

 © 2017 SCTE-ISBE and NCTA. All rights reserved.

Principles for Interoperability in the

Internet of Things

A Technical Paper prepared for SCTE/ISBE by

J. Clarke Stevens
Principal Architect, Emerging Technologies

Shaw Communications
2420 17th Street

Denver, CO 80202
587-393-0605

clarke.stevens@sjrb.ca

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Introduction __ 3

Basic Architecture ___ 3
1. Data Modelling ___ 3
2. RESTful Architecture __ 4
3. Security __ 4
4. Bridging __ 4

Organizational Pillars ___ 5
5. Open Standard ___ 5
6. Open Source Implementation ___ 5
7. Certification Test Tool ___ 5

Tools and Support ___ 6
8. Crowd-sourcing Data Models __ 6
9. Support for Multiple Platforms ___ 6
10. Tutorials and Developer Support ___ 6

Open Connectivity Foundation ___ 7
11. Common Data Model & RESTful Architecture ___ 7
12. Security from the Start ___ 7
13. oneIoTa and Derived Models __ 7
14. IoTivity 8
15. Certification Test Tool and Authorized Test Facilities ___________________________________ 8
16. Developer Community and Tools ___ 8
17. Current Status ___ 9

Conclusion ___ 9

Abbreviations ___ 9

List of Figures

Title Page Number
Figure 1 - OCF conceptual framework 7

Figure 2 - Three pillars of OCF 8

List of Tables
Title Page Number
Table 1 - CRUDN view of a RESTful interface 4

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 3

Introduction
Perhaps the biggest problem with the emerging Internet of Things (IoT) is that there are so many
standards and proprietary systems. Apple, Google and Amazon each have proprietary approaches.
Standards on relevant IoT topics are available from IEEE, IETF, W3C, ISO/IEC and virtually every other
standards body. Even organizations trying to comply with standards are forced to choose between
incompatible options. The integrated Smart Home and other IoT applications and systems cannot achieve
their promise if the billions of connected things can only connect with a limited subset of the other
devices. This paper will outline a number of principles that can enable interoperability, scalability and
security while including all of the devices that need to be connected. The Open Connectivity Foundation
(OCF), as one of the premier standards organizations trying to solve the interoperability problem, will be
measured against these principles. The SCTE IoT working group is investigating OCF and several other
IoT topics to determine if there is work for SCTE to do to provide guidance for its members.

Basic Architecture
The prospect of the Internet of Things is one of the most exciting prospects to come along in computing
for some time. Science fiction has long anticipated this development, but it has always been too
demanding as an application, too expensive in terms of resources, or too impractical in terms of size or
speed. All of those barriers are now coming down. Advances in hardware have reduced size and cost. The
size reduction has in turn increased compute capability and improved speed to the point that a
sophisticated computing device can be about the size of a piece of confetti and process data in essentially
real time.

What remains to do is build the infrastructure that can combine this technology with cooperation between
organizations so that the same scale and benefits of the Internet can be realized in the Internet of Things.
The true benefit of the Internet of Things comes from the combination of computing and communication.
The communication is only useful if the various devices are speaking the same language. This is the role
of standards.

1. Data Modelling
In defining how the Internet of Things should communicate, it is important to firstly understand what
things will be communicating. For the most part, these “things” are real-world devices like lights,
refrigerators, lathes and carburetors. Standards are often tripped up by disagreeing on how to define these
real-world objects. However, the very fact that the objects exist in the real world implies a certain
compatibility between any of the various ways to describe them. This is the fundamental principle behind
common data modelling. If modelling method “A” describes an object and modelling method “B”
describes the same object, there must be a mapping between “A” and “B.” Similarly, if model “C”
describes the same object, there must also be a mapping between “A” and “C,” and by the transitive
property between “B” and “C.”

Of course, another problem between standards is what they choose to model. Some standards may only
model home appliances while others may concentrate on healthcare devices. It’s hard to map a digital
blood pressure monitor to a stereo system.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 4

One way to overcome this problem is to map things at a more atomic level. Both a blood pressure monitor
and a stereo system have a switch and a display. If you take all of the atomic components of each system
and map them to a common model, you can get some basic interoperability even between items as
different as a blood pressure monitor and stereo system.

Establishing a common data model that is a superset of all the atomic resource that are used to compose
the devices of interest is a logical way to create general compatibility. Each complex device is just a
collection of all the atomic resources it contains. Similar items (like refrigerators) from different
manufacturers may have different features, but will still share a majority of common atomic resources like
lights, thermostats, switches, etc.

By defining mappings between device representations in any standard and the common data model, a very
complete interoperability model can be established.

2. RESTful Architecture
Once a common data model has been set up, the interactions with the data model must be defined. This is
where RESTful architecture comes into play. An extended RESTful model can be defined by the
following actions: Create, Read, Update, Delete and Notify (CRUDN). In other words, device models can
be created and deleted. Their state can be read and set (updated) and devices can send notification if an
anticipated event occurs. A very large number of real-world devices can be defined, observed and
operated using only these principles.

Table 1 - CRUDN view of a RESTful interface
CREATE A resource must be created before it can be used. PUT is normally used.

READ Read allows the current values of the resource to be determined. Get is normally used.
UPDATE Update allows the current values of the resource to be set. Generally, POST is used so the

elements of the structure can be written selectively.
DELETE Delete is used if the resource is no longer needed.
NOTIFY Notify is used to get information initiated by the server. It is usually communicated using

an OBSERVE function or a Publish/Subscribe method.

3. Security
One of the biggest fears generated by the Internet of Things is security. If hackers can already sabotage
your hard drive or steal your passwords, imagine what damage they could do if they had access to the
door locks on your house or could control your oven. This is why a security strategy must be built-in to
any IoT ecosystem from the start. The security system must not only employ the latest security
technologies, but must also anticipate that it will be hacked and have a plan for how to survive the hack
and update its own systems. This sort of security can not succeed if it is “added” after the system already
works. It must be designed in from the start.

4. Bridging
Standards succeed when they are agreed upon by the key implementers in any ecosystem. This is why
cellular phones can call other cellular phones (it wasn’t always that way). One way to make sure

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 5

everything works together is to get all the key players to choose the same solution. While attractive, this
rarely works quickly or without several standards failing the test of time.

Another way to do this is to define bridges between standards. By using the common data model
described in section 1, a mapping can be described that maps another standard into the common data
model and out of the common data model. If several standards define this two-way mapping, they can all
communicate by transitioning through the common data model. A bridge is a device that implements
these two-way mappings. By using a bridge, a standard can take advantage of the common data model
without the need to adopt it or convert millions of deployed devices to use it.

Organizational Pillars
The architecture described in the sections above provides the theoretical construct for interoperability, but
a standard is always open to interpretation. Even a well written standard can be understood differently by
different brilliant engineers. In order to ensure interoperability, more is needed. Interoperability can be
better enabled by building an ecosystem with three pillars.

5. Open Standard
The first pillar is an open standard. A standard defines as unambiguously as possible all of the details for
implementing the architecture. Standards use very precise language and lots of coding examples. An open
standard is developed in view of many critics and reviewers. Eventually, it is made public so anyone can
access it for review, implementation and improvement. An open standard also generally has very
generous usage terms including minimally restricted use, fair and often free licensing terms and a regular
process for finding and correcting errors. An open standard is a key element of a maximally interoperable
system.

6. Open Source Implementation
Having an open standard is a good start, but relatively few people have the patience or motivation to read
a standard and write compliant code for it from scratch. That’s one reason it’s important to have an open
source implementation. With open source, the code that implements the standard is created, tested and
shared by a community. By starting with a solid code base, individual developers can begin to implement
a new product with basic code that already works. They just need to add the features that are required by
their new product. With many people reviewing and using the open source code on a regular basis, errors
are more easily discovered and corrected. The community works together to maintain and improve the
code base to the benefit of all.

7. Certification Test Tool
The final organizational pillar is the certification test tool (CTT). The CTT tests the code to make sure it
is compliant with all the requirements laid out in the open specification. By automatically testing each
specification requirement, any implementation (private or open source) can be verified to be a valid
implementation of the specification. If a device passes the tests in the test tool, it should logically work
with other devices that pass the test tool.

By using each of the three organizational pillars, a standard that enables interoperability theoretically, can
test a “canonical” open source implementation and verify it is compliant with the specification. The CTT

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 6

can also test other private implementations. The combination of open source, open standard and a CTT
provides multiple checks. When errors are discovered, they can be tracked to errors in the
implementation, errors in the CTT, or even errors in the specification.

Additionally, “plug fests” can be held where products that are expected to be interoperable by virtue of
passing the CTT can actually be tested with other products that also pass the CTT. This is a nice final test
to verify interoperability.

Tools and Support
The features described to this point help to ensure that interoperability and security can be developed
across multiple products and ecosystems. However, if it is too difficult to build these interoperable
products, nobody will build them. This is why it is important to develop tools and a support system to
help product developers.

8. Crowd-sourcing Data Models
One of the best ways to help developers is to provide a complete resource repository of atomic data
models. While this can be done in a number of ways, one of the most efficient it to have a common place
where anyone interested can create a model and submit it. Of course, this would quickly become
unwieldy without a bit of control.

One way to manage this would be to have an online tool where users could log in and make submissions.
If these submissions could then be reviewed by a team of experts before being accepted, consistency
could be assured and duplication could be avoided.

If this tool also allowed for submission of mappings between different ecosystems and the common data
model, there would be a single authoritative source for data model resource interoperability. Furthermore,
the accuracy and completeness of these models would be encouraged by support of the community that
would use them.

9. Support for Multiple Platforms
One of the real benefits of the Internet of Things is the vast variety of devices that can be built on
numerous ecosystem platforms. For some products, a minimal platform is required that can run on a
button-cell battery for several years. For other applications, a more capable platform is required that can
process video signals or respond instantaneously.

These platforms are not going to all support the same operating system or state machine. They won’t
support the same programming languages. This is why it is important to have an architecture and
implementation that can support a wide variety of platforms. It is also important to maintain a number of
these platforms to give programmers and product developers a head start.

10. Tutorials and Developer Support
Another critical tool for developers is an example. A working example is far more useful than several
pages of specification text. Moreover, a tutorial that takes a developer step-by-step through the
development process is much more valuable than a simple example.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 7

With the right development tools and a good step-by-step example, a programmer can be productively
programming in a couple of hours rather than a couple of weeks.

Open Connectivity Foundation
Now that we’ve laid out the basic requirements for a secure and scalable IoT system, let’s look at the
Open Connectivity Foundation (OCF) to see how well it stacks up to the principles for interoperability
that have been described. The OCF is an open standards organization with over 300 members worldwide.

Figure 1 - OCF conceptual framework

11. Common Data Model & RESTful Architecture
OCF uses a common data model comprised of atomic resources (currently over 100) defined using JSON
schema for payloads and Swagger files describing a RESTful interface. OCF uses a CRUDN set of
actions on the atomic resources and constructs complete devices as collections of resources. The interface
for a device is completely described by the device data model. A “client” or control point interface can
operate a device by introspecting the device description and using the CRUDN interface on the device
data model.

12. Security from the Start
Robust communication security is designed into OCF from the start. At its most secure, OCF uses a
public-key infrastructure with credentials installed into the device at manufacture time. Additionally, OCF
uses link-based security. Insecure ecosystems can interface with OCF, but capabilities of these insecure
ecosystem will be limited.

13. oneIoTa and Derived Models
oneIoTa (oneIoTa.org) is an online tool for crowd-sourcing resource data models. It is a basic Integrated
Development Environment (IDE) that includes back-end processes for submitting and reviewing data

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 8

models with groups of experts. oneIoTa provides the definitive collection of OCF data models that
comprise the common data model. It also contains resources from other organizations like AllJoyn and
UPnP. Other organizations are encouraged to contribute their data models.

oneIoTa is also the repository and tool for “derived” data models that describe the mapping between other
ecosystems and the OCF common data model.

Figure 2 - Three pillars of OCF

14. IoTivity
IoTivity is the official open source implementation of the OCF standard. At each release event, IoTivity
will provide a complete implementation of OCF that passes the certification test tool. IoTivity is managed
by the Linux Foundation and funded by OCF. In addition to a complete implementation of OCF, IoTivity
includes a number of examples and implementations for several platforms.

15. Certification Test Tool and Authorized Test Facilities
The OCF certification test tool (CTT) is an automated test tool that implements a complete test of OCF at
each release event. CTT is under continual development. IoTivity must pass the CTT at each release
event. CTT is also the tool that is used by OCF authorized test facilities to certify real products.

16. Developer Community and Tools
OCF has a marketing group that provides resources and instruction events to encourage development and
support for devices based on OCF. The Tools Task Group in OCF will develop and distribute tools to
assist developers in the creation of OCF products. OCF also encourages independent groups with
different interests to support OCF. Implementations for particular ecosystems, platforms and applications
adds to the diversity of the development community.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 9

17. Current Status
OCF has not suddenly solved IoT interoperability, but progress is being made. OCF currently has over
350 members and liaison relationships with about 20 other standards organizations. OCF version 1.0 will
be publicly released this fall. Each OCF biannual release will include synchronization between the open
standard, the open source implementation (IoTivity), and the certification test tool. There is a well-
defined process for continual introduction of new vertical markets and associated use cases. Mainstream
devices that are OCF native will start showing up this Christmas along with bridges to existing
ecosystems. There is still a long way to go, but progress is being made.

Conclusion
In order to get the full benefit of the Internet of Things, a maximal set of things must work together
regardless of development platform or underlying ecosystem. The principles described in this paper can
help deliver on the promise of IoT by creating a scalable system that can describe virtually any product
and interoperate with virtually any other ecosystem. Furthermore, the three pillars of an open standard, an
open source implementation and a certification test tool ensure that the implementations of OCF meet the
expectations of the theory. Finally, the support community around OCF aims to ensure that OCF-based
products can be successfully implemented as easily as possible.

Creating an Internet of Things that parallels the opportunity of the Internet is no small task and the
success of OCF is in no way guaranteed. However, by using the interoperability principles described in
this paper the chances of success for OCF are improved substantially.

Abbreviations
CTT Certification Test Tool
OCF Open Connectivity Foundation
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
ISBE International Society of Broadband Experts
ISO/IEC International Standards Orgainzation/International Electrotechnical

Commission
SCTE Society of Cable Telecommunications Engineers
W3C World Wide Web Consortium

	Introduction
	Basic Architecture
	1. Data Modelling
	2. RESTful Architecture
	3. Security
	4. Bridging

	Organizational Pillars
	5. Open Standard
	6. Open Source Implementation
	7. Certification Test Tool

	Tools and Support
	8. Crowd-sourcing Data Models
	9. Support for Multiple Platforms
	10. Tutorials and Developer Support

	Open Connectivity Foundation
	11. Common Data Model & RESTful Architecture
	12. Security from the Start
	13. oneIoTa and Derived Models
	14. IoTivity
	15. Certification Test Tool and Authorized Test Facilities
	16. Developer Community and Tools
	17. Current Status

	Conclusion
	Abbreviations

