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Introduction 
Every so often in the history of our evolution, humans discover something so important that it propels us 
into a new plane of technological and intellectual superiority. Over two million years ago, the Stone Age 
helped us build tools that established us as the dominant species on this planet. Much later, the Bronze Age 
(circa 3500 BC) and the Iron Age (circa 1200 BC) catapulted us to new levels of technological 
sophistication through the introduction of coin-based currencies, faster means of transport, durable 
manufacturing and construction and numerous other developments. This laid the foundation for the 
Industrial Age (circa 1700 AD), which ushered in the age of mechanized agriculture, mass transportation 
and electronic communication. The invention of the computer and the internet in the later parts of the 20th 
century heralded the dawn of the Internet Age. Individuals anywhere on the globe could now communicate 
and exchange information with one another. And much like Ray Kurzweil’s Law of Accelerating Returns 
[1], the Internet Age is hardly over. Now, we find ourselves at the cusp of two back to back, tightly coupled 
events that are also bound to be of equally great historical significance - the Age of Big Data and the Age 
of Machine Learning.  

 

 

 

Stone Age 

 

 

Bronze Age 

 

 

Iron Age 

 

 

Industrial 
Age 

 

 

Internet Age 

     Age of Big 
Data and 
Machine 
Learning/AI  

Figure 1 - From the Stone Age to the Age of Big Data and Machine Learning 

The explosion in data aka “Big Data”, is a direct result of the exponential improvements in computing 
power and storage, with similar decreases in their cost [2]. This fueled an abundance of both personal and 
organizational data. The chart, below, provides a dramatic portrayal of the rapid growth of data over just 
one decade. Despite all of this data, the insights that we were able to generate has been limited by decades-
old statistical and mathematical techniques and there wasn’t much innovation in this field. The advent of 
Machine Learning has propelled us forward, by offering techniques that transform the big data into a 
veritable gold mine of valuable insights.  
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Figure 2 - Cambrian Explosion of Data (Source: Patrick Cheesman) 

This paper is about machine learning - its definition and its applications. It especially examines the 
relevance of machine learning from the perspective of the cable’s multiple system operators (MSOs). While 
there have been some attempts in technical and trade literature to pinpoint the benefits of machine learning 
to cable service operators, there has not yet been a holistic treatment of the subject, to our knowledge. This 
paper is an attempt to fill that gap.  

1. Maching Learning Overview 

Definitions of machine learning tend to compare it with traditional statistical methods. Leo Breiman, one 
of the pioneers and early evangelizers of machine learning, talked about the two cultures of statistical 
modeling - the data modeling culture and the algorithmic culture [3]. In the data modeling approach, 
which could be compared to traditional statistical approaches, the model assumes an underlying stochastic 
process. Inferences are made using techniques such as linear and logistic regression. Sample sizes are 
determined based on concepts founded in probability and inferential statistics and generally tend to be a 
tiny portion of the population size. Machine learning or the algorithmic approach, on the other hand, 
does not assume the existence of a well-defined process to the underlying data. Instead, it treats the model 
as a black box. Machine Learning algorithms such as neural networks and decision trees try to decipher the 
underlying patterns in the data using methods similar to that of maximum likelihood estimation. These 
algorithms typically require large amounts of data to yield good predictions.  
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Table 1 - Data Modeling vs Machine Learning approach 

 
Data Modeling Approach Machine Learning Approach 

Sample data 
requirements 

Low High 

Constraints Several Few 
Validation Goodness of fit, residual 

examination 
Performance on an 
independent test data set 

Multiple variable 
prediction accuracy 

Low High 

Data Interpretation 
characteristics 

Linear or curvilinear 
patterns that can be 
approximated as functions 

Complex non-linear patterns 

Traditional inferential statistics has found its niche in several areas such as predicting an election outcome 
or predicting the effects of a new medication on a population.  They perform well when the number of 
predictor variables are low. As the number of predictor variables increase, these models tend to break down. 
This is because of the large number of constraints these models are required to satisfy to yield valid 
predictions [4]. As the number and diversity of predictor variables increase, it becomes more and more 
difficult for these constraints to be met. On the other hand, machine learning algorithms are capable of 
dealing with complex processes and millions of predictor variables. The key requirement for machine 
learning to be successful is a data-rich environment, and the explosion of data in organizations today has 
proven to be instrumental in the increasing popularity and success of machine learning.  

What role does machine learning play in Artificial Intelligence (AI)? AI is an overarching term that 
encapsulates all attempts to instrumentalize technology with the ability to think and act independently, 
much like humans do. It refers not only to the software and algorithms that renders this capability but the 
hardware and control systems as well. Machine Learning can be viewed as the subset of AI technologies 
that deals with pattern recognition.  

A crucial advantage that humans have over existing computing platforms is our ability to make inferences 
from a complex set of input events. For example, our eyes are sophisticated enough to visually process 
information in three-dimensional space and recognize objects and emotions with little difficulty. Another 
example is our ability to look at a multi-variable time-series chart and immediately identify the anomalies 
present. The intelligence that enables us to excel at these tasks can be traced down to our uncanny ability 
to leverage our historical knowledge to perform real-time pattern matching. Machine learning and its 
derivative technology – Deep Learning, render computing platforms with pattern matching skills. In some 
cases, they are far superior to humans because they can process numerous parameters and complex 
underlying processes in an almost unbounded manner, limited only by computing and storage costs. In 
addition to the strong reliance on mathematics and statistics, machine learning is also strongly tied to 
software development, since the amount of data that it needs to be successful requires the use of state of the 
art software development methodologies. 

The below diagram succinctly captures the overlapping areas of knowledge that data science comprises of 
- computer science, mathematics, statistics and domain expertise. The unicorns in the middle refer to those 
data scientists who possess the rare combination of all these skills. 
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Figure 3 - Data Science Venn Diagram 

2. Applications of Machine Learning for MSOs 

In this section, we define general classes of machine learning algorithms and discuss how these classes of 
algorithms can add value to service providers.  

The general classes of machine learning algorithms 
1. Classifiers 
2. Clustering Algorithms 
3. Recommender Systems 
4. Anomaly Detection Algorithms 
5. Linear Regression  

Classifiers are used to discern similarities among sets of data and assign them to categories based on their 
similarity. Examples of classification could be identifying objects in a video frame, identifying the 
underlying sentiment in a customer service message – happy, upset or neutral, or, associating a log message 
from a set-top to a specific error class. The technologies powering classifiers range from the simple - 
decision trees and random forest, to the very complex - deep neural networks. The choice of technologies 
used are typically functions of the level of complexity and the number of features in the underlying data. 
Image classification has been shown to benefit greatly by technologies derived from neutral networks such 
as convolutional neural networks (CNNs).  

Clustering algorithms group similar data into clusters. They are typically used to group data that share 
similar characteristics or to look for significant deviations in data. For example, clustering algorithms could 
be used to look at smart home data and create user profiles based on shared behavioral characteristics – for 
example, early risers, late risers and so on. Clustering algorithms range from the simple such as K-Means 
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clustering to more advanced algorithms such as agglomerative hierarchical clustering that may require 
additional tuning for optimal performance. 

Recommender systems are a class of algorithms that make user or product recommendations based on 
historical usage or behavioral data. They can be used to suggest movies to users based on what those users 
have watched in the past or based on what users with similar viewing habits may have watched. For 
example, if two users like Star Wars and one of the users has watched Dark Matter, another sci-fi series, 
then the recommender would suggest Dark Matter to the other user. In a similar way, they can also be used 
to recommend products that users would like to purchase. In the case of customer service, they can 
recommend actions that the customer service representative can take in each situation based on past actions. 
A popular method of building these recommendations is using an algorithm called Collaborative Filters.  

Anomaly Detection algorithms are similar to classification algorithms except that they typically only deal 
with cases where there just two classes of data exist and where one class occurs with an extremely low 
frequency. If the anomalies are relatively large, then clustering algorithms can be used; however, if 
anomalies are very few, joint probabilistic methods to model the rare events are more appropriate. Anomaly 
detection can be used to look for events such as billing fraud and device errors in cases where device failure 
is rare. 

Linear Regression algorithms are used to make predictions about continuous variables. An example could 
be predicting customer churn rate or predicting bandwidth utilization. Linear Regression and Classifier 
algorithms share similar characteristics with respect to the technologies that are used. Where they differ is 
while classifier algorithms are designed to maximize the separation between dissimilar data points to allow 
for classes to be determined, linear regression algorithms interpret results in a continuous manner. One 
other point to note is that ML-based linear regression models are typically interpolative, traditional 
statistical linear regressions models are both interpolative and extrapolative. This only points to usage and 
does not imply that the traditional model is superior to the ML-model in cases where extrapolation is 
required. 

Table 2 summarizes the above discussion. 

Table 2 - Machine Learning algorithms 

Class of Algorithms Description Technology Examples Applications 
Classifiers Assigns data to 

categories based on 
similarity to other data. 

Random Forest and 
Neural Networks  

Sentiment Analysis, 
Image Classification 

Clustering Algorithms Groups similar data 
into clusters 

K-Means, Hierarchical 
Clustering 

User profiles and 
anomaly detection 

Recommender 
Systems 

Make recommendations 
based on historical data 

Collaborative Filtering Product 
recommendations 

Anomaly Detection Identify rare events Joint Probabilistic 
modeling  

Billing fraud detection 

Linear Regression Predict values for 
continuous variables 

Linear Regression Churn rate prediction 

Discussed below are a few machine learning concepts and ideas that are also important to the successful 
application of machine learning. 
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2.1. Supervised versus Unsupervised Learning 

As mentioned earlier, machine learning algorithms seek to find underlying patterns in data and 
mathematical ways of representing those patterns. The mathematical representation is referred to as a 
model. This search for patterns leads to two broad classes of machine learning – supervised and 
unsupervised learning. Given any set of data, if a machine learning algorithm is asked to determine 
underlying patterns in an autonomous manner, then that form of machine learning is known as unsupervised 
learning. Examples of unsupervised learning are (1) building consumer behavior profiles from customer 
call data and (2) classifying defect data into groups based on similarity between defects. Supervised learning 
is guided learning. In this case, the data also includes a parameter known as a label that captures the system 
response to a given set of input parameters. In determining customer churn for example, the available data 
will include the number of issues seen by a customer on a set-top on any given day. These are the predictor 
variables. In addition to the predictor variables, supervised algorithms require a label that could indicate 
whether the customer tried to cancel service that day. Supervised algorithms can be used to build a model 
that can predict the probability of a customer cancellation from the predictor and response variables. These 
algorithms have been shown to be effective in improving customer diagnostics, optimizing call centers, 
increasing the efficiency of truck rolls, and pro-active network healing. 
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Figure 4 - Data Requirements for Supervised and Unsupervised Algorithms 

2.2. Training set, Test set and Hyperparameters 

Data used to build machine learning models is typically broken down into subsets - the training data and 
the test data. Training data is used to train the algorithm and allow it to build a model for the underlying 
data. Typically, the algorithm contains a number of tunable parameters, called hyperparameters, that are 
used to optimize the performance of the model. For example, when trying to use a clustering algorithm to 
build customer profiles, one of the hyperparameters is the number of clusters. In our examination of the 
resulting clusters from such an algorithm, we may notice that a certain cluster count yields a more optimal 
set of clusters than another cluster count. In a similar way, other hyperparameters can also be tuned till an 
optimal model is obtained.  A key success factor for a machine learning model is to ensure that the training 
set and the test set are kept completely separate. This ensures the absence of any kind of bias during model 
generation. For this reason, hyperparameter tuning is not done using the test set, but rather, the training data 
is subdivided into a training set and a cross-validation set, and the cross-validation set is used to validate 
hyperparameters. 

2.3. Feature engineering 

There are two types of parameters that come into play with machine learning. The first type is referred to 
as a predictor variable and the second type is referred to as a response variable. Predictor variables are 
variables that are used to make predictions and response variables are the prediction. In image recognition, 
for example, pixels in an image are the predictor variables and the predicted class (cat, dog, flower etcetera) 
is the response variable. Similarly, when predicting the likelihood of a customer call, predictor variables 
could include the state of the set-top box modem and state of the infrastructure. In this case, whether the 
customer called, given the set of predictor variables, would be the response variable.  

The selection of predictor variables is a crucial part of machine learning since the quality of the predictor 
variables ultimately determines the quality of the prediction. Predictor variables are also referred to as 
features. Feature selection is in itself a complex process and it has spawned a whole separate branch of 
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machine learning called feature engineering. Feature engineering usually involves two types of activities 
(1) Reducing the set of all possible features into a set of features suitable that are better predictors of the 
output class and (2) Transforming or extending the set of available features with new features that are more 
suitable for the particular machine learning task. A popular method to transform one set of parameters into 
a smaller set of better predictor variables is called Principal Components Analysis (PCA). 

2.4. Ensemble approaches 

Often, when doing machine learning, the algorithms taken separately do not yield the best results. However, 
when combined with other machine learning algorithms or even multiple instances of the same algorithm, 
the quality of the results tends to improve, this is referred to as the ensemble approach to machine learning 
and this method is quickly gaining popularity in the machine learning community. The random forest 
algorithm is such as example. Sometimes, results from different algorithms such as random forest and 
support vector model (SVM), may be combined to yield a better classifier. Software tools include features 
that offer the programmatic selection of the best ensemble models through trial and error. A successful 
demonstration of the ensemble approach is the Netflix Prize which went to a team of machine learning 
engineers that developed the best algorithm using a similar ensemble approach [5]. 

2.5. Online versus offline algorithms 

In certain cases, machine learning models may need to be built in real-time or online mode. For example, 
recommender systems need to process incoming events in real-time and provide recommendations based 
on the current state of the system. In this case, the model will need to be updated in real-time to ensure that 
the recommendations are up to date. In cases such as anomaly detection however, it may not be necessary 
to build a real-time model and an offline model is sufficient. In this case, models are built when data is 
available and refreshed with lesser frequency, perhaps on the order of weeks or months.  

Depending on the type of application, an online or an offline model may be required. Not all machine 
learning algorithms work in an online model, so therefore, if choosing the online learning route, it is 
important than an algorithm that supports online learning is selected.  

3. Operational Efficiency Improvements Using Machine Learning 

As discussed above, there are several applications to machine learning. Some of the applications such as 
recommender systems, campaign management systems, market analysis and so on are revenue generating. 
Other applications have to do with cost optimization. These include customer call prediction, churn 
prediction, fault prediction, capacity planning and so on. In this section, we focus on the potential for 
machine learning to improve the operational efficiency of an organization. 

Listed below are a set of reasons establishing how machine learning can help with operational efficiency 
goals. 

● Cable system operators have a lot of data sources (understatement!) with valuable information 
about the state of the system 

● These data sources are currently used only for basic- to medium-level analytics tasks, such as 
relative frequency comparison, difference computations and advanced visualizations. 

● Predictive analytics using machine learning can help flag customer service issues in advance, 
presenting operators an opportunity to fix them before they disaffect service 
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● Machine learning tools can also be used to perform root cause analysis to identify underlying issues 
and recommend remediation actions 

● When ML insight is deployed in development and field tools, it helps drive down call volume and 
truck rolls, thereby decreasing operational costs related to these activities 

3.1. Machine Learning – A New Operations Paradigm 

Machine Learning is a new paradigm of operations. This is especially true for field technicians who stand 
to benefit the most from this tool. Field technicians are used to certainty. When a DOCSIS monitoring 
device is plugged into an outlet, the expectation is that the spectral signature that they see is exactly what 
is present. The same goes for other measures such as signal loss, signal-to-noise ratio, signal levels and so 
on. This is a deterministic paradigm where what is reported is exactly as it is.  

Machine Learning solutions are different. They do not provide answers that are a 100 percent guaranteed 
to be true. What you get is an answer and a probability associated with that answer being true. For example, 
in the case of a spectral impairment, the machine learning solution may say that there is a 95 percent chance 
of the signal containing a wave impairment. How should the field technician or the network operations 
center react to a probabilistic result? There are known methods of handling uncertainty and these are all 
based on an application’s aversion to false positives. 
 
Evaluating performance of machine learning models involves balancing cost reduction, customer 
satisfaction and model complexity. A large volume of repair calls implies that small improvements can 
yield sizeable cost saving.  Consider the below example 
 

• 1 million repair calls a month at a hypothetical $10 per call implies a monthly cost of $10m per 
month.  

• A 1 percent reduction results in a 100-thousand-dollar monthly saving and an annual saving of 
approximately 1.2 million dollars 

 
Machine learning also provides a means for tuning the model to yield a desired false positive rate. Reducing 
the number of false positives would however drive down the number of true positives, so there is a tradeoff 
that must be made. The examples below show two use cases  
 

• A destructive self-healing action such as a reboot would require higher precision; we should 
therefore minimize false positives to reduce disruption to the customer 

• A non-intrusive self-healing action such as a billing change would allow for lower precision, as 
false positives influence the overall result in the same manner as false negatives. 
 

Similarly, in the case of the spectral impairment detection case study considered in this paper, the machine 
learning algorithm would assign similar probabilities to each of impairment that it detects and the field 
operations and the network operations center should have a strategy to deal with this information in a 
meaningful manner. 

4. Typical Development Methodology 

The development and deployment of machine learning within an organization typically takes place as two 
parallel, though connected, workstreams. The first workstream is more centered on the modeling effort. 
The second workstream focuses on ensuring that there is a path to deployment for the models being 
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developed. The two efforts are viewed as happening concurrently because of the complex nature of 
deploying a machine learning solution in a cable system operator’s production environment.  

Figure 5 shows the two workstreams and Figure 6 shows a high-level view of the machine learning model 
lifecycle.  

 

Figure 5 - Machine Learning Workstreams 



  

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 14 

 

Figure 6 - Machine Learning Process (Source: Crisp Industry Standard Process for Data 
Mining -CRISP DM) 

5. Case Study: Spectral Impairment Detection 

Cable operators monitor the use of the spectrum for every device (e.g. cable modem). Such measurements 
give a state of the communication between the network infrastructure and the device. 

The goal of this method is to automatically characterize these spectra by labeling all their impairments. This 
is instrumental to: 1) Assess the performance of the RF spectrum, 2) Consider variation over time and 
temperature; 3) Standardize automation & detection or anomalies, and 4) Remove subjectivity and manual 
interpretation by technicians. 

Experts have identified 15 impairments for which automatic detection would bring a competitive advantage. 
Each of these impairments exhibits an identified cause, and is linked to a repair action that improves the 
performance of the RF spectrum. For example: 
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Figure 7 - A few RF spectrum impairment samples 

The 15 plant-related impairments ripe for detection and subsequent correction include: Suck-outs, Notches, 
Tilt (and direction), Ripples / Waves, Off-Air Ingress, Foreign carriers, Wideband / Edison, Roll-off, 
Resonance / Peaking, Filters, Leveling, Adjacency / Alignment, Power Summary, Distortion / Intermod, 
and Pilot-to-Channel ratio. 

6. Design Approaches 

The accuracy of the spectral impairment detector currently in production is low, with only 5 impairments 
being detected. The new impairment detection described is significantly more accurate, targeting the 
detection of 10 of the 15 known impairments. 

To enhance the accuracy of spectral impairments interpretation two methods are being pursued. Each of 
them will result in a much higher impairment classification accuracy. 

Mathematical modeling: Spectral data is modeled through traditional signal processing methods, 
extracting features characterizing each of the 15 impairments in a direct, static mapping. 

ML models: An ML algorithm learns dynamic mappings between the features extracted by the 
mathematical model and the impairments. As such, ML uncovers optimal solutions, fine-tuning each feature 
to its best use within a context. This comes at the cost of labeling huge quantities of data to perform the 
supervised learning. Addressing this issue, the team built a labeling engine to crowd-source labeling within 
Comcast. 

6.1. Mathematical Modeling 

Each of the impairments described in the figures below are detected by a corresponding set of features. 
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Figure 8 - Spectral Impairments and Their Shapes 

Some of the impairments, like roll-off, filters or suck-outs are very impactful to end customers, even 
preventing them from accessing some channels. Other impairments, like waves, off-air-ingress or tilt slow 
transmissions down. All of these impairments are linked to known causes. Their diagnostic is key to the 
performance of Comcast’s operations, and is of particular use to field technicians, because it allows them 
to pinpoint the cause of poor performance, or installation malfunctions. 
 
The proposed approach is based on noise-resistant feature detection. Two data representations are used in 
parallel. The spectrum representation uses the complete spectrum, with a sampling at 117 kHz. The channel 
representation characterizes each TV channel which corresponds to a 6 MHz sampling. Channel 
representation is used and well understood by technicians. 
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Figure 9 - Spectrum, Channels and Features 

The features are independent from each other and are oblivious to the frequency at which they appear, and 
their combination allows detection of impairments. Impairment detection methods are also independent 
from each other, allowing their results to be combined. Thus, this overall detection method allows fine 
tuning both features and impairments, independently. This flexibility permits the introduction of new 
features, as well as new methods for impairment detection, without affecting existing detection methods.  

6.1.1. Feature Detection 

The program extracts similar features for both channel and spectral representations. 
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Figure 10 - Feature Detection 

A plateau, with frequencies between 120MHz and 750MHz, is considered for the analysis. A linear 
approximation of this plateau offers stable features y = ax + b to assess the flatness of the plateau and its 
height. A similar approach is undertaken with higher degree approximations of the same plateau. From this 
plateau, positive and negative peaks are detected. The shape around these peaks is an important feature, as 
some of the peaks are formed by single channels, whereas others have parabolic shapes --illustrating that 
many channels are affected simultaneously.   

6.1.2. Example of impairment detection: Tilt and roll-off 

A tilt is well approximated by a linear signal. The roll-off, in contrast, shows a fast decrease of the signal 
amplitude at high frequencies, and is better modeled as a parabola.   

 

Figure 11 - Tilt and Roll-off detection 

One solution differentiating a tilt from a roll-off is to make the ratio between the residuals of the 3rd order 
approximation and the 1st order approximation. If the ratio is near to 1, the impairment is a tilt since no fast 
decrease of the signal amplitude at high frequencies was detected. 
 
Example of impairment detection: Suckout, notch, foreign carrier, resonant peak 

From a feature extraction point of view, suckout and notch impairments are seen as signal dips, whereas 
foreign carrier and resonant peaks represent crests in the signal amplitude. 
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Figure 12 - Suckout, Notch, Foreign Carrier and Resonant Peaking Classification 

The suckout is a large dip spanning several channels, whereas the notch is a tiny dip that cannot be seen 
in the channel view.  

The foreign carrier is a sharp, single channel peak in the signal, whereas the resonant peak is a shallow peak 
spanning across several channels.  

6.1.3. Results 

The presented method returns a complete impairment diagnostic including all impairment instances 
detected on a spectral signal. 
 
In Figure 13, the presented method discovers a combination of wave, tilt, suckout at 429MHz, and suck-
out at 445MHz. In the figure, suckouts are annotated with a red cross-circle: 

 

Figure 13 - Prediction Example – Wave, Tilt and Suckout 



  

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 20 

One of the advantages of this mathematical modeling is its simplicity: Each of the impairments is linked to 
a few features extracted via signal processing. The fine tuning of these features warrants some 
experimentation and skills, e.g. for defining the threshold making the difference between the tilt and the 
roll-off. These parameters are largely independent and can be fine-tuned independently. But static tuning 
might not be the optimal solution. 

6.2. ML Models: Towards an Optimal Solution 

ML models can be used to bring mathematical models into a new dimension. Instead of having a finely 
tuned mathematical model working with static parameters -- like the threshold making the difference 
between the tilt and the roll-off -- imagine having an ML algorithm that dynamically fine tunes these 
parameters, according to the expected output. The great advantage of ML is that it uses algorithms such as 
linear regression and classifications to determine the best parameter settings. ML is capable of optimizing 
thousands of parameters that are far beyond the capabilities of what humans can fine-tune. 
 
However, ML comes at a huge cost in this setting. ML works best in supervised learning, so, data needs be 
labeled. The features that were treated independently in the mathematical model are now mixed together, 
leading to a combinatorial explosion. Labeling 15 features into 6 buckets (e.g. none, tiny, small, medium, 
large, huge) leads to 156 possibilities = 11 million to hit each bucket at least once.  This domain is most 
probably sparsely populated; however, this simple calculation shows that labeling data is a daunting task, 
way beyond human capabilities. At a first glance, hundreds of thousands of labeled data could and should 
be generated.  

   

Figure 14 - Comcast Labeling Machine Solution Overview 

The good news is, Comcast and other, like-minded MSOs have thousands of experts in the field capable of 
labeling this data. These are our industry’s technicians. The idea is to farm the labeling task out through a 
“Turk mechanism” [6]. In this case, the unlabeled data is provided to the Comcast Mechanical Turk server 
that crowd-sources the data to be labeled to the technicians. At any time, an underutilized technician can 
access data and label it, through an API accessed by an app on their device.  
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Figure 15 - Comcast Labeling Machine – Labeling Impairments 

The graphic interface shown above allows a quick annotation, prior to sending the data back to the 
labeling Turk. The same data can be labeled independently by several technicians to improve the label 
quality through a vote or an averaging process. The collected data can be reviewed at the labeling engine 
prior to sending it to the ML algorithm.  

Conclusion 
Comcast and similar service provider companies have a lot to gain through the applications of machine 
learning, especially in the area of improving operational efficiencies.  

A key takeaway from this paper are the concepts of machine learning as they relate to multiple service 
operators. Especially important is the new paradigm under which machine learning operates – that of 
probabilistic expectations and the move away from determinism.  

“The best is the enemy of the good”.   

The search for answers that are a hundred percent guaranteed to be true can stifle our ability to be successful 
because it makes us resistant to innovative approaches to problem solving, such as machine learning. 
Machine learning provides us not just an answer but also the probability associated with the outcome. We, 
as cable operators, should begin to appreciate the value of such results and have processes that can educate 
folks on how to use this information. Only then, can we reap the true benefits of machine learning.  

This paper also looked at how spectral impairments in the RF spectrum can be predicted using two 
approaches, one based on straight-forward mathematical modeling and another based on machine learning. 
Mathematical modeling is similar to a rule-based approach where patterns in the RF spectrum are predicted 
based on how well they fit certain mathematical functions. The mathematical functions are built using one 
or more observations. The main drawback of the mathematical model is its inability to scale to 
accommodate a larger set of representative spectral impairment patterns. Machine learning trains numerous 
sets of labeled spectral impairment observations and uses this method to build a model for spectral 
impairment detection. It can also leverage the feature selection work done using the mathematical model. 
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Given the vast amount of training data that the machine learning model has seen, it is able to better discern 
subtle differences in spectral waveforms and consequently leads to better predictions. In addition, it is much 
more maintainable than the mathematical modeling approach since learning to identify a new spectral 
impairment is simply a matter of adding the new spectral impairment data to the training set and rebuilding 
the model. The presence of labeled data or an easy method to label the data would further simplify the 
machine learning approach. The mathematical modeling approach on the other hand is harder to maintain 
because it requires an expert to generate new functions to recognize a new impairment.  

Both the mathematical model and the machine learning model can nicely coexist, with the predictions that 
they each make serving to contribute to reinforce the overall prediction accuracy.   
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Abbreviations 
AI Artificial Intelligence 
CNN Convolutional Neural Network – A type of neutral net that has been very 

successful in image classification 
DOCSIS Data Over Cable System Interface Specification – The protocol used to carry 

data traffic over cable infrastructure 
ML machine learning 
MSO Multiple Service Operators – typically refers to cable providers 
PCA Principal Component Analysis – A type of machine learning algorithm used for 

feature transformation 
RF radio frequency 
SVM Support Vector Model – A type of machine learning algorithm used for 

classification 
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