. 

3.2. Container standarization 

The Open Container Initiative (OCI) is a Linux Foundation  project to design open standards for 
operating-system-level virtualization, most importantly Linux Containers. There are currently two 
specifications in development and in use: Runtime Specification (runtime-spec) and the Image 
Specification (image-spec), and the consortium recently also released a Distribution Specification for 
Registries heavily based on the Docker protocol. 

The OCI was launched on June 22nd 2015 by Docker, CoreOS and other leaders in the container industry, 
and is today supported by the major public cloud players Amazon, Microsoft, Google, IBM, chip 
manufacturers like Intel, and some notable Telco players like AT&T and Huawei. 

Their goal is to address the fragmentation in the container landscape by defining clear specifications to 
align on interoperability and compatibility and avoiding vendor lock-in to accelerate container adoption. 

Besides specifications they also released an open source initiative in collaboration with Docker to provide 
a basic runtime called Runc to drive innovation and allow building higher-level tools on top of it. It is 
used today under the hood for all Docker types of frameworks and on GreenGrass and Azure Edge. 

Also all major cloud providers are supporting the OCI image specifications currently in their container 
registries, and will soon also support the upcoming API, which is defined in the Distribution specification 
for registries.  The distribution-spec is the latest in a series of OCI initiatives highlighting the rapid rate at 
which container technologies are maturing, In fact, rather than focusing mainly on building pipelines to 
construct single applications, more attention is being focused on how to manage supply chains 
that ultimately will consist of multiple registries and pipelines. Constructing supply chains at scale 
assumes a base level of interoperability between registries enabled by a Docker Registry v2 protocol, 
which can now be deployed anywhere to access images in public or private clouds. 

App Container (appc) is an open specification that defines several aspects of how to run applications in 
containers: an image format, runtime environment, and discovery protocol. 

The image format defined by appc and used in RKT is the Application Container Image or ACI.  

As part of the success of OCI, alternative technologies like LXC and RKT are starting to offer more 
support and integration of OCI specifications, by adapting their roadmap, however this evolution is still 
ongoing.



  

 

4. MSO CPE landscape & CPE device characteristics 
For the last 20 years or so fixed broadband connectivity has become a de-facto choice of Internet 
connectivity for most users. MSO-led cable broadband has led the way of providing broadband Internet 
connectivity to the users. During the early years of broadband era, the desktop/PC used to be the primary 
end user device at home. MSOs used to provide a DOCSIS (Data Over Cable Service Interface 
Specification) modem that served as the NTU (Network Termination Unit) at the home premise. PCs in 
the home typically connected to the modem via Ethernet cables. Once MSOs started offering home 
voice/telephony service, MSOs combined the modem and voice telephony gateway into one integrated 
broadband device called an eMTA. eMTAs are typically a purpose-built network device with very little 
compute capabilities outside of their core function of providing voice and internet termination function. 

In the last 10 years, however, the connectivity landscape inside a typical residential home or enterprise 
has significantly changed compared to early days of broadband described above. Today, wireless (Wi-Fi) 
is the primary way users access Internet in their homes. Also, the number of end user devices have 
proliferated from a few desktops to Wi-Fi capable smart phones, Tablets, laptops etc. Further, users are 
also bringing home internet connect smart devices like smart TVs, Coffee Pots, garage door sensors, door 
locks, home assistant / speakers etc. These smart things are typically Wi-Fi, Bluetooth or Zigbee 
connected and an average US household has many as 13 such connected devices at home [2] and the 
number is expected to go up to 50 by 2025. Proliferation of IOT end user devices and extensive Wi-Fi 
usage in the home, gives MSOs a chance to move upstream and provide a new category of value added 
services to their subscribers.  MSOs are thus integrating many wireless connectivity technologies in the 
current generation DOCSIS gateways e.g. Wi-Fi, Bluetooth, Zigbee/ZWave, LoRA etc. to provide a wide 
spectrum of wireless connectivity options in the home. Further Moore’s law has been bringing the cost of 
computing down to a fraction of what it used to be 20 years ago. Multi-core, general-purpose computing 
costs for embedded systems of the likes of Broadband Gateways are now common. (see Raspberry Pi 
project). 

In line with the cost/performance curve, the next generation of the broadband GWs will integrate a 
modem, a router, best in class Wi-Fi, IoT radios (802.15), Gigabit Ethernet interfaces, multi core GPU 
(e.g. Quad core ARM), 512+ MB of RAM, 512 MB+ of Flash etc.; all for a familiar price point that is 
amenable to MSOs. All such integrated Gateways are capable of performing computing at the edge / 
customer premise.   

Edge Compute capable broadband gateways provide many tangible benefits to the MSOs. Edge Compute 
gateways are actually platforms that let the MSO disaggregate the applications from underlying gateway 
firmware. In the traditional workflow, the MSO have to do intense planning for 5-7 years to do a CPE 
refresh. Since the apps and the firmware were tightly integrated, once the CPEs were deployed, there was 
little to no new feature development on these gateways. This made the service rollout cycles for MSOs 
very slow and risk of failure very high, as MSOs usually had to plan 5-7 years in advance. On the other 
hand, Edge-Compute Gateways are capable of disaggregating the ‘Gateway OS’ from the network 
applications (e.g. IoT apps etc).Just like in Desktop computing where a desktop OS is disaggregated from 
the desktop applications, Edge-Compute capable broadband Gateways let MSOs deploy the Gateways 
and the applications independently. Typically, Gateway OS will evolve at a slow cadence while 
applications will be rolled out in a much more agile fashion. This helps the MSO operate at the Web 
scale, giving them much needed agility and service velocity, which is needed to compete in the 
marketplace. 

https://www.raspberrypi.org/products/#buy-now-modal
https://www.raspberrypi.org/products/#buy-now-modal
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5. The New Embedded Stack 
The telecom industry is currently going through a radical shift towards softwarization of the current 
hardware base networking functionality. Originally, they had started mapping their networking functions 
on a VM based infrastructure. In the mobile world with the introduction of 5G, they more and more 
started to apply a cloud native approach towards the implementation of network function virtualization 
(NFV) functions, with more prominent usage of container technology and orchestration. ETSI has been 
standardizing the Multiaccess Edge Computing environment also called MEC (Mobile Edge Computing). 
AT&T recently merged their efforts around the Open Network Automation Platform (ONAP) with the 
China Mobile Open Initiative, by contributing their code to the Linux Foundation as an open source 
initiative, which broadens the application domain towards wireline and enterprise. 

From an operator perspective, the Edge means the base station and their core network infrastructure, but 
extending their reach towards the physical edge. Applying these lightweight virtualization techniques on 
their customer premises equipment could give them end to end control and flexibility around their efforts 
on network virtualization, and allow third parties to innovate with new IoT use cases. 

Operators’ close proximity to their users due to their large installed base of CPE’s could make them more 
competitive by exploiting edge computing on these types of devices. 

Specifically, in the IoT applications domain, the physical edge will play a dominant role in creating value-
add services, especially for those novel use cases that are at the intersection of different IoT domains and 
different verticals, where latency and autonomous operations are crucial. Edge compute will be a key 
enabler that will foster and promote new compelling use cases. Figure 22 shows a subset of these use 
cases. 

 
Figure 22 - Edge compute use-case domains 

By extending the edge, CPE devices can play a crucial role in bridging the current fragmented and 
heterogeneous landscape of IoT cloud platforms, that are using different messaging/communication 
protocols and API’s, with their own vendor specific semantics, the limitless amount of low power 



  

connectivity protocols and standards that are currently dominating most of the smart home use cases of 
today, and allowing third parties to fully exploit the hardware capabilities present in those devices. 

To fully exploit this evolution, the key elements that need to be addressed are creating the proper 
abstractions, the programmability of these devices and the interoperability between various ecosystem 
solutions. Lightweight virtualization technologies like containerization appear to be a perfect fit to 
address these challenges, since they provide a good computational abstracted environment and allow 
independence for various technology choices to be used inside this isolated environment, as well as 
independence and full end-to-end ownership with respect to the integration of these components with 
their own cloud infrastructure and services.  

Given the fragmented IoT landscape and importance of cross domain use cases that benefit from a CPE 
edge solution, this edge platform should support a multi-vendor environment, and hence this platform 
needs multi-tenancy support as a first class citizen to host different solutions, that is controlled and 
operationally managed by the operator, so that issues around security and privacy can be fully covered. 

To improve integration and create more flexibility in the choice of where to place these containerized 
application or service components, either on the CPE device itself or close by in the network, the CPE 
edge solution should have a common execution environment that enables cross platform deployment. We 
see this evolution today in commercial approaches from the public cloud providers like Amazon and 
Microsoft that make their edge environments compatible with their cloud counterparts so that containers 
or serverless functions can run practically anywhere.  

Taking into account all previously mentioned arguments, we recommend taking an evolutionary approach 
by segregating the current monolithic CPE firmware into a dual track approach, where a clean separation 
of concern is obtained between traditional development and deployment strategies of the firmware versus 
a more open and dynamic environment for containerized components. As such the years of investment of 
this network-centric firmware and integration with the operators’ OSS/BSS (Operations and business 
Support Systems) and remote management infrastructure can be safeguarded and can be used to upgrade 
both the firmware as the containerized components. 

As an example of that, the current TR69 standard has already been enhanced with support for LCM of 
software components, more notably by the TR-157 data model, which can support different execution 
environments. 

In addition to being backwards compatible with an MSO’s infrastructure, we propose an additional 
middleware layer on top of the firmware that delivers a modern developers focused life cycle 
management layer for containerized components, albeit still under the control of the operator, but that 
gives full control of the development and deployment of these components in an end-to-end fashion to the 
IoT application solution provider. 

By exposing an LCM API from the firmware this middleware layer would be a combination of a 
containerized agent of the CPE device and a backend infrastructure focused on deployment and 
management of containerized services. Typically, this backend solution will leverage a cloud based IoT 
platform that contains the service provisioning methods and monitoring tools that are independent of the 
managed applications that run in parallel on the CPE edge platform. 

As such, this means that this middle layer needs to be in line with the IoT strategy of a particular operator, 
since an IoT cloud platform typically supports all the foundational building blocks to be able to 
communicate with the devices, the service/asset management services, device on boarding, authentication 
and integration with data monitoring and analytics infrastructure., and is needed to orchestrate the 
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deployment of containers, and to be able to do the operational management of the running containerized 
services. 

By using a cloud-based control plane that interfaces with the existing CPE middleware functionality, and 
integrated with their existing back office infrastructure, operators can offer a multi service CPE platform 
that can deliver new, compelling use cases in line with their goals on enterprise-grade service assurance. 

As previous stated, there is a heterogeneous set of IoT cloud solutions today that is probably not going 
away soon, and operators have or are in the process of making different strategic choices around 
technology and partners. Some of them are well versed and mature to build these IoT-based services in 
house, even in a hybrid fashion, while others will rely on commercial solutions and partners or have 
acquired an IoT platform. 

The key here is to support easy integration on the CPE which will allow different operators to integrate 
their IoT backend with a set of standard local LCM API’s and a virtualized IoT agent to deliver this type 
of orchestration around the LCM of containerized components in an end to end fashion. 

This would allow operators to create an ecosystem around service components, much like the app stores 
of today, by exposing a set of high level services API from this middle layer for higher layer integration 
of additional services, similar in concept to the Northbound API of their current remote management 
infrastructure, but more open to third party solution providers. 

Security and privacy controls, will be absolutely key, and included by design in this edge layer. As such 
there is a need for a secure execution environment, assisted by hardware mechanisms like Trusted 
Platform Modules (TPM) and a root of trust for safely storing secrets as supported by most modern 
CPU’s like ARM Trust zone architecture. This will allow only trusted authenticated container code to run 
on these CPE devices, preventing hackers from compromising the systems, or running unintended 
malicious code. Set top box (STB) content providers today already mandate this to Digital Rights 
Management (DRM) violations. 

This same proper isolation is needed for privacy related issues, hence the necessary mechanisms on 
access controls need to be in place to protect unauthorized access, and limit exposure of users’ personal 
information. 



  

 
Figure 23 - Modern LCM layer for CPE 

Conclusion 
The decentralization of computing towards the edge, and the expansion of this edge compute paradigm 
towards the physical world of operator’s customer premises equipment (CPE) is removing the last barriers 
of IoT application development and deployment to gain end to end control of their solutions in a more 
economical and viable way. 

For the IoT project life cycle, implementing continuous delivery and being able to constantly add 
intelligence to these edge devices is absolutely mandatory to ensure that these solutions deliver on the 
promise of rapid value creation. 

The intersection of DevOps practices and IoT Edge compute is still embryonic but growing day by day, to 
become an essential part of modern service delivery. 

Furthermore, this Edge compute paradigm will become essential to unlocking the value of many IoT use 
cases, certainly for these use cases that are at the intersection of different application domains and 
industries. 

The multitude and maturity of the current IoT platforms, and the advances in Big Data technology, will 
serve as the foundation, to build these new DevOps and life cycle management tooling and practices on, 
at an unprecedented scale. In this respect, it is important for the operator to include a strategy around 
modern life cycle management and containerization in their IoT initiatives. 

When using lightweight virtualization techniques like containers on such CPE device start to become 
viable, they will provide a uniform, portable and secure environment for edge computing software 
components, solving the heterogeneous nature of today’s embedded devices, as well as deliver a means to 
package all necessary dependencies in a uniform way in a more dynamic and agile way during the 
deployment phase. 
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Thanks to the combined industry effort of the last years in this area, the container technology has 
matured, both in terms of standardization effort, as from the technology perspective, by making open 
source container frameworks available for inclusion on these type of constrained devices, while still 
leaving room for innovation and improvements in various areas like security, operational management 
and privilege rights. 

Albeit numerous researches have already been conducted on performance impact and footprint, further 
integration, evaluation and detailed measurement is required in this area on the applicability of operators’ 
CPE equipment and their ecosystems. 

While there are still numerous challenges around the immense scale of CPE deployment, security, 
privacy, standardization and interoperability issues, solving the infrastructural problems around 
automatization and the life cycle management of these new containerized edge computing components 
will be an absolute necessary first step. 

Operators should expand their focus on edge and fog computing efforts to include CPE edge computing 
as a first-class citizen in their ecosystem. 

Abbreviations 
 

ACI Application Container Image 
AR Augmented Reality 
APPC Application Container specification 
Cgroups Linux Control Groups 
CRM Customer Relationship Management 
CPE Customer Premises Equipment 
CPU Central Processing Unit 
DBUS DataBUS 
DOCSIS Data Over Cable Service Interface Specification 
DRM Digital Rights Management 
eMTA Embedded Multimedia Terminal Adaptor 
ERP Enterprise Resource Planning 
ETSI European Telecom Standards Institute 
E2E End to End 
GDPR General Data Protection Regulation 
GW Gateway 
GPU Graphics Processing Unit 
IaaS Infrastructure as a Service 
IoT Internet of Things 
ISP Internet Service Provider 
IT Information Technology 
LCM Life Cycle Management 
LXC Linux Containers 
MEC Mobile Edge Computing 
ML Machine Learning 
MNO Mobile Network Operator 
NFV Network Function Virtualization 



  

ONAP Open Network Automation Platform 
OCI Open Container Initiative 
OT Operational Technology 
OS Operating System 
OSS/BSS Operations and Business Support System 
RKT Rocket 
SaaS Software as a Service 
SCTE Society of Cable Telecommunications Engineers 
STB Setop-Box 
SSH Secure SHell 
TCO Total Cost of Ownership 
TPM Trusted Platform Module 
UX User Experience 
VM Virtual Machine 
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