
© 2017 SCTE-ISBE and NCTA. All rights reserved.

Fungible Virtualization Stacks

Refocusing on Optimization of Underlying Resources

A Technical Paper prepared for SCTE/ISBE by

Keith Alan Rothschild
Principal

kar@cox.com

Guy Meador III
Senior Solutions Architect

Guy.Meador@cox.com
Cox Communications

Technology Solutions Engineering,
6305B Peachtree Dunwoody Road

Atlanta, GA 30328

Brian Kahn
VP, Solutions Architecture
Sea Street Technologies

 401 Edgewater Place, Suite 570
Wakefield, MA 01880
bkahn@seastreet.com

mailto:Guy.Meador@cox.com

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 2

Table of Contents
Title Page Number
Summary __ 3

Introduction __ 3
1. First Principles ___ 4

1.1. Service Exposure Pattern and Approach ______________________________________ 4
1.2. Composites and Composability Across Domains ________________________________ 4
1.3. Resource Abstraction ___ 6
1.4. Optimize for the Business First __ 6
1.5. Model Based Approach __ 6

2. Resources __ 7
3. Resource Consumption __ 9
4. Automation ___ 10

4.1. Resource Management ___ 12
4.2. Sovereign Systems __ 14

5. Proof of Concept __ 15

Conclusion __ 18

Abbreviations __ 18

Bibliography & References ___ 19

List of Figures
Title Page Number
Figure 1 - Universal CPE 3

Figure 2 - Time-of-Day Network Reconfiguration 4

Figure 3 - Domain Diagram 5

Figure 4 - The Relationship Between Virtual Instances and Customer Instances 6

Figure 5 - Enterprise Application Model vs. Cloud Application Model 9

Figure 6 - Desired Relationship of Stacks to Resource Pools 10

Figure 7 - Comparison of Scripts, Automation, Workflow, Orchestration, and Sovereign Systems 11

Figure 8 - Evolution between Scripts, Automation, Workflow, Orchestration, and Sovereign Systems 12

Figure 9 - Integration Platform 13

Figure 10 - Dimensions of Machine Learning 15

Figure 11 - Factors that Impact Potential for Operational Savings 17

Figure 12 - Factors that Impact Potential for Operational Expense Cost Avoidance 17

Figure 13 - Using Virtualization-Enabled Automation to Empower the Workforce 18

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 3

Summary
Industry focus on stack providers such as VMware and the various OpenStack implementations has
prevented operators from focusing on the core problem: optimization of the underlying resources.
Leveraging an integrated Policy-Driven Model-Based Service-Orchestration and Resource-Automation
framework, we developed a solution where we can optimize the underlying resources, and where the span
of control for any given virtualization stack is what is dynamically managed. This helps us address
several of our critical use cases in addition to optimizing raw underlying resources including: (a) power
management - turning off un-utilized resources, (b) services of bare-metal requirements for CDN, some
real-time processing applications, etc., and (c) managing the needs of specific virtualization stacks
(including isolation into secure network zones) required for specific VNF and/or IT domains.

Introduction
The systems we are designing now, and will be implementing over the next few years, need to support
innovation over the next decade. It is useful to consider potential future scenarios when positing the span
of control of each system. Consider two system environments: the consumer (home or business) and the
data center.

Figure 1 - Universal CPE

There are competing formulations of what makes CPE “universal”, with many aspects depending on
viewpoint. Consumers may want it to be a retail-available next-generation version of the cable modem,
bringing WAN and LAN connectivity, and to allow for any number of additional features such as
connected storage, compute, and/or to be converged with their home automation hub. The operator wants
to minimize the number of devices deployed at a given customer location to support all of the operator’s
products at that location – even to the point of deploying a single device - so that the operator neither
maintains multiple versions of CPE to support any given customer, nor maintains multiple profiles of
CPE across broad customer segments. When determining the functions to be performed on the CPE vs.
elsewhere in the operator’s span of control, issues related to latency and the importance of continuity of
service during loss of WAN connectivity may be important.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 4

Figure 2 - Time-of-Day Network Reconfiguration

For the data-center environment, the ability to get the most benefit at the lowest cost is highly desirable.
This may mean rebalancing optical links between data centers using Reconfigurable Optical Add-Drop
Multiplexers (ROADM) to minimize the quantity of the most expensive optics required. To the extent
that demand drives electricity and cooling costs, managing demand at operator locations throughout the
day may become an important factor in reducing overall operating costs. Demand-shifting strategies may
become important, such as making processing payloads “follow-the-sun” (to make use of
solar/photovoltaic energy while addressing peak demands). Another use case is reduction of number of
compute centers, for example, using excess capacity in the West or East to serve Central needs based on
differences in consumption during different times of day, as shown in Figure 2.

With these scenarios in-mind, we need to identify the most important design principles, the universe of
resources involved, and the optimal way to manage those resources over the long-term.

1. First Principles
1.1. Service Exposure Pattern and Approach

It is recommended to adopt a top-down, service-centric approach. Specifically, do not define offerings by
the way they are technologically constructed and deployed (ex.: resources, stacks or physical location),
but by service functionality, characteristics, interfaces, and consumption model. The service exposure
pattern has usually been the domain of “cloud” orchestrators and software-only services. It is not identical
to SOA, but shares many related concepts applied in a more generalized way, including constituent
hiding, functional service interfaces, well defined attributes, and interfaces to control and automate
services. It is applicable not only to software-based services, but should include hardware, network, and
software. The key result: all services exposed through the pattern having the same functional interfaces
and essential service attribute values are equivalent regardless of composition.

1.2. Composites and Composability Across Domains
A Composite is defined as an entity that contains a number of parts, called constituents, that are used by
the entity as a whole. At any particular time, a constituent may be integral and dedicated for use by the
whole or, in some cases, may be shared between composites. For this paper, composites and constituents
are technological resources or services within, or across, one or more domains.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 5

Composites can be assembled with one of two high-level approaches: static assembly or dynamic
assembly. Static assembly implies a tight integration and association between the composite and
constituents in a manner that is not intended to be changed over time, except as a result of undesirable
events (ex. breakage) or design changes. Dynamic assembly may, indeed, have tight integration and
association to the composite, but that association is more changeable in nature and occurs at any time in
the normal course of composite operation (not only, for example, in response to constituent breakage).

Virtualized and software-controlled environments make dynamic assembly a more viable strategy as
compared to a hardware-centric environment. Moreover, dynamic assembly of composites is essential to
flexible, responsive, and agile service delivery. This gives rise to the Principle of Dynamic
Composability: The aggregation relationship between a composite and its constituents should be
changeable at any time in the composite’s life cycle.

Figure 3 - Domain Diagram

Each domain and the services it provides should be dynamically composed of resources (and, possibly,
other services), with such composition being created and changed over time under the control of a higher-
level (sovereign) system, such as the Inter-Domain Resource Orchestrator (IDRO) proposed by BT:

“The development of rich NFV business cases depends on agreeing [on] each layer's responsibilities and
the application programming interfaces (APIs) and service-level agreements (SLAs) through which each
exposes its functionality to others. Otherwise, BT points out, nonsensical scenarios will arise, such as an
NFV IaaS provider ceding resource allocation control in its own infrastructure to its customer's NFV
Orchestrator (NFV-O). […] Global resource management is parked in the NFV-O alongside service
orchestration, but BT and others argue that it should be separated out into a fourth layer: the inter-domain
resource orchestration layer.” (Chappel, 2015, p.3)

This arrangement enables global, end-to-end, policy-controlled decisions to be centrally determined and
to take effect uniformly across and between the domains. Indeed, resources could be provided to one
domain for a time and then reassigned to another domain, driven by global decisions and policies arising

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 6

from, for example, business needs or operational considerations that exceed the scope of any one of the
domains.

1.3. Resource Abstraction
Expect resources to change over time as services, technologies and costs change. Focus on a stable,
extensible approach to achieve thorough implementation and consistent reuse of policy and business
logic. Resources will converge. Policy and business logic will be used to create business differentiation.

Incorporate abstraction and software infrastructure convergence so resource changes are seamless and
straightforward. Make certain that any service can call upon, consume and control resources from any-
and-all underlying infrastructure or cloud systems (i.e., compute, storage, networking, and future systems)
so evolution is modular and straightforward.

Virtualization Stacks should be Composites supporting the Dynamic Composability Principle and Service
Exposure Pattern, and should be managed with a layered operations automation approach that composes
the resources and services and exposes the desired interfaces and functionality without revealing their
composition.

1.4. Optimize for the Business First
Optimize for the business first and the infrastructure second. Expressly enable optimized recurring
configurations, even if they are different in different organizations. Optimize infrastructure at the raw
resource level (i.e., compute, storage, network links, PNFs/VNFs, stack licenses, etc.), not at the finished
configuration level. Enable the business first. Execute, control and assure the full operational lifecycle of
services for maximum efficiency, reliability and value. Do not stop at fulfillment.

Figure 4 - The Relationship Between Virtual Instances and Customer Instances

1.5. Model Based Approach
Use models to operate the lifecycle of services and the resources. Manage the models to manage the
service or resource. Encapsulate service lifecycle operations using a consistent, model-based service

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 7

induction methodology so operations logic is portable and can be understood and simulated alone or in
context.

Control operations via design-able, reusable policy models. Encapsulate business logic in policies.
Design policies once and reuse them across multiple services, offers and applications as needed. Policies
scale in a way that people cannot.

Expect hybrid cloud, inter-cloud, NFVI, and hyper-converged infrastructure models to present and
reinvent themselves over time and be ready to include them. Choose a methodology and a platform to
allow modular flexibility to progressively add innovative resource types as required.

Perform service level cost modeling before and after implementation to identify and prioritize business,
operational, financial and compliance factors. Let the numbers drive the resource and operational
decisions. Remember, the cost to automate should be compared against the cost of not automating,
including the development and support of M&Ps which will often have a comparable cost to automation
independent of how often the M&P might be utilized. An M&P that is rarely used is more likely to
introduce uncertainty than the corresponding automation.

2. Resources
For the purpose of this paper1, we will address two major classes of generalized telecommunications
resources, separating them into compute (processing, storage, etc.) and links (networks). Improvements in
hardware capabilities have resulted in general purpose hardware being able to displace specialized
hardware needed for supporting network functions. The ability to deploy virtualized network functions
(VNFs) and the separation of the data plane and control plane in networking enables the creation of
physical (underlay) networks and the use of software to control the realized (overlay) networks in a
manner that can be flexibly reconfigured as needed. These trends are both in-line with what we would
expect from general technology evolution - but are far from where this evolution will end.

Responsible architectural analysis and design will contemplate both the implications of these evolutionary
steps, predict the likely vectors of subsequent evolution, and determine if it is worthwhile to predispose
solutions to support any specific vector. Optimal placement of compute and link capacity is moving from
highly specialized fixed components to components that are generalized and more flexibly configurable,
creating a rather complex resource utilization problem.

Placement of general purpose (compute) resources should be contemplated for these variants: locally on
customer premises (CoP, Compute on Premises), regionally (as it relates to the provider network),
centrally (as it related to the provider), and remotely (third-party). Similarly, (network) links should be

1 This differs from normal treatment in that what is normally referred to as compute is described
as processing, and the term compute is used to describe both processing and storage. Similarly, a
third class is often referred to as networks, whereas here, the term links is used instead.
Components such as switches or routers are often classified as “network” rather than as compute,
however, they are packet processors, and as they become virtualized, may be replaced by
generalized compute. As such, the paradigm of “compute, storage, and network” is replaced with
“compute and links”, which is more germane to this analysis.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 8

contemplated as they connect the customer premises (access), connect resources (data-center), connect
regional data-centers (metro), connect centralized data centers (backbone), and provide for connection to
third-parties (interconnects).

Service Provider facilities encompass a variety of configurations and locations into which generalized
compute resources are placed. These facilities range from large, centralized data centers to regional data
centers, to edge facilities. The evolution of the kinds of generalized compute resources that are placed at
each of these facilities, and the mix and scale of compute resources within them will be dynamic and
ever-changing (ex.: hybrid cloud, inter-cloud, NFVI, and hyper-converged infrastructure, etc.). In tension
with these trends is the goal to select and manage compute resources in a manner that makes them usable
by the largest set of services over time without the need to perform manual/physical changes; once put in
place, the same compute resources should be usable by any service’s software elements as long as the
resource meets the minimum capability profile for the software element.

At present, CoP devices are likely to be x86-based, but, at scale, more cost-effective solutions are
expected to emerge. Over time, device capability will improve, with the potential for device availability
through retail channels and device upgradability (ex. compute capacity). These dynamics will further
fragment the uniformity of capabilities across the device population. Independent of capability, these
devices will be expected to support a combination of services, as subscribed to by the customer.

As denser alternatives to x86 CoP devices become popular, the desire to benefit from this in the
datacenter will begin to gain momentum, and we will see a combination of hybrid virtualization stacks
and virtualization stacks dedicated to dense packet processing.

More capable CoP devices may be able to reduce the traffic demands on the access network, and
depending on business models and who provides the CoP device, the bandwidth allocation on the access
network may need to be dynamically adjusted to accommodate placement of network functions on the
CoP or remotely.

The concept of Universal CPE (uCPE) is closely tied to Compute on Premises (CoP). The understanding
of what constitutes uCPE may lay within the perspective of the stakeholder, and even then, could be
differentiated by the role. For Service Provider (SP) product managers, the universality of uCPE could
mean that it will support any combination of services that SP offers, for instance, some combination of
video, voice, internet connectivity, home security and/or home automation services. Supply Chain or
Field Service stakeholders might also include flexible (possibly modular) support of a multitude of WAN
connectivity options. Additionally, we can expect the desire for this to be equipment provided by the
customer and available in retail outlets, in order to reduce expected capital outlays. For retail-available
components, the relationship between the connectivity aspect and CoP aspect of CPE may be severed, or
at least may include the ability to modularly supplement CoP with devices such as NAS and Home
Automation Hubs.

The desire for CoP, from the consumer’s perspective, goes beyond simple optimization of compute and
links, but includes capabilities such as caching of IoT data or the desire to improve performance of
automation capabilities by having some of the decision processing occurring on-site. Retail providers of
CoP will want to optimize cost at volume, and even if x86-based devices were the preference of the SP
community, the OTT and IoT communities would likely move to a more cost effective dense packet
processor. As VNFs evolve towards a micro-service orientation, the CoP domain is likely to be a hybrid
of SP and customer-provided compute resources; therefore, convergence is expected across SP-services,

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 9

OTT-services, and IoT device capabilities. The question isn’t whether the CoP will evolve to support
multiple processing paradigms, but whether the edge-compute and centralized-compute environments will
also embrace supporting a hybrid of x86-based and dense-packet-processing-based paradigms. Similarly,
we will have to consider management based on the availability of equivalent VNFs for each of the
compute paradigms. The need to satisfy multiple compute domains across multiple service offerings that
are provided and managed by multiple parties will greatly challenge the practice of treating compute as a
resource under the control of the SP NFV architecture.

An implication of the convergence of CoP usage is the provider/consumption model for CoP itself.
Consider that businesses and residences are inherently dependent on the managed delivery of services
such as power, water, and sewer. In fact, it is the rare circumstance that these services are offered and
consumed as anything other than fully-managed services. It may be that within a short amount of time
businesses and residences will also become inherently dependent on fully-managed CoP, used as assumed
infrastructure. The main aim of such a managed CoP service is to provide available infrastructure
positioned between the home network and external networks for use by multiple services and parties.

3. Resource Consumption
Many applications utilized by enterprises, which may be the most common class of applications
supported in the IT environment, require a highly available infrastructure. A highly-available
infrastructure drives the need for expensive components. Virtualization stacks that offer high-availability
and nearly transparent VM migration are likely best suited for such enterprise applications, but, this
approach, generally, comes at a cost premium as compared to an approach where the virtualization stack
does not offer those capabilities and the application is designed accordingly.

Figure 5 - Enterprise Application Model vs. Cloud Application Model

The Cloud Model, which is becoming more prevalent, especially in the service provider (SP) space, shifts
the burden from the infrastructure to the application (depicted above). The application is designed to
account for the fact that a fault may occur in the infrastructure and it must handle these additional failure-
case scenarios itself. The virtualization stack in the cloud-model is responsible for making sure that the
elastic infrastructure demands of the application, especially those used for self-healing, are handled
transparently, and that seemingly immutable infrastructure is supplied to the application on-demand.

Significant application re-design is required to move an application from the Enterprise Model to the
Cloud Model, and the expense, which may or may not be capitalized as NRE, may not be warranted for

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 10

many applications. For those situations, continued use of high-availability virtualization stacks becomes
appropriate.

On the other hand, the nature of the Enterprise Model may limit the availability potential of the
application to roughly 99.9%, which meets the requirement of many IT applications, but doesn’t meet the
requirement of many SP applications, which require either three-nines-five (99.95%) or five-nines
(99.999%) availability.

In keeping with the ‘Business First, Resources Second’ optimization principle, we believe it is important
to support a reasonable number of environments such as the ones above so that the various constituents
gain repeatable, optimized environments that suit their specific needs.

Figure 6 - Desired Relationship of Stacks to Resource Pools

Many virtualization stacks support multi-tenancy, and this is something that should be employed with
great caution, especially with service provider applications that leverage and depend on the SDN
capabilities integral to these virtualization platforms. We must avoid putting operations in the position
where one tenant application requires a specific version of a virtualization stack that conflicts with
another tenant application’s requirements due to known compatibility issues. Additionally, secure
isolation enforced at the network level may be more realistic than performing (ore relying on third-parties
to perform) security audits on the virtualization stack.

In this approach, virtualization stacks should be treated as resources, just like compute and storage, that
are consumed based on policy and the actual requirements of the service being placed. OpenStack,
VMWare, containers, bare metal and future stacks should all be enabled to the degree they are required by
the services. Resource optimization will still occur, just at the layer underneath stacks, through the use of
common processing and link resources to the degree permitted by the services.

From an equipment standpoint, the goals are to have the smallest possible footprint required to meet the
demands, and to maximize utilization and reusability while minimizing ‘flavors’ of equipment, and,
therefore, to minimize CapEx. A related goal is to ensure services are portable across different
infrastructure platforms and providers so the SP is free to take advantage of lower cost options as they are
available.

4. Automation
Automation, Workflow and Orchestration are utilities that are manually operated or reactively triggered to
achieve a specific result. They create leverage for human operators and significantly reduce the manual

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 11

steps required in a given process. Today there are common tools for deployment, also called fulfillment,
of cloud services.

While their names might lead one to believe otherwise, these utilities do not cover the full operational
lifecycle of a service. Today, their actions are limited to deployment, single-app scaling and application-
based fault tolerance at best. This is not to say they are not useful - only that they aren’t as broad as they
may seem.

A comparison of scripts, automation, workflow, orchestration and sovereign systems is shown below in
Figure 7. The top line in the diagram shows these utilities compared to one another in terms of suitability
for single vs. multiple tasks, synchronous (potentially single-threaded) vs. asynchronous (potentially
multi-threaded) operations, and their abilities to incorporate rules and policies. The lines below address
the levels of information with which they can interact. Finally, the bottom line shows the level of
intelligence they can encapsulate.

Figure 7 - Comparison of Scripts, Automation, Workflow, Orchestration, and Sovereign
Systems

The hierarchy of automation that begins with scripting. Scripting is a series of commands run in a specific
sequence, and is kicked off by calling that script. Automation builds upon scripting by explicitly
removing the manual need to invoke the script. Automation can be invoked based on some scheduling
system or trigger. Scripting and Automation are typically focused on accomplishing a specific task (or
closely related set of tasks) in a single- threaded or synchronous manner.

Automation is a utility that exists at many levels in the software and hardware of a cloud. It provides rule-
based actions and reactions for a single task. Automation is very useful, but it is generally limited to a set
of known actions. Automation can perform poorly in the face of previously unseen conditions
(exceptions). Automation systems cannot be used effectively for integration because they only focus on a
single task at a time.

Workflow builds upon scripting and automation by executing a series of loosely related tasks, retaining
the single-threaded/synchronous nature. It is a utility that provides rule-based actions across multiple
tasks. Workflows are commonly used to execute processes. They are single threaded per task. Like
automation, workflow systems can perform poorly in the face of exceptions.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 12

Figure 8 - Evolution between Scripts, Automation, Workflow, Orchestration, and
Sovereign Systems

Orchestration deals with the relationship between multiple workflows in a multi-threaded asynchronous
manner, and can deal with invocation at multiple points of a process based on rules.

Orchestration systems are commonly used for deployment of applications across cloud resources. They
might spawn a thread to acquire compute resources, and deploy and configure software on those
resources, while another thread acquired storage and configures it, all for the same application. While
orchestration systems typically terminate an activity when fulfillment is complete, there are some that can
be called repeatedly to affect scaling. Beyond deployment, initial configuration, scale, and
decommissioning, orchestration systems do not effectively address other aspects of the operational
lifecycle of a service.

4.1. Resource Management
Model-Based Systems (MBS) are being deployed to close the gaps in automating fragmented manual
operations. MBS are replacing Run Book Automation (RBA) systems, which traditionally are fragmented
and costly because they rely on manual scripts and templates that represent legacy software. Furthermore,
RBA is constrained to only those operations for provisioning, which are often specific to one
infrastructure domain (i.e., Compute or Network or Storage and their related configurations). The one-to-
one relationship of RBA binds automation to a vendor’s technology implementation. Not only is the SP
wedded to that vendor, RBA also limits automation to simply those provisioning transactions for a
specific infrastructure technology. RBA requires the vendor’s customer to maintain multiple teams of
operating experts to administer and manage its various systems. These teams are repeated in each
technology domain. MBS solve the RBA problem through advanced abstraction by de-coupling and
converging automated operations. Through automation, MBS significantly reduces OpEx and improves
resiliency, control and availability of those services consuming the underlying infrastructure.

It is typical in the NFV and IaaS/PaaS spaces for solutions to provide an end-to-end ecosystem that can
manage almost any task required. The question becomes, even if they can, should they? What is the
appropriate set of criteria to make those decisions? One could make the argument that each link-domain
and each compute-domain should be managed by an independent domain-specific controller
(orchestrator) and that coordination between these domains should occur using a higher-level (sovereign)
system. This does not mean that these domain specific systems don’t communicate with each other, but
there would be no static configuration between them and no clear master among them.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 13

As resources increasingly move to orchestrated virtualization, operators will see the number of resource-
oriented orchestration systems increase in their network. For most domains, there are orchestrators that
handle that specific domain; but, there is also a need for a higher-level orchestrator which is orchestrating
the end-to-end as a whole. Similar to the situation for early automation and workflow-based control
systems, directly integrating third party components tends to increase capital burden over time (left-side
of diagram below). That approach becomes an integration nightmare and locks in domain orchestrators.
By using a higher-level cross-domain orchestrator, policies can be defined generically and then applied
down into the domain orchestrators. This preferred approach enables policies to span domain
orchestrators, allowing for quicker introduction of new domain orchestrators over time with reduced
integration overhead and minimal redesign.

Figure 9 - Integration Platform

The desirable approach is to have an integration platform intermediate between resource orchestrators
(right-side of diagram above). It is necessary to avoid use of a simple automation or workflow-based
integration platform for this purpose; use, at a minimum, an orchestration-capable platform to act as this
integration layer.

As offers become more complicated, a cross-domain orchestrator is needed. Offers like in-home services
require a handful of additional service provider services in order for them to work properly; examples
include physical network, overlay network, firewall, CoP or CPE device, etc. The ability to coordinate the
service across domain orchestrators is critical to understanding the overall SLA for the end customer
offer.

Service deployments are becoming more complex and need to be deployed faster in order to keep up with
demand. The ability to abstract common functionality into reusable and highly-reliable service models
enables deployment to be faster and creates a better service experience. These models should be
abstracted from the underlying stacks to make them portable across infrastructure and component
services.

The ability to dynamically adjust to real-time telemetry to ensure the SLA and service needs being met at
all times is going to become very critical. The number of services that will need to be supported by
service provides is increasing quickly and the budget for operations is only going to shrink. Autonomous
Operations enables the ability to automated known tasks, scale up repetitive tasks and execute them at
computer speed with customer accuracy. The days of having people manually monitor and operate
services is going to come to an end given the size and complexity of what is coming.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 14

4.2. Sovereign Systems
Sovereign systems are top-level controllers that operate multiple services together in context with each
other and across varied sets of infrastructure. Such systems are almost always model-based and use
models to analyze, predict and manage the operation of services on top of ‘real managed things.’

Sovereign systems combine four key elements: (1) stateful awareness, (2) converged declarative
telemetry, (3) late-binding policy, and (4) abstraction. A runtime, state-aware process that understands the
needs of all of the services, capabilities and capacities of all the resources, and the requirements of the
policies simultaneously. Converged and declarative telemetry related to each service. (Note: declarative
telemetry means the service declares the telemetry that is important and relative to it and consumes that
data specifically. Contrast this with the more typical raw event data that has missing context and requires
correlation.) Policy control is applied continuously to manage the automated processes across the service
or resource lifecycle. An abstraction layer separates the traditional infrastructure systems and controllers
from models that define the service’s operational lifecycle.

Sovereign systems sit above traditional infrastructure systems and controllers (e.g.: scripts, automation,
workflow and orchestration) and below traditional OSS/BSS systems and portals. They do not replace
these systems. Sovereign systems typically receive an order from an OSS/BSS system or portal for a
service and then work through an API fabric to operate infrastructure systems and controllers, to gather
telemetry, and to exert control on services and resources to fulfill and lifecycle operate the ordered
service, enabling these systems to operate autonomously.

Key differentiators of Sovereign Systems include:

1. They operate continuously, covering the full service-lifecycle.
2. They run many services simultaneously, in context with each other.
3. They operate under policy control and make policies real in the services and infrastructure
4. They are stateful and understand the meaningful condition of each service
5. They understand resources and capacity and know how much capacity remains
6. They contain a real-time ‘as-built’ graph of the cloud components they are responsible for and a

real-time dependency map.
7. They understand service level health, and can remediate, migrate, scale, and move services
8. They can handle complex multi-stage activities like upgrade
9. Sovereign systems can be programmed to learn from experience, and services operating under a

sovereign system can learn from each other.

Sovereign systems make use of automation and orchestration utilities that exist southbound where
appropriate. For instance, it is common for a Sovereign system to use automation and orchestration
utilities presented by stacks like VMWare or OpenStack.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 15

Figure 10 - Dimensions of Machine Learning

Through modeling, sovereign systems allow methods and procedures (M&Ps) to be written in software
rather than on paper, and they allow these M&Ps to be executed with computer speed and reliability.

Where historic cloud approaches have previously attempted to address deployment and configuration
only, a sovereign system addresses the full lifecycle of a service: order, deploy, assure health, assure
compliance, remediate faults, failover if required, upgrade, move, port, and destroy/delete. Because they
address they the full lifecycle, Sovereign systems have the potential not only to mitigate the additional
OpEx that comes with virtualization and cloud, but also to change fundamentally the cost of business by
eliminating manual work.

Sovereign systems also need to address very specific concerns related to the potential to accelerate and
amplify the effect of failures. Domain orchestrators may not act as expected, either due to malfunction or
issues in the how they were modeled. The sovereign system must be able to predict the degree of impact
that is expected, monitor the implementation, detect when such an anomaly occurs, and accommodate the
anomaly as it can. It should employ circuit-breaker logic with corresponding alarming and notification,
rather than enforcing changes that could spiral out of control, or that might result in excessive
reconfiguration and possibly reconfiguration loops.

A point of clarification is that Sovereign Systems should not be confused with the concept of data
sovereignty. Data Sovereignty is a policy that states where data can be stored or routed or used. For
instance, the Australian National Healthcare System has a data sovereignty requirement that the medical
information for Australian citizens can only be stored, routed and used within the nation of
Australia. You may use a Sovereign System as one way to accomplish this (there are others), but
otherwise the concepts are not connected.

5. Proof of Concept
We created 3 different proof-of-concepts (PoCs) with a Sovereign system from Sea Street called StratOS.
These PoCs were designed to prove out the concepts described in this paper across different types

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 16

services, which includes service provider services, customer-facing offerings and
implementing/integrating multiple stacks together across domains in the IT operations domain.

For the service provider service we used video encoding. This PoC deployed, configured and managed
the operational lifecycle of encoders deployed on bare-metal blade servers. The StratOS system modeled
the behaviors of the encoders, video streams, video quality monitoring devices and the infrastructure
deployed on. StratOS models each component in the system and aggregates these components into
higher-level models that provide a combined higher-level view of the end-to-end server. This means that
the StratOS system has a complete and fully stateful awareness of the entire encoder system. This
includes the encoder location, configuration, mapping of the health of each video stream both upstream
and downstream of the encoder. Once deployed, the system collects telemetry from the infrastructure,
encoders and video quality devices and converges this data to determine the health of each individual
stream, the infrastructure, encoder application, network, etc. Policies are then applied to the converged
data to determine what action, if any, is required to be taken. For example, if the output video quality
device reports “no video”, the source quality device would be checked to see if the issue is an encoder
issue or upstream from the encoder. Given these data points, StratOS would then take actions, as needed,
to remediation to solution such as failover to a standby encoder.

For the customer-facing offering we focused on building a managed router solution with virtualized
network functions (VNFs). This PoC created the overlay network for a managed router customer utilizing
VNFs (i.e. firewall & content filter) from multiple vendors. The StratOS model for this deployment
created each VNF individually and provided the required configuration to connect the service chain
together. As with the encoder PoC, the StratOS model contains higher-level models that aggregate lower-
level models together enabling StratOS to operate the operational lifecycle at both an end-to-end offer
level and component level. This late-binding of network services proved the ability for a Sovereign
system to be able to create dynamic offers for customers based on individual needs. In the PoC we created
multiple types of SLAs that can be applies to each customer to determine the HA configuration of the
service chain, determined placement of services and types of VNFs to be used. Once deployed, StratOS
collected telemetry from each of the VNFs, network and the CPE devices to determine the health of the
end-to-end offer. When a failure in the offer is detected, StratOS was able to failover the customer to a
new service chain within seconds and automate the remediation of failed service chain.

For implementing/integrating multiple stacks together we looked at the IT Operations challenges where
private local networks use one type network and the operations backbone uses another. For this PoC
StratOS modeled the generic requirements of an IT operations system; a set of VMs and network access
to NTP, DNS, the Internet and other private networks. StratOS then determine the correct configuration
required within in each environment in order to create the proper routes in the multiple networks showing
that a Sovereign system can work across and connect multiple environments.

In each of these cases, the StratOS models are designed to be portable across infrastructure through their
abstraction layer. In some cases, we ran the same PoC across different infrastructure stacks and vendors
without changing the models or policies defined in StratOS.

During the proof-of-concept work we did, we examined the cost savings for two of services: (1) managed
router and (2) video encoding. The result of these analyses showed additive operating savings beyond the
benefits of virtualization and standardization of 41% and 31%, respectively. These projected savings were
gained through the efficiencies of automated failure detection and remediation, fewer human errors and
consistent operations engendered from lifecycle automation.

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 17

Services that don’t scale often and are stable will see closer to a 30% cost savings through automation,
while services which are very dynamic, tend to be less stable, or are scaled often will have closer to a
60% cost savings.

Figure 11 - Factors that Impact Potential for Operational Savings

Automation of the Operational Lifecycle of Services reduces operating costs by:

• Automating manual tasks typically taken on by tier 1 and 2 operations staff, these include typical
daily tasks such as monitoring and telemetry convergence, and less frequent tasks such as failure
detection, troubleshooting, cause determination and remediation.

• Automating deployment of applications and services, including upgrades and mass configuration
changes (e.g., re-IPing a service), through common models that contain instance specific
properties.

• Automating security requirements/audits, capacity management, service/datacenter load
balancing and other maintenance tasks performed by operations.

• Automating the recovery of a failed offer, application or service by whatever means necessary to
get the offer or service up and running again. This includes changes to compute instances,
network configuration and more.

• Automating the data flow between the offers, OSS and BSS systems reducing the need for
operational staff to enter or translate data to multiple systems.

• Automating the collection of log and other data needed to analyze failure and determine what
actions need to be taken to prevent similar failures in the future.

An interesting phenomenon we ran into when evaluating these cost savings relates the relative fallacy of
contemplating these as true savings; they may be more accurately described as cost avoidance.
Companies typically have a finite pool of resources that they attempt to spend in an optimal fashion, with
far more demands than the budget can accommodate. Reducing the cost per action will often allow the
company to do more using the same budget, thus a “savings” or “avoidance” of 33% might be more
realistically viewed as increasing the operational capacity of the organization by 50% (you can do half
again as much as before) and a cost savings of 67% can be viewed as tripling the operational capacity of
the organization!

Figure 12 - Factors that Impact Potential for Operational Expense Cost Avoidance

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 18

While claims of 33%-75% may be hard to believe. Being able to operate 2x – 10x the amount of
equipment (the equivalent of 50%-90% “savings”) is easier for people to understand.

Figure 13 - Using Virtualization-Enabled Automation to Empower the Workforce

The reality may lay someone in between, for example, leveraging virtualization-enabled automation may
enable a smaller workforce to handle 5x the amount of equipment with half the expense rather than
achieving a 90% cost savings.

Conclusion
Although virtualization increases the complexity of solutions, it enables highly flexible automation.
Initially, only a few things may leverage this virtualization-enabled automation, however, it will become a
pervasive technology paradigm. To prevent virtualization for the sake of virtualization and over-
integration of technologies from disparate domains, it is important to have a future-state vision that can be
used to guide decisions. Although it is tempting to describe the benefits in terms of cost savings or cost
avoidance alone, the theoretical costs would likely have been prohibitive, and an expression of
operational efficiencies (do-more-with-less) may be more realistic.

Abbreviations
API Application Program Interface
BSS Business Support Systems
CDN Content Distribution Network
CoP Compute on Premises
CPE Customer Premises Equipment
IaaS Infrastructure as a Service
IDRO Inter-Domain Resource Orchestrator
IoT Internet of Things
IT Information Technology
LAN Local Area Network
M&P Method & Procedure
MBS Model Based System
MBSE Model Based Systems Engineering
NAS Network Attached Storage
NFVI Network Function Virtualization Infrastructure
NFVO Network Function Virtualization Orchestrator

 © 2017 SCTE-ISBE and NCTA. All rights reserved. 19

OSS Operations Support Systems
OTT Over-The-Top
PaaS Platform as a Service
PNF Physical Network Function
PoC Proof of Concept
RBA Run Book Automation
ROADM Reconfigurable Optical Add-Drop Multiplexer
SLA Service Level Agreement
SOA Service Oriented Architecture
SP Service Provider
uCPE Universal Customer Premises Equipment
VM Virtual Machine
VNF Virtual Network Function
VNFM Virtual Network Function Manager
WAN Wide Area Network

Bibliography & References
Chappel, Caroline. (2015) NFV MANO: What’s Wrong and How to Fix It. Heavy Reading 13(2).

Chen, Y., Qin, Y., Lambe, M., & Chu, W. (2015, November). Realizing network function virtualization
management and orchestration with model based open architecture. In Network and Service Management
(CNSM), 2015 11th International Conference on (pp. 410-418). IEEE.

Garcia-Gomez, S., Jimenez-Ganan, M., Taher, Y., Momm, C., Junker, F., Biro, J., ... & Strauch, S.
(2012). Challenges for the comprehensive management of Cloud Services in a PaaS framework. Scalable
Computing: Practice and Experience, 13(3), 201-214.

Gevorgyan, A., Krob, D., & Spencer, P. (2016, July). Functional Analysis and Design Approach for an
Optimal Virtual IP Multimedia Subsystem (IMS) Architecture. In INCOSE International Symposium
(Vol. 26, No. 1, pp. 1463-1476).

Ivezic, N., & Srinivasan, V. (2016). On architecting and composing engineering information services to
enable smart manufacturing. Journal of computing and information science in engineering, 16(3), 031002.

Ortiz, A. M., Rios, E., Mallouli, W., Iturbe, E., & de Oca, E. M. (2015, September). Self-protecting multi-
cloud applications. In Communications and Network Security (CNS), 2015 IEEE Conference on (pp.
643-647). IEEE.

	Summary
	Introduction
	1. First Principles
	1.1. Service Exposure Pattern and Approach
	1.2. Composites and Composability Across Domains
	1.3. Resource Abstraction
	1.4. Optimize for the Business First
	1.5. Model Based Approach

	2. Resources
	3. Resource Consumption
	4. Automation
	4.1. Resource Management
	4.2. Sovereign Systems

	5. Proof of Concept

	Conclusion
	Abbreviations
	Bibliography & References

