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Introduction 
Arguably the biggest challenge for the HFC plant moving forward is implementing next generation 
technologies in nodes that operate in a limited power consumption environment. This, for example, is the 
backdrop for the evolution to distributed access architecture (DAA,) full duplex (FDX), and networking 
nodes which are expected to require more average, and larger ranges of power consumption. There is also 
a discrepancy between the higher power/thermal dissipation capability of new nodes and the maximal 
power that is allotted to them per multiple system operator (MSO) product specifications.  This creates an 
opportunity for an analytics-based application of power management that maximizes the performance 
capabilities of nodes but at the same time keeps in check or reduces the consumption of their system 
power footprint.  

Because of MSO desires to avoid adding new power supplies when deploying additional nodes as part of, 
for example, fiber-deep deployment, nodes are now part of a power consumption cluster, which is 
effectively a collection of nodes serviced by a power supply where ultimately the power envelope that 
matters is that for the collection of nodes in the cluster, and not of any single node in particular. In effect, 
nodes are reverting back to a more centralized powering schemes from their previous distributed 
powering architectures, where the power supply placement is often no longer optimal due to new nodes 
being added downstream of the original node. Significant additional losses in power due to the Joule 
heating or I2R losses in the coax used to transport power to the new node locations are now added to the 
powering requirements of the new nodes themselves. The new power consumption means that many 
power supplies may become challenged to supply sufficient power as new devices such as wireless 
strand-mounted devices are added to the HFC plant.  

Therefore, power sensory information of node function is now necessary. Sensors that are hardware parts 
can be added to nodes to make the reading and reporting of power state information possible. This 
sensory information can be collected and maintained centrally, within a general cloud infrastructure. 
Making such energy consumption information available from sensors allows for an analytic comparison 
and optimization of power and/or performance settings of elements in the cluster to optimize performance 
while improving energy efficiency. And finally, in keeping with the current trend for increasing 
intelligence in network operations, these sensors and associated data can be the inputs to machine learning 
algorithms that provide predictions and necessary decisions to optimize or evolve a system and thereby 
facilitate introduction of new or different elements into the cluster.  

This paper is a novel proposition for an analytics-based application that manages the problem of wide 
deployment of new technology in nodes. In this paper we describe the hardware, sensory capability 
expected, the cloud-based architecture needed for data collection, storage and analysis, the logic applied 
to analytical engines, and the process for execution of optimal states in the presence of a broader policy 
mechanism, and finally the inclusion of a machine learning principles for integration of new technologies 
as nodes evolve.  

Background 
The HFC plant finds itself in a precarious position when it comes to the topic of power consumption. On 
one hand there is the recognized desire to minimize as much as possible the power consumption of the 
plant. The effort of the SCTE/ISBE Energy Management Subcommittee has documented the tremendous 
cost burden that power consumption will have for MSO’s in the near years to come. With this in mind 
there has been a rally to gather minds and technologies around energy conservation measures. 
Simultaneously however, the ever-increasing numbers of ports required for more granular service groups, 
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in DOCSIS and video, have led to the favoring of distributed architectures, where the PHY layer of the 
converged cable access platform (CCAP) is migrated to the outside plant. This evolution significantly 
increases the capacity of the fiber feeding the nodes by making the link digital, uses more efficient 
gallium nitride (GaN) technology that enables higher RF spectrum use, and can add to the intelligence of 
the node, but it can also dramatically add to the power consumption of these field-distributed endpoints. 
These trends are just at the beginning, where energy conservation measures will be increasingly important 
in the future as added capability of intelligent nodes is expected to be more prevalent, along with their 
need for more power to accomplish their functions.  

Another dimension is the operational challenges with rearranging or upgrading the powering 
infrastructure of the plant. A wholesale revision would be prohibitively costly, and even impractical due 
to the nature of upgrading utilities. This dynamic leads operators to prescribe strict specifications for the 
power consumption of nodes because in the absence of any specific knowledge of the power state in a 
specific node situation or geography, it is the only guidance that can be given. For example, MSO’s 
typically give a power consumption number for all nodes independent of function or location. As 
mentioned in the introduction, the deployment of fiber-deep architectures in particular with the constraint 
of not adding or moving power supplies often leads to new I2R losses in the HFC plant that make power 
consumption per node a more variable quantity. 

In this paper we propose the question what if that were not the case? What if a system was not blind to the 
power state of it parts? What if guidance about power consumption could be given in broader and more 
granular terms, and not just for isolated nodes? If this were the case then optimization of power 
consumption could be done in the context of performance. It could vary from place to place, and it could 
be updated over time. We develop this proposition in the next sections of this paper.  

Node Cluster 
We define a node cluster as a group of functional nodes that share one power supply. This distribution of 
parts is generally referred to as the centralized power supply model. (Note, the principles we present 
would also work with alternate power supplies and node relationships, but we describe the solution here 
with the most likely scenario.) Figure 1 is visual representation of a node cluster.  We note fundamentally 
that the possibilities for node parts can include various technologies. We list some of the ones we know 
now, with the understanding that in the future there could be others. We include legacy analog optic/RF 
nodes as DOCSIS3.1 or D3.1 in the figure. We include DAA nodes as remote PHY and FDX. We also 
include packet processing nodes such as field aggregation routers, optical transport nodes (OTN) 
multiplexing transponders or Muxponders and optical line termination units (OLTs).   

These nodes within a cluster can require a range of power consumption profiles. Some could be less than 
the guidance typically given for power consumption and some could be more. The commonality for all 
nodes is their shared line power supply. For this reason, the best guidance with regards to power 
capabilities and limitations is given by the line power supply. This is really the only power envelope that 
matters. 



  

 
Figure 1 - Node cluster definition. Power supply and its node parts. 

While the statement of the power supply envelope is true, at the moment the relationship of the power 
supply to its subtending nodes is not known. The reason is that nodes at the moment do not measure (or 
are not known to measure) or have a mechanism to report their power consumption. Third generation 
power supplies on the other hand have a way to accurately report power state, but have no way to 
compare their capabilities to the context of the usage of their power-consuming devices in the node. Thus 
along with the concept of a cluster we propose the basic principle of nodes that are able to report their 
power state information.  

Sensors and Measurement 
The inclusion of power management integrated circuits (ICs) to a node design allow for measurement and 
reporting of electrical current and power consumption. These ICs are typically small and are cost and 
power-consumption effective. They have the task of measuring current drawn at a range of voltages and 
also of reporting current or power. Depending on the model, one can measure several lines by toggling, of 
have dedicated measurement. The reporting structure is typically facilitated by an integrated micro that 
allows for two way communication via a rudimentary form such as Intra-Integrated Circuit (I2C). The 
data set that includes power information is not meant to live in the node, so it would have to be stitched 
into the data plane for signaling that is already being transported to service packet cores. We expand on 
this in later sections. 

Figure 2 below shows an example for power measurement and reporting of a remote PHY node via a 
power monitor chip. Note that this example tracks the usage throughout the power tree. The node power 
supply is monitored at entry and exit, and the granular parts of the node are measured as well. From a data 
collection perspective the input into the node power supply is the minimum required power measured, but 
the granularity added to measuring various points of the node allow for a broader application of both 
power consumption and performance tuning. In the next sections we will show that understanding the 
usage through out the power tree within the node is quite useful, in particular for balancing node 
component setting for energy consumption and performance targets. Note that Figure 2 is an example of 
an HFC Remote-PHY node, but a similar approach can be taken for analog, or packet processing nodes. 
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Figure 2 - Power measurement and reporting of elements within a DAA node. 

Power Knobs for HFC RF Nodes 
The power consumption of an HFC RF node can be influenced by various settings for the parts within the 
node. The settings are related to throughput and performance expectations of the node. However, it is 
important to understand that there can be multiple settings that achieve the same customer end-line 
performance or throughput from a node. Figure 3 shows the various levers or knobs we have available, 
for which through varying settings can affect the power consumption of the node. Unlike Figure 2 where 
we call out the node parts that can vary, in Figure 3 we focus on the signal settings and power supply 
settings of these internal devices that have power consumption effects. In this case it is not just a matter of 
power consumption but changes that can be done with the perspective of performance. We point out the 
modulation of the signaling, which with current and next generations of DOCSIS can vary greatly 
depending on network and end of line conditions. Varying the bandwidth is related to the settings the 
packet processor of a remote PHY device (RPD) for instance, as we see later on. Varying the RF 
bandwidth is related to the general settings for the plant of licensed spectrum being used. This of course 
can impact the necessary settings on both the RF management of the node and the packet processor. RF 
power refers to the absolute value of RF power being put out by amplifiers in the node design. Depending 
on the quality of signal needed at the end of line, (through RF drops, or related to the modulation setting, 
or the bandwidth allocation,) this value can change and can sometimes be maximized, while at other times 
not so much. 



  

 
Figure 3 - Power consumption knobs for an HFC RF node 

1. Example: RF FWD Amplifier 
The forward path amplification structure of HFC nodes allows a good example to understand the dynamic 
of power consumption and performance. Figure 4 shows the typical forward (FWD) path amplification 
structure for a four port HFC node. There is a common pre-amplifier and four independent post amplifiers 
that provide RF output power for the four output ports of the node. The structure itself gives us the first 
type of power efficiency tactic. In the case where there is an inactive leg of the node, then the mere 
savings of turning off one post amplifier can be up to 20%. Similarly, if the accompanying RF structure 
allows for turning off of an amplifier during low traffic conditions (e.g. at night or in summer for 
university student residences) then those energy savings are also available for selected times of day/year. 

The RF amplifiers are effectively the signal (and its noise) interface from the transmission network to 
customer premises equipment (CPEs), directly or via another set of amplifiers. The RF power value is tied 
to the needed carrier-to-noise ratio (CNR) in the RF domain and the related signal-to-noise ratio (SNR) 
after demodulation. Note that in this context, “noise” refers to the sum of thermal noise, interference, and 
composite intermodulation noise (CIN). Consequently, there is a limited RF output power dynamic range 
that provides an adequate carrier-to-noise ratio and the related signal-to-noise ratio. And as it turns out, 
signal-to-noise ratio or equivalently modulation error ratio (MER) for digital (QAM and OFDM) signals, 
which are used exclusively now, are tied to very particular expectations, where a signal-to-noise ratio that 
is too low is not usable, and if it is too high, it gives no extra benefit. This allows for the dialing in on a 
power range that is tied to a particular channel modulation, and by extension the number of channels that 
are used within a spectrum. As an example, we note that if an amplifier structure that is capable of 
signaling over the full RF range of DOCSIS 3.1 is operating at half capacity, either by reduction of RF 
spectrum or reduction of signal order of modulation (and thus lower required MER) it can then 
accommodate approximately 20% worth of power consumption savings. Note we do not specify any 
particular numbers as they would be product-specific, but the dynamic should be similar throughout the 
industry. 

Another form of power reduction, a somewhat hot topic now is digital pre-distortion, (DPD), (Chong, 
2018). The capability of DPD to help correct noise components from the driven profile of amplifiers is 
simplified in nodes with remote PHY devices which lend themselves to the digital signal processing 
(DSP) needed. Overall, accounting for the added DSP power, the saving of DPD can be up to 20% in very 
straight forward applications. There is potentially more added bonus, but this requires special calibrations 
and attention to details of loadings, etc. 
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Overall, it seems that 20% saving from the amplifier usage under reasonable circumstances is a very 
achievable target.  

 

 
Figure 4 - FWD amplification structure for HFC RF Node 

2. DAA Devices 
A critical part to power consumption of new nodes is the silicon that is used for remote PHY or similar 
devices. These devices effectively take Ethernet / IP signals that were generated from a packet core and 
convert them to RF signals to be fed into the RF plant. At their core these devices have application 
specific integrated circuits (ASICs) or field programmable gate array (FPGA) technologies, or both which 
determine their functionality. Unfortunately, this vast amount of intelligence added to the node also 
comes with a power consumption penalty. This tradeoff is made with performance in mind as well, where 
ASICs are a naturally lower power solution but with little flexibility once finalized, and FPGAs have a 
higher power penalty with greater flexibility for evolution in the field. Because these devices are so 
power-hungry it is important to be able to understand and leverage any power saving capabilities. Without 
getting too into product detail, a mix of technologies, older and new versions, along with bandwidths, 
modulations and other ancillary functions dealing with versions of DOCSIS, the silicon within DAA 
devices can vary power by up to 50%. For this reason, the numerical understanding of power 
consumption (measured variations) for DAA devices is quite useful, if not necessary. 

Load Variations and Cluster Power Savings 
With the availability of varied power states in cluster nodes we turn our attention to how these variations 
materialize into savings to the overall cluster’s power consumption. Connecting the cluster is a sequence 
of unique coaxial segments. Let’s look at how the DC loop resistance of the coaxial cable affects the total 
power output supplied by the line power supply. This is a highly simplified analysis and is intended to 
illuminate the issue rather than give a rigorous final result. A rigorous analysis, such as that described in 
Mitchinson (Mitchson G., 2016) would be extremely complicated and is beyond the scope of what we 
wish to accomplish here. In order to make the current analysis practical we make the following 
simplifying assumptions: 

 
1. The switching power supply in a node draws a constant power regardless of the input voltage. 

Actual switching power supplies vary slightly in efficiency as the input voltage varies. This 
results in a slight variation in power draw over the input voltage range. However, this variation is 
relatively small. 



  

2. A group of four optical nodes are being fed from a single line power supply. These optical nodes 
are located relatively close to each other, yet all are a significant distance from the line power 
supply. For the purposes of this analysis we will simplify the things by ignoring the powering 
losses associated with the coax that interconnects the nodes and concentrate on the main coaxial 
span that connects the group of nodes to the line power supply. The effect of the interconnecting 
coax might slightly change the final value of the results. However, rigorous analysis of the node 
interconnections will complicate the mathematics well beyond what is required to demonstrate 
the nature of the relationships given below. This complexity of this analysis further illustrates the 
need for multiple individual power sensors located throughout the network in order to obtain 
empirical data. 

3. We will assume that the rms voltage provided by the line power supply is the same as the peak 
voltage. This assumption is a reasonable one when the line power supply is under no load and the 
trapezoidal voltage output approaches a square wave. However, as the current from the line 
power supply increases its voltage waveform, it becomes more rounded, resulting in a decreased 
rms value. Were this change included in the analysis it would simply tend to reinforce the results 
that we will provide 

4. We will not consider changes in the real power and apparent power as a result of the power factor 
of the switching power supplies in the node. 

Consider the situation where the four optical nodes are connected to a 90-volt line power supply by a 
coaxial span with a DC loop resistance of 3 ohms, as shown in Figure 5. 

DC Loop Resistance
= 3 Ω90 V

I

VL

 
Figure 5 - Four Optical Nodes Connected to a 90 Volt Line Power Supply 

For the purposes of this analysis we will assume that each optical node draws 75 watts. The four optical 
nodes will draw a total of 300 watts. We can calculate the current draw, I from the line power supply and 
the voltage, VL, across the four optical nodes. 

 

300 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = (𝑉𝑉𝐿𝐿)(𝐼𝐼)                           (1) 

 

Rearranging 

 

𝑉𝑉𝐿𝐿 =  300 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝐼𝐼

                              (2) 
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Considering the voltage drop across the DC loop resistance of the coaxial cable we can calculate the 
voltage across the optical nodes, VL, by 

 

90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 −  (𝐼𝐼)(3 Ω) =  𝑉𝑉𝐿𝐿                        (3) 

 

Rearranging 

 

(𝐼𝐼)(3 Ω) − 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 𝑉𝑉𝐿𝐿 = 0                      (4) 

 

Substituting VL using equation (X.2) 

 

(𝐼𝐼)(3 Ω) − 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 300 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝐼𝐼

= 0                    (5) 

 

Multiply through by I 

 

(𝐼𝐼2)(3 Ω) − (90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)(𝐼𝐼) + 300 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0                    (.6) 

 

Solving for I using the quadratic equation 

 

𝐼𝐼 =
90 ±��(−90)2−(4)(3)(300)�

(2)(3)  𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤                    (7) 

 

Resulting in the two solutions I = 26.2 A and I = 3.8 A. We will ignore the larger solution as this is more 
current than can be typically supplied by a line power supply and chose the smaller solution. Plugging 
into equation (X.3) we find the voltage at the optical nodes to be 

 

 𝑉𝑉𝐿𝐿 = 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 −  (3.82𝐴𝐴)(3 Ω) =  78.54 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤                 (8) 



  

 

We can also calculate the total power being delivered by the line power supply, PLPS, 

 

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 = (90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)(3.82 𝐴𝐴) = 343.8 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                (9) 

 

Note that 43.8 watts is being dissipated as heat by the 3 ohm DC loop resistance of the coaxial cable. 

Now consider a second scenario. In this scenario node splitting has replaced the four optical nodes of the 
previous scenario with six optical nodes. Additionally, the six optical nodes contain advanced electronics 
such as DAA electronics and consequently each optical node dissipates 100 watts. This results in a total 
power utilization by the six optical nodes of 600 watts. This scenario is shown in Figure 6. 

DC Loop Resistance
= 3 Ω90 V

I

VL

 
Figure 6 - Six Optical Nodes Connected to a 90 Volt Line Power Supply 

It is possible to do an analysis of this scenario that is similar to the previous analysis. 

 

 

600 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = (𝑉𝑉𝐿𝐿)(𝐼𝐼)                           (10) 

 

Rearranging 

 

𝑉𝑉𝐿𝐿 =  600 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝐼𝐼

                             (11) 

 

Considering the voltage drop across the DC loop resistance of the coaxial cable we can calculate the 
voltage across the optical nodes, VL, by 

 

90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 −  (𝐼𝐼)(3 Ω) =  𝑉𝑉𝐿𝐿                        (12) 
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Rearranging 

 

(𝐼𝐼)(3 Ω) − 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 𝑉𝑉𝐿𝐿 = 0                      (13) 

 

Substituting VL using equation (X.2) 

 

(𝐼𝐼)(3 Ω) − 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 + 600 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝐼𝐼

= 0                   (14) 

 

Multiply through by I 

 

(𝐼𝐼2)(3 Ω) − (90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)(𝐼𝐼) + 600 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0                   (15) 

 

Solving for I using the quadratic equation 

 

𝐼𝐼 =
90 ±��(−90)2−(4)(3)(600)�

(2)(3)  𝑤𝑤𝑎𝑎𝑎𝑎𝑤𝑤                    (16) 

 

Resulting in the two solutions I = 20 A and I = 10 A. We will ignore the larger solution as this is more 
current than can be typically supplied by a line power supply and chose the smaller solution. Plugging 
into equation (X.12) we find the voltage at the optical nodes to be 

 

 𝑉𝑉𝐿𝐿 = 90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤 −  (10 𝐴𝐴)(3 Ω) =  60 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤                 (17) 

 

As compared to 78.54 volts in the previous scenario. The additional power loading has caused the voltage 
at the actives to drop by 18.54 volts. We can also calculate the total power being delivered by the line 
power supply, PLPS, 

 



  

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 = (90 𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤)(10 𝐴𝐴) = 900 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤                 (18) 

 

When we compare the second scenario to the first we see that the power required by the optical nodes 
increased by a factor of 2 in the second scenario with respect to the first. However, the power required 
from the line power supply went from 343.8 watts to 900 watts due to the additional coax I2R loss with 
the higher current. The power required from the line power supply increased by factor of 2.6. 

This analysis is not intended to present the results for any given specific architectural case. Rather, it is 
intended to illustrate the nonlinear relationship between the power required by active devices in the 
network and the resulting power delivered by line power supplies.  

 
Figure 7 - Power supply usage over load variance for cluster example 

This simplified analysis illustrates a more general conclusion. Figure 7 shows the dynamic between the 
varying loads and power supply usage for the example topology. We note that the power supply output 
varies increasingly faster than the load variations, particularly as the load reaches higher values. Most 
operators would prefer to continue to use existing line power supply locations and existing powering 
architectures wherever possible. But as new system designs and technologies increase the total power 
utilization of active devices in the outside plant by a factor of two in our example, the power required 
from the line power supplies may increase in a non-linear manner by a factor that is greater than two due 
to the DC loop resistance of the coaxial cable supplying the power to those active devices. One slightly 
mitigating factor is the efficiency of line power supplies increases as the load increases. However, this 
may not be enough to offset the additional losses in the coaxial cable DC loop resistance.  

It is important to note that the DC loop resistance will be unique for different node clusters. For this 
reason, it is not really practical to write completely effective generic rules for how to deal with the 
dynamic between nodes and power supplies in a deployment without carving out clusters as the quanta for 
system solutions. Beyond the identification of clusters however, generally stronger tools are needed to 
manage the complex nature element relationships. The next sections of the paper guide us through this 
process. 
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Cloud-Based Adaptive Power Manager 
 

 
Figure 8 - Cloud-Based Adaptive Power Manager 

The previous sections show that the power and performance dynamic of a cluster of nodes is complex 
enough that simple tools would not be able to extract its most optimal states. It is also the case that what 
is needed is some form of centralized view of the cluster, with knowledge of all parts of the system and 
ability to infer how their own sensitivities affect overall group targets, and more importantly, to be able to 
adjust power consumption of individual devices within the cluster when possible so that the current drawn 
by the entire cluster can be reduced and thus also the power consumed. Luckily this challenge comes to us 
at a time where the tools to create such a solution exist, and perhaps even with infrastructure already 
deployed, in support of other parts of the network. We then build a power manger in the context of the 
cloud, with otherwise generally understood architecture and approach, see Figure 8. Below we expand on 
this part of a cloud solution. 

1. General Assumptions 
Individual network elements must have power monitoring and reporting capabilities. Data may be 
communicated via a “push” model, whereby the network element sends telemetry data to a receiver in the 
management system, or a “pull” model, whereby the network element is polled periodically by a collector 
agent. An intelligent adaptive power management might consist of the following (or similar) components, 
deployed as micro-services in a cloud-native environment, as shown in Figure 8. Note, there have been 
discussions in this direction within the energy management community, but in this paper we aim to add 
more detail around the particular structure and function of supporting applications, (Sandoval, 2016) 



  

2. Protocol adapters  
It is expected that different network elements, from different vendors, would use a set of standard 
protocols to command and communicate power monitoring data and provide a method of control. 
Therefore, protocol adapters for protocols such as SNMP, REST, and NetConf would be required to 
communicate with network elements. 

3. Device Abstraction Layer  
A model-driven device abstraction layer would map device-specific application programmer interfaces 
(APIs) to a standard set of APIs used within the management system. This is where we assume the Yang 
model and/or management information bytes (MIBs) for various devices would be translated into generic 
descriptions. This effort is of course facilitated by the work of the SCTE sponsored APSIS specifications, 
where robust models have already been defined, or can be further refined. (SCTE, 2018) 

4. Collector / Receiver Service  
This service or group of services would receive telemetry from network elements sophisticated enough to 
push power monitoring data up to the management system. For elements that only support a pull model of 
data retrieval, the collector would periodically poll the desired data from the device. In the illustration, the 
collector / receiver service collects data from a power supply and distinct types of nodes in an HFC 
cluster, as well as data from various flavors of associated CMTS and quadrature amplitude modulation 
(QAM) devices in the cable headend or data center. The collector writes the raw data to the database as-is, 
with little or no processing of the data itself. 

5. Analytics Engines  
The analytics engine refers to environment that is particularly structured to handle the scale and workload 
generated by analyzing big data. If broadly deployed the data that is coming from node clusters could 
become very large very quickly and the analytics engine would provide a set of tools to organize the 
nodes cluster information read by the plant and allow us to do relational calculations. We expand on this 
is in the next section.  

6. Data Base 
The data base is formally a part of the analytics engine as it is the analytics engine that would determine 
the format for storage distribution and organization of data. Because this is a “big data” exercise there are 
several qualities to the storage of data that are necessary, like the ability to process in parallel, allow for 
low commodity hardware and interact with a robust resource manager. We expand on this in the next 
section. 

7. Machine Learning 
The machine learning module is really part of the analytics function but we call it out separately. It takes 
in sensor data, the capabilities of the equipment and statistically tracks both state data from cluster 
components and makes predictions and recommendations from applications according to programmed 
rules. In time this training data will allow for the creation of other algorithms such as those in Section 9 
below, whose relationships would otherwise be too obscure to conjure up directly, to help maximize the 
relationship of power consumption and power performance of the cluster. This is exactly where machine 
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learning can be most useful, and additionally, part of the vision for this module is to overcome the 
inevitable problem of fully calibrating parts in design and manufacturing before adding to the cluster, 
both for varied descriptions of power and performance and over time. Machine learning algorithms are 
often ideal for making predictions and recommendations from incomplete or slightly inaccurate data. 

8. Policy Manager 
The reduction of power, or the maximizing of performance via the execution of applications just 
described needs a higher perspective to serve the interests of the wholistic system. These decisions might 
have to be done in a case by case basis, for example in conjunction with the service level agreement 
(SLA) of a particular set, or individual end-line customers within the cluster. The policy manager is in 
charge of executing this higher perspective and must have a view of the other components in the system 
and their priorities, and this would include other packet cores like the CMTS.  

9. Applications  
There are a number of possible top line applications. These applications would access relevant 
information stored in the database to perform their respective functions. Perhaps the most basic function 
would be to provide a graphical user interface for the rest of the system to operators in the back-office. 
Another application could take the actual responsibility of measuring the system and providing energy 
consumption data at a granular and summary level to corporate sustainability offices. Another application 
could provide the physical location of clusters and another application provide a heat map for power 
efficiency improvement opportunities. Another application could provide a description of status within 
the life cycle of products in a cluster, making recommendations on how to optimize upcoming plant 
design over time, or even do so in modeling before a section of the plant is built. Another application 
could provide a real time savings calculation in terms of watts or dollars for the cluster—not shown in the 
picture. We do expect there would be an application that could adaptively modify the element states 
toward energy savings. There would be an application that makes suggestions on settings of nodes 
according to their respective power supply capability, towards overall power reduction or performance 
improvement. Finally, there could be apps that go beyond the settings of the node and extend to plant and 
network configurations via comparison between clusters. In general, the applications space is an open 
canvas for creativity and multi-vendor differentiation. 

10. OSS / BSS 
The operation support system (OSS) and billing suport systems (BSS) are the executive coordinators of 
the whole operation. They determine policy and the ultimate experience of the end line customer. 
Ultimately, the work of the power management environment must work within the confines set by the 
OSS and BSS. This is where the policy manager plays a crucial role making sure that any changes in the 
system do not violate higher directives. 

Predictive Analytics 
Predictive analytics (PA) has two main targets, the first is to take large sets of data and process it into 
meaningful relational information and the second is to learn from the experience of that data and 
anticipate meaningful directions that allow for positive action on the system. In our case the big data set is 
the power state information for clusters and their components in an HFC plant. The data could be as small 
as one node cluster, or as large as all the clusters in the national footprint of an MSO. In our case the 
relational information would be between the node components in a cluster and its line power supply, or 



  

between clusters, or comparisons of particular type of nodes in all clusters. There is no limit to what sort 
of relations we can study once the data is present. For the anticipation part of PA we could look to avoid 
failures due to future power inefficiencies and take action to prevent them, or avoid any performance 
shortcoming when there is power available to make it better. There is also no limit to the actions taken 
from anticipation learned. Some of the actions could include recommendations for the challenges pointed 
out in the “Use Cases for Adaptive Power Using APSIS”, (SCTE245, 2018) 

While a full treatment of PA would be very extensive, for our particular goal of highlighting the general 
principles within the context of HFC power management, we focus on three main functions: data storage 
structure, analysis of data for execution, and prediction of future situations via machine learning. We do 
this by presenting a practical example. While there are various frameworks to conduct this exercise, we 
rely here on the infrastructure of an open-source predictive analytics engine called Apache Hadoop. 
Hadoop stems from a project by Google to organize storage and do computation on big data. It is a now a 
common tool. (Note that in the case of HFC node clusters, our data analysis does not have to be real time 
so Hadoop is a good fit.) The framework for Hadoop is shown in Figure 9. 

 
Figure 9 - Hadoop analytics engine structure 

The first basic component of this analytics engine is its storage framework, the Hadoop Distributed File 
Storage (HDFS), (EdurekaHDFS, 2017). As the name implies, when data is stored it is done so in a 
distributed way, with a management layer or descriptive metadata and separate data clusters that are 
generic enough that can run on commodity hardware. A more concrete example will be shown below.  

The second component is a sequence of algorithms that do analysis on data sets by distributing 
computation and coalescing results, these are the MapReduce functions (EdurekaMapReduce, 2017). In 
MapReduce one can execute known or program custom function on data sets. A more concrete example 
will be shown below. 

The third component is Yet Another Resource Negotiator (YARN) which is an operating system of sorts 
for the architecture of data storage and its usage, (EdurekaYARN, 2017). This resource manager 
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organizes the data clusters for storage and makes available data sets for computation and parallel 
processing, along with its scheduling. 

There are also other common utilities that are present to facilitate the work of HDFS and MapReduce and 
while very helpful in practice we do not cover them here. 

1. Heat Map Application  
As an example, we sketch the heat map application on the PA platform. The heat map application would 
show the state of interaction between a line power supply and its subtending nodes in and HFC node 
cluster. This effectively shows whether a group of nodes is within the power envelope of its main supply 
or not.  

1.1. Data Storage 

Our first task is to take and organize and store our large data set from the field. In Figure 10 we show this 
data organization as would be done in HDFS. We note that there are independent raw data clusters and a 
higher level of metadata, which has description for the raw data clusters. These raw data clusters have 
redundancy and can be executed on commodity hardware. The management and organization of these raw 
data cluster sets is done by YARN. In our particular example the raw data clusters have the power state 
information for a power supply and its subtending nodes. Interestingly, we can organize the data clusters 
to coincide with HFC node clusters somewhat simplifying the steps that follow in MapReduce. The 
metadata in this example then just keeps a list of the types of components in the clusters, in our case a list 
of the power supplies and nodes is available.  

 
Figure 10 - Distributed data storage of clusters 

1.2. Data Analysis 

We show our data analysis on a framework that represents MapReduce. Our goal is to compute the 
comparison of the power available by a line power supply and the composite power usage of its 
subtended nodes.  

In Figure 11 we show the progression for analysis. First is the identification of a data set as input. Note 
this data set is identified but not retrieved. In our case we need a list that includes power supply and nodes 
for HFC clusters 1-6. Then this data is organized (split) into usable groupings for distributed computation. 



  

In our case the grouping matches the HFC node cluster for simplicity, so each node cluster’s information 
is a set, line power supply for its two nodes, for six HFC node clusters. Next is the mapping itself, which 
is the execution of functions in a parallel manner on the data sets identified. In this case it is a logic 
identifier between the power supply capability and the addition of power consumption for the two nodes it 
serves. If the line power supply capability is more than its nodes usage then the value “0” is returned. If 
the line power supply capability is equal to the nodes usage then the value “1” is returned, and if the line 
power supply capability is less than the nodes usage the value “2” is returned. This is done in parallel for 
all six groups. The shuffling exercise is the organization of results from computations done in parallel. In 
our case it coalesces the power supplies that are well within their operation capacity, the power supplies 
which operate on the very edge and those that are being overworked or beyond their means. The reducing 
function then gives the actionable data we seek. In our case which power supplies we should monitor and 
which power supplies need immediate attention. This data is then exposed by the Heat Map application in 
a graphical representation of colors, yellow clusters if they need monitoring and red if they need attention.  

 
Figure 11 - MapReduce Functions for Heat Map Application 

This albeit simple example shows the thought progression behind using analytics for actionable 
intelligence. With the data at hand it is just a matter of creativity for how to use it.  

2. Predictions  
The predictive part of predictive analytics comes for the application of machine learning. Formally 
machine learning is a subset of the broader field of artificial intelligence which allows for some newer 
technologies like self-driving cars. In our case we prefer it because it allows us to apply statistical 
methods on data to learn from experience and predict the future behavior of a system, the system in our 
case being a node cluster. 

Below we provide a simple example of using machine learning progression to predict what will happen to 
a cluster’s line power supply output when two new nodes are added, as could be the case for an HFC node 
cluster when the HFC plant evolves to DAA, for instance.  

In Figure 12 three plots show the progression of a very simple machine learning sequence. The very top 
diagram is borrowed from Figure 6 which shows physical layout of a node cluster with a line power 
supply, unique DC loop resistance, and six subtending nodes with particular power usage load.  

The left graph shows a scatter plot of data learned by the system. In our case this is the power relationship 
between main supply and composite load. This data of course is available because of the analytics 
framework we have built already. The relationship mentioned above for instance would be built from a 
MapReduce module made to return corresponding line supply power and additive load.  
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The middle graph shows a regression for the data learned; this step is the application of some statistical 
tool for the data available. In our case we use a straight forward linear regression and extend its outcome 
beyond the data available. This is our prediction model then because as we look to add two nodes we can 
estimate the behavior of the system as two more nodes are added, as represented by the red circles on the 
line. We can also estimate the range of possibilities for these points, per the confidence level of the 
regression, thus the error bars on the points. Note that there are various statistical tools, beyond linear 
regression, available depending on the machine learning package being used, but generally with some 
mathematical treatment many relationships can be reduced to approximate linear forms. Thus simple 
linear regression can be quite common.  

Finally, our last graph plots the actual relationship of two real nodes added to the system. Now it is time 
to test the model proposed by our machine learning algorithm. We see that in comparison to the regressed 
line the two real new points are not that far off, but we also note that the regressed line is not perfect, and 
so we can go through the process again and again until the user is satisfied with the fidelity of the line to 
the system. Once there is confidence in the model it can be used as actionable intelligence. In our case we 
can use the model to predict the behavior for other clusters of similar topology that need to add more 
nodes. We can use it to model a system before deployment. We can even use it to find and build optimal 
topologies for new builds. The possibilities are many. Note that the fine-tuning capability of these 
predictive techniques is what makes them ideal tools for node clusters because as we saw earlier the 
energy consumption signatures will be unique for different node clusters.  

 
Figure 12 - Machine learning progression for adding nodes to cluster example. 

Power-Managed HFC Lifecycle 
The interesting takeaway about having a tool that can give insight into the power relationship of the HFC 
plant is that we can use it throughout the plant’s lifecycle, see Figure 13. It can be used for modeling 
capacities and topologies even before it is built because we can anticipate outcomes with high confidence. 
It can be used for set up and create birth certificates for plants in deployment. It can be used to monitor 
and react in the day-to-day operations. It can help to manage service windows for the plant, it can help 
predict and identify end of life to power sensitive products. It can change the perspective of nodes and 
components according to expected power consumption, and can use items that are best in a system, not 
necessarily just efficient at one setting on its own. And it can also anticipate and assist in the sourcing of 



  

replacements parts. Overall it can have a very positive impact on the energy consumption and 
performance of HFC plant moving forward.   

 
Figure 13 - Function of an adaptive power manager throughout the HFC plant. 

Recommendations 
The deployment and use of an adaptive power manager can be facilitated and cause several changes in the 
way the industry would approach the opportunity for HFC plant energy conservation measures and their 
relationship to network performance. Below we list several recommendations for the MSO community to 
take in this direction. 

 Think of power in manageable chunks: we called them node clusters. 
 Create robust and open power data models for all legacy and new nodes technologies. 
 Centralize power management via cloud infrastructure.  
 Allow predictive analytics to do the heavy lifting. 
 Specify node power limits in context of cluster capabilities, not individual targets based on other 

averages. 
 Qualify new node product in context of performance in clusters over time, not solely on 

individual performance. 

Some form of power management is likely inevitable due to the otherwise large energy consumption and 
performance problems its absence would entail. The above recommendations would facilitate such an 
implementation and create an interoperable environment ripe for its fast development.  

Abbreviations 
ASIC Application-Specific Integrated Circuit  
BSS Billing Systems Support 
CIN Carrier to Composite Intermodulation Noise 
CMTS Cable Modem Termination System 
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CNR Carried to Noise Ratio 
CPE Customer Premise Equipment 
DAA Distributed Access Architectures 
DC Direct Current 
DOCSIS Data Over Cable Service Interface Specification 
DPD Digital Pre-Distortion 
FDX Full Duplex DOCSIS 
FPGA Field Programmable Gate Array 
HDFS Hadoop Data File System 
HFC Hybrid Fiber Coaxial 
I2C Inter-Integrated Circuit 
IC Integrated Circuit 
ISBE International Society of Broadband Experts 
MSO Multiple System Operator 
OLT Optical Line Termination 
OSS Operations Systems Support 
OTN Optical Transport Network 
PA Predictive Analytics 
PHY Physical Layer 
QAM Quadrature Amplitude Modulation 
REST Representational State Transfer 
RF Radio Frequency 
rms Root Mean Square 
SCTE Society Of Cable Television Engineers 
SLA Service Level Agreement 
SNMP Simple Network Management Protocol 
SNR Signal to Noise Ratio 
YARN Yet Another Resource Negotiator 
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